#ifndef MY_ABC_HERE #define MY_ABC_HERE #endif /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BTRFS_BLOCK_GROUP_H #define BTRFS_BLOCK_GROUP_H #include "free-space-cache.h" enum btrfs_disk_cache_state { BTRFS_DC_WRITTEN, BTRFS_DC_ERROR, BTRFS_DC_CLEAR, BTRFS_DC_SETUP, }; /* * This describes the state of the block_group for async discard. This is due * to the two pass nature of it where extent discarding is prioritized over * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting * between lists to prevent contention for discard state variables * (eg. discard_cursor). */ enum btrfs_discard_state { BTRFS_DISCARD_EXTENTS, BTRFS_DISCARD_BITMAPS, BTRFS_DISCARD_RESET_CURSOR, }; /* * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to * only allocate a chunk if we really need one. * * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few * chunks already allocated. This is used as part of the clustering code to * help make sure we have a good pool of storage to cluster in, without filling * the FS with empty chunks * * CHUNK_ALLOC_FORCE means it must try to allocate one */ enum btrfs_chunk_alloc_enum { CHUNK_ALLOC_NO_FORCE, CHUNK_ALLOC_LIMITED, CHUNK_ALLOC_FORCE, }; struct btrfs_caching_control { struct list_head list; struct mutex mutex; wait_queue_head_t wait; struct btrfs_work work; struct btrfs_block_group *block_group; refcount_t count; }; /* Once caching_thread() finds this much free space, it will wake up waiters. */ #define CACHING_CTL_WAKE_UP SZ_2M struct btrfs_block_group { struct btrfs_fs_info *fs_info; struct inode *inode; spinlock_t lock; u64 start; u64 length; u64 pinned; u64 reserved; u64 used; u64 delalloc_bytes; u64 bytes_super; u64 flags; u64 cache_generation; /* * If the free space extent count exceeds this number, convert the block * group to bitmaps. */ u32 bitmap_high_thresh; /* * If the free space extent count drops below this number, convert the * block group back to extents. */ u32 bitmap_low_thresh; /* * It is just used for the delayed data space allocation because * only the data space allocation and the relative metadata update * can be done cross the transaction. */ struct rw_semaphore data_rwsem; /* For raid56, this is a full stripe, without parity */ unsigned long full_stripe_len; unsigned int ro; unsigned int iref:1; unsigned int has_caching_ctl:1; unsigned int removed:1; int disk_cache_state; /* Cache tracking stuff */ int cached; struct btrfs_caching_control *caching_ctl; struct btrfs_space_info *space_info; /* Free space cache stuff */ struct btrfs_free_space_ctl *free_space_ctl; /* Block group cache stuff */ struct rb_node cache_node; /* For block groups in the same raid type */ struct list_head list; refcount_t refs; /* * List of struct btrfs_free_clusters for this block group. * Today it will only have one thing on it, but that may change */ struct list_head cluster_list; /* For delayed block group creation or deletion of empty block groups */ struct list_head bg_list; /* For read-only block groups */ struct list_head ro_list; /* * When non-zero it means the block group's logical address and its * device extents can not be reused for future block group allocations * until the counter goes down to 0. This is to prevent them from being * reused while some task is still using the block group after it was * deleted - we want to make sure they can only be reused for new block * groups after that task is done with the deleted block group. */ atomic_t frozen; /* For discard operations */ struct list_head discard_list; int discard_index; u64 discard_eligible_time; u64 discard_cursor; enum btrfs_discard_state discard_state; /* For dirty block groups */ struct list_head dirty_list; struct list_head io_list; struct btrfs_io_ctl io_ctl; /* * Incremented when doing extent allocations and holding a read lock * on the space_info's groups_sem semaphore. * Decremented when an ordered extent that represents an IO against this * block group's range is created (after it's added to its inode's * root's list of ordered extents) or immediately after the allocation * if it's a metadata extent or fallocate extent (for these cases we * don't create ordered extents). */ atomic_t reservations; /* * Incremented while holding the spinlock *lock* by a task checking if * it can perform a nocow write (incremented if the value for the *ro* * field is 0). Decremented by such tasks once they create an ordered * extent or before that if some error happens before reaching that step. * This is to prevent races between block group relocation and nocow * writes through direct IO. */ atomic_t nocow_writers; /* Lock for free space tree operations. */ struct mutex free_space_lock; /* * Does the block group need to be added to the free space tree? * Protected by free_space_lock. */ int needs_free_space; /* * Number of extents in this block group used for swap files. * All accesses protected by the spinlock 'lock'. */ int swap_extents; /* Record locked full stripes for RAID5/6 block group */ struct btrfs_full_stripe_locks_tree full_stripe_locks_root; #ifdef MY_ABC_HERE struct { struct btrfs_space_info *space_info; /* protect with space_info->syno_allocator.lock */ struct rb_node bytes_index; struct rb_node max_length_index; struct rb_node max_length_with_extent_index; u64 last_bytes, last_max_length, last_max_length_with_extent; struct rb_node preload_index; u64 preload_free_space; bool ro; bool cache_error; bool removed; bool initialized; atomic_t refs; } syno_allocator; #endif /* MY_ABC_HERE */ }; static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) { return (block_group->start + block_group->length); } static inline bool btrfs_is_block_group_data_only( struct btrfs_block_group *block_group) { /* * In mixed mode the fragmentation is expected to be high, lowering the * efficiency, so only proper data block groups are considered. */ return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); } #ifdef CONFIG_BTRFS_DEBUG static inline int btrfs_should_fragment_free_space( struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) && block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || (btrfs_test_opt(fs_info, FRAGMENT_DATA) && block_group->flags & BTRFS_BLOCK_GROUP_DATA); } #endif struct btrfs_block_group *btrfs_lookup_first_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group *btrfs_next_block_group( struct btrfs_block_group *cache); void btrfs_get_block_group(struct btrfs_block_group *cache); void btrfs_put_block_group(struct btrfs_block_group *cache); void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, const u64 start); void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, u64 num_bytes); int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait); void btrfs_put_caching_control(struct btrfs_caching_control *ctl); struct btrfs_caching_control *btrfs_get_caching_control( struct btrfs_block_group *cache); u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end); struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( struct btrfs_fs_info *fs_info, const u64 chunk_offset); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, u64 group_start, struct extent_map *em); void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); void btrfs_mark_bg_unused(struct btrfs_block_group *bg); int btrfs_read_block_groups(struct btrfs_fs_info *info); int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, u64 type, u64 chunk_offset, u64 size); void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, bool do_chunk_alloc); void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); int btrfs_update_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, int alloc); int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, u64 ram_bytes, u64 num_bytes, int delalloc); void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, int delalloc); int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, enum btrfs_chunk_alloc_enum force); int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); void btrfs_put_block_group_cache(struct btrfs_fs_info *info); int btrfs_free_block_groups(struct btrfs_fs_info *info); void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache, struct btrfs_caching_control *caching_ctl); static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); } static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); } static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); } static inline int btrfs_block_group_done(struct btrfs_block_group *cache) { smp_mb(); return cache->cached == BTRFS_CACHE_FINISHED || cache->cached == BTRFS_CACHE_ERROR; } void btrfs_freeze_block_group(struct btrfs_block_group *cache); void btrfs_unfreeze_block_group(struct btrfs_block_group *cache); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 **logical, int *naddrs, int *stripe_len); #endif #ifdef MY_ABC_HERE int btrfs_reserve_log_tree_bg(struct btrfs_root *root, u64 *rsv_start, u64 *rsv_size); #endif /* MY_ABC_HERE */ #ifdef MY_ABC_HERE int btrfs_clear_block_group_cache_tree(struct btrfs_fs_info *fs_info); int btrfs_create_block_group_cache_tree(struct btrfs_fs_info *fs_info); int btrfs_check_syno_block_group_cache_tree(struct btrfs_fs_info *fs_info); static inline bool btrfs_syno_block_group_cache_tree_enabled(struct btrfs_fs_info *fs_info) { if (!fs_info || !fs_info->block_group_cache_root || test_bit(BTRFS_FS_BLOCK_GROUP_CACHE_TREE_BROKEN, &fs_info->flags)) return false; return true; } #endif /* MY_ABC_HERE */ bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg); void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount); #endif /* BTRFS_BLOCK_GROUP_H */