/* SPDX-License-Identifier: MIT */ #ifndef _INTEL_RINGBUFFER_H_ #define _INTEL_RINGBUFFER_H_ #include #include #include #include #include #include "i915_pmu.h" #include "i915_reg.h" #include "i915_request.h" #include "i915_selftest.h" #include "gt/intel_timeline.h" #include "intel_engine_types.h" #include "intel_gpu_commands.h" #include "intel_workarounds.h" struct drm_printer; /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, * but keeps the logic simple. Indeed, the whole purpose of this macro is just * to give some inclination as to some of the magic values used in the various * workarounds! */ #define CACHELINE_BYTES 64 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) /* * The register defines to be used with the following macros need to accept a * base param, e.g: * * REG_FOO(base) _MMIO((base) + ) * ENGINE_READ(engine, REG_FOO); * * register arrays are to be defined and accessed as follows: * * REG_BAR(base, i) _MMIO((base) + + (i) * ) * ENGINE_READ_IDX(engine, REG_BAR, i) */ #define __ENGINE_REG_OP(op__, engine__, ...) \ intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) #define __ENGINE_READ_OP(op__, engine__, reg__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ __ENGINE_REG_OP(read64_2x32, (engine__), \ lower_reg__((engine__)->mmio_base), \ upper_reg__((engine__)->mmio_base)) #define ENGINE_READ_IDX(engine__, reg__, idx__) \ __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) #define GEN6_RING_FAULT_REG_READ(engine__) \ intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ ({ \ u32 __val; \ \ __val = intel_uncore_read((engine__)->uncore, \ RING_FAULT_REG(engine__)); \ __val &= ~(clear__); \ __val |= (set__); \ intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ __val); \ }) /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. */ enum intel_engine_hangcheck_action { ENGINE_IDLE = 0, ENGINE_WAIT, ENGINE_ACTIVE_SEQNO, ENGINE_ACTIVE_HEAD, ENGINE_ACTIVE_SUBUNITS, ENGINE_WAIT_KICK, ENGINE_DEAD, }; static inline const char * hangcheck_action_to_str(const enum intel_engine_hangcheck_action a) { switch (a) { case ENGINE_IDLE: return "idle"; case ENGINE_WAIT: return "wait"; case ENGINE_ACTIVE_SEQNO: return "active seqno"; case ENGINE_ACTIVE_HEAD: return "active head"; case ENGINE_ACTIVE_SUBUNITS: return "active subunits"; case ENGINE_WAIT_KICK: return "wait kick"; case ENGINE_DEAD: return "dead"; } return "unknown"; } static inline unsigned int execlists_num_ports(const struct intel_engine_execlists * const execlists) { return execlists->port_mask + 1; } static inline struct i915_request * execlists_active(const struct intel_engine_execlists *execlists) { GEM_BUG_ON(execlists->active - execlists->inflight > execlists_num_ports(execlists)); return READ_ONCE(*execlists->active); } static inline void execlists_active_lock_bh(struct intel_engine_execlists *execlists) { local_bh_disable(); /* prevent local softirq and lock recursion */ tasklet_lock(&execlists->tasklet); } static inline void execlists_active_unlock_bh(struct intel_engine_execlists *execlists) { tasklet_unlock(&execlists->tasklet); local_bh_enable(); /* restore softirq, and kick ksoftirqd! */ } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); static inline u32 intel_read_status_page(const struct intel_engine_cs *engine, int reg) { /* Ensure that the compiler doesn't optimize away the load. */ return READ_ONCE(engine->status_page.addr[reg]); } static inline void intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) { /* Writing into the status page should be done sparingly. Since * we do when we are uncertain of the device state, we take a bit * of extra paranoia to try and ensure that the HWS takes the value * we give and that it doesn't end up trapped inside the CPU! */ if (static_cpu_has(X86_FEATURE_CLFLUSH)) { mb(); clflush(&engine->status_page.addr[reg]); engine->status_page.addr[reg] = value; clflush(&engine->status_page.addr[reg]); mb(); } else { WRITE_ONCE(engine->status_page.addr[reg], value); } } /* * Reads a dword out of the status page, which is written to from the command * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or * MI_STORE_DATA_IMM. * * The following dwords have a reserved meaning: * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. * 0x04: ring 0 head pointer * 0x05: ring 1 head pointer (915-class) * 0x06: ring 2 head pointer (915-class) * 0x10-0x1b: Context status DWords (GM45) * 0x1f: Last written status offset. (GM45) * 0x20-0x2f: Reserved (Gen6+) * * The area from dword 0x30 to 0x3ff is available for driver usage. */ #define I915_GEM_HWS_PREEMPT 0x32 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) #define I915_GEM_HWS_SEQNO 0x40 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) #define I915_GEM_HWS_SCRATCH 0x80 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32)) #define I915_HWS_CSB_BUF0_INDEX 0x10 #define I915_HWS_CSB_WRITE_INDEX 0x1f #define CNL_HWS_CSB_WRITE_INDEX 0x2f struct intel_ring * intel_engine_create_ring(struct intel_engine_cs *engine, int size); int intel_ring_pin(struct intel_ring *ring); void intel_ring_reset(struct intel_ring *ring, u32 tail); unsigned int intel_ring_update_space(struct intel_ring *ring); void intel_ring_unpin(struct intel_ring *ring); void intel_ring_free(struct kref *ref); static inline struct intel_ring *intel_ring_get(struct intel_ring *ring) { kref_get(&ring->ref); return ring; } static inline void intel_ring_put(struct intel_ring *ring) { kref_put(&ring->ref, intel_ring_free); } void intel_engine_stop(struct intel_engine_cs *engine); void intel_engine_cleanup(struct intel_engine_cs *engine); int __must_check intel_ring_cacheline_align(struct i915_request *rq); u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n); static inline void intel_ring_advance(struct i915_request *rq, u32 *cs) { /* Dummy function. * * This serves as a placeholder in the code so that the reader * can compare against the preceding intel_ring_begin() and * check that the number of dwords emitted matches the space * reserved for the command packet (i.e. the value passed to * intel_ring_begin()). */ GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs); } static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos) { return pos & (ring->size - 1); } static inline bool intel_ring_offset_valid(const struct intel_ring *ring, unsigned int pos) { if (pos & -ring->size) /* must be strictly within the ring */ return false; if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */ return false; return true; } static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr) { /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ u32 offset = addr - rq->ring->vaddr; GEM_BUG_ON(offset > rq->ring->size); return intel_ring_wrap(rq->ring, offset); } static inline void assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail) { GEM_BUG_ON(!intel_ring_offset_valid(ring, tail)); /* * "Ring Buffer Use" * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the * same cacheline, the Head Pointer must not be greater than the Tail * Pointer." * * We use ring->head as the last known location of the actual RING_HEAD, * it may have advanced but in the worst case it is equally the same * as ring->head and so we should never program RING_TAIL to advance * into the same cacheline as ring->head. */ #define cacheline(a) round_down(a, CACHELINE_BYTES) GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) && tail < ring->head); #undef cacheline } static inline unsigned int intel_ring_set_tail(struct intel_ring *ring, unsigned int tail) { /* Whilst writes to the tail are strictly order, there is no * serialisation between readers and the writers. The tail may be * read by i915_request_retire() just as it is being updated * by execlists, as although the breadcrumb is complete, the context * switch hasn't been seen. */ assert_ring_tail_valid(ring, tail); ring->tail = tail; return tail; } static inline unsigned int __intel_ring_space(unsigned int head, unsigned int tail, unsigned int size) { /* * "If the Ring Buffer Head Pointer and the Tail Pointer are on the * same cacheline, the Head Pointer must not be greater than the Tail * Pointer." */ GEM_BUG_ON(!is_power_of_2(size)); return (head - tail - CACHELINE_BYTES) & (size - 1); } int intel_engines_init_mmio(struct drm_i915_private *i915); int intel_engines_setup(struct drm_i915_private *i915); int intel_engines_init(struct drm_i915_private *i915); void intel_engines_cleanup(struct drm_i915_private *i915); int intel_engine_init_common(struct intel_engine_cs *engine); void intel_engine_cleanup_common(struct intel_engine_cs *engine); int intel_ring_submission_setup(struct intel_engine_cs *engine); int intel_ring_submission_init(struct intel_engine_cs *engine); int intel_engine_stop_cs(struct intel_engine_cs *engine); void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); void intel_engine_get_instdone(struct intel_engine_cs *engine, struct intel_instdone *instdone); void intel_engine_init_execlists(struct intel_engine_cs *engine); void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); static inline void intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine) { irq_work_queue(&engine->breadcrumbs.irq_work); } void intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine); void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, struct drm_printer *p); static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) { memset(batch, 0, 6 * sizeof(u32)); batch[0] = GFX_OP_PIPE_CONTROL(6); batch[1] = flags; batch[2] = offset; return batch + 6; } static inline u32 * gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags) { /* We're using qword write, offset should be aligned to 8 bytes. */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); /* w/a for post sync ops following a GPGPU operation we * need a prior CS_STALL, which is emitted by the flush * following the batch. */ *cs++ = GFX_OP_PIPE_CONTROL(6); *cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB; *cs++ = gtt_offset; *cs++ = 0; *cs++ = value; /* We're thrashing one dword of HWS. */ *cs++ = 0; return cs; } static inline u32 * gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags) { /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ GEM_BUG_ON(gtt_offset & (1 << 5)); /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags; *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; *cs++ = 0; *cs++ = value; return cs; } static inline void __intel_engine_reset(struct intel_engine_cs *engine, bool stalled) { if (engine->reset.reset) engine->reset.reset(engine, stalled); engine->serial++; /* contexts lost */ } bool intel_engines_are_idle(struct intel_gt *gt); bool intel_engine_is_idle(struct intel_engine_cs *engine); void intel_engine_flush_submission(struct intel_engine_cs *engine); void intel_engines_reset_default_submission(struct intel_gt *gt); bool intel_engine_can_store_dword(struct intel_engine_cs *engine); __printf(3, 4) void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...); static inline void intel_engine_context_in(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; write_seqlock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { if (engine->stats.active++ == 0) engine->stats.start = ktime_get(); GEM_BUG_ON(engine->stats.active == 0); } write_sequnlock_irqrestore(&engine->stats.lock, flags); } static inline void intel_engine_context_out(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; write_seqlock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { ktime_t last; if (engine->stats.active && --engine->stats.active == 0) { /* * Decrement the active context count and in case GPU * is now idle add up to the running total. */ last = ktime_sub(ktime_get(), engine->stats.start); engine->stats.total = ktime_add(engine->stats.total, last); } else if (engine->stats.active == 0) { /* * After turning on engine stats, context out might be * the first event in which case we account from the * time stats gathering was turned on. */ last = ktime_sub(ktime_get(), engine->stats.enabled_at); engine->stats.total = ktime_add(engine->stats.total, last); } } write_sequnlock_irqrestore(&engine->stats.lock, flags); } int intel_enable_engine_stats(struct intel_engine_cs *engine); void intel_disable_engine_stats(struct intel_engine_cs *engine); ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine); struct i915_request * intel_engine_find_active_request(struct intel_engine_cs *engine); u32 intel_engine_context_size(struct drm_i915_private *i915, u8 class); #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) { if (!execlists->preempt_hang.inject_hang) return false; complete(&execlists->preempt_hang.completion); return true; } #else static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) { return false; } #endif void intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass); #define ENGINE_PHYSICAL 0 #define ENGINE_MOCK 1 #define ENGINE_VIRTUAL 2 #endif /* _INTEL_RINGBUFFER_H_ */