// SPDX-License-Identifier: GPL-2.0+ // Copyright IBM Corp 2019 #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #define EXTN_FLAG_SENSOR_ID BIT(7) #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */ #define OCC_STATE_SAFE 4 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */ #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000) #define OCC_TEMP_SENSOR_FAULT 0xFF #define OCC_FRU_TYPE_VRM 3 /* OCC sensor type and version definitions */ struct temp_sensor_1 { u16 sensor_id; u16 value; } __packed; struct temp_sensor_2 { u32 sensor_id; u8 fru_type; u8 value; } __packed; struct freq_sensor_1 { u16 sensor_id; u16 value; } __packed; struct freq_sensor_2 { u32 sensor_id; u16 value; } __packed; struct power_sensor_1 { u16 sensor_id; u32 update_tag; u32 accumulator; u16 value; } __packed; struct power_sensor_2 { u32 sensor_id; u8 function_id; u8 apss_channel; u16 reserved; u32 update_tag; u64 accumulator; u16 value; } __packed; struct power_sensor_data { u16 value; u32 update_tag; u64 accumulator; } __packed; struct power_sensor_data_and_time { u16 update_time; u16 value; u32 update_tag; u64 accumulator; } __packed; struct power_sensor_a0 { u32 sensor_id; struct power_sensor_data_and_time system; u32 reserved; struct power_sensor_data_and_time proc; struct power_sensor_data vdd; struct power_sensor_data vdn; } __packed; struct caps_sensor_2 { u16 cap; u16 system_power; u16 n_cap; u16 max; u16 min; u16 user; u8 user_source; } __packed; struct caps_sensor_3 { u16 cap; u16 system_power; u16 n_cap; u16 max; u16 hard_min; u16 soft_min; u16 user; u8 user_source; } __packed; struct extended_sensor { union { u8 name[4]; u32 sensor_id; }; u8 flags; u8 reserved; u8 data[6]; } __packed; static int occ_poll(struct occ *occ) { int rc; u16 checksum = occ->poll_cmd_data + 1; u8 cmd[8]; struct occ_poll_response_header *header; /* big endian */ cmd[0] = 0; /* sequence number */ cmd[1] = 0; /* cmd type */ cmd[2] = 0; /* data length msb */ cmd[3] = 1; /* data length lsb */ cmd[4] = occ->poll_cmd_data; /* data */ cmd[5] = checksum >> 8; /* checksum msb */ cmd[6] = checksum & 0xFF; /* checksum lsb */ cmd[7] = 0; /* mutex should already be locked if necessary */ rc = occ->send_cmd(occ, cmd); if (rc) { if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD) occ->error = rc; goto done; } /* clear error since communication was successful */ occ->error_count = 0; occ->error = 0; /* check for safe state */ header = (struct occ_poll_response_header *)occ->resp.data; if (header->occ_state == OCC_STATE_SAFE) { if (occ->last_safe) { if (time_after(jiffies, occ->last_safe + OCC_SAFE_TIMEOUT)) occ->error = -EHOSTDOWN; } else { occ->last_safe = jiffies; } } else { occ->last_safe = 0; } done: occ_sysfs_poll_done(occ); return rc; } static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap) { int rc; u8 cmd[8]; u16 checksum = 0x24; __be16 user_power_cap_be = cpu_to_be16(user_power_cap); cmd[0] = 0; cmd[1] = 0x22; cmd[2] = 0; cmd[3] = 2; memcpy(&cmd[4], &user_power_cap_be, 2); checksum += cmd[4] + cmd[5]; cmd[6] = checksum >> 8; cmd[7] = checksum & 0xFF; rc = mutex_lock_interruptible(&occ->lock); if (rc) return rc; rc = occ->send_cmd(occ, cmd); mutex_unlock(&occ->lock); return rc; } int occ_update_response(struct occ *occ) { int rc = mutex_lock_interruptible(&occ->lock); if (rc) return rc; /* limit the maximum rate of polling the OCC */ if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) { rc = occ_poll(occ); occ->last_update = jiffies; } mutex_unlock(&occ->lock); return rc; } static ssize_t occ_show_temp_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct temp_sensor_1 *temp; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&temp->sensor_id); break; case 1: val = get_unaligned_be16(&temp->value) * 1000; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_temp_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct temp_sensor_2 *temp; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&temp->sensor_id); break; case 1: val = temp->value; if (val == OCC_TEMP_SENSOR_FAULT) return -EREMOTEIO; /* * VRM doesn't return temperature, only alarm bit. This * attribute maps to tempX_alarm instead of tempX_input for * VRM */ if (temp->fru_type != OCC_FRU_TYPE_VRM) { /* sensor not ready */ if (val == 0) return -EAGAIN; val *= 1000; } break; case 2: val = temp->fru_type; break; case 3: val = temp->value == OCC_TEMP_SENSOR_FAULT; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_freq_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u16 val = 0; struct freq_sensor_1 *freq; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&freq->sensor_id); break; case 1: val = get_unaligned_be16(&freq->value); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_freq_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct freq_sensor_2 *freq; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&freq->sensor_id); break; case 1: val = get_unaligned_be16(&freq->value); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_power_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_1 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&power->sensor_id); break; case 1: val = get_unaligned_be32(&power->accumulator) / get_unaligned_be32(&power->update_tag); val *= 1000000ULL; break; case 2: val = (u64)get_unaligned_be32(&power->update_tag) * occ->powr_sample_time_us; break; case 3: val = get_unaligned_be16(&power->value) * 1000000ULL; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static u64 occ_get_powr_avg(u64 *accum, u32 *samples) { return div64_u64(get_unaligned_be64(accum) * 1000000ULL, get_unaligned_be32(samples)); } static ssize_t occ_show_power_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_2 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n", get_unaligned_be32(&power->sensor_id), power->function_id, power->apss_channel); case 1: val = occ_get_powr_avg(&power->accumulator, &power->update_tag); break; case 2: val = (u64)get_unaligned_be32(&power->update_tag) * occ->powr_sample_time_us; break; case 3: val = get_unaligned_be16(&power->value) * 1000000ULL; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_power_a0(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_a0 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: return snprintf(buf, PAGE_SIZE - 1, "%u_system\n", get_unaligned_be32(&power->sensor_id)); case 1: val = occ_get_powr_avg(&power->system.accumulator, &power->system.update_tag); break; case 2: val = (u64)get_unaligned_be32(&power->system.update_tag) * occ->powr_sample_time_us; break; case 3: val = get_unaligned_be16(&power->system.value) * 1000000ULL; break; case 4: return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n", get_unaligned_be32(&power->sensor_id)); case 5: val = occ_get_powr_avg(&power->proc.accumulator, &power->proc.update_tag); break; case 6: val = (u64)get_unaligned_be32(&power->proc.update_tag) * occ->powr_sample_time_us; break; case 7: val = get_unaligned_be16(&power->proc.value) * 1000000ULL; break; case 8: return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n", get_unaligned_be32(&power->sensor_id)); case 9: val = occ_get_powr_avg(&power->vdd.accumulator, &power->vdd.update_tag); break; case 10: val = (u64)get_unaligned_be32(&power->vdd.update_tag) * occ->powr_sample_time_us; break; case 11: val = get_unaligned_be16(&power->vdd.value) * 1000000ULL; break; case 12: return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n", get_unaligned_be32(&power->sensor_id)); case 13: val = occ_get_powr_avg(&power->vdn.accumulator, &power->vdn.update_tag); break; case 14: val = (u64)get_unaligned_be32(&power->vdn.update_tag) * occ->powr_sample_time_us; break; case 15: val = get_unaligned_be16(&power->vdn.value) * 1000000ULL; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_caps_1_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct caps_sensor_2 *caps; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index; switch (sattr->nr) { case 0: return snprintf(buf, PAGE_SIZE - 1, "system\n"); case 1: val = get_unaligned_be16(&caps->cap) * 1000000ULL; break; case 2: val = get_unaligned_be16(&caps->system_power) * 1000000ULL; break; case 3: val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; break; case 4: val = get_unaligned_be16(&caps->max) * 1000000ULL; break; case 5: val = get_unaligned_be16(&caps->min) * 1000000ULL; break; case 6: val = get_unaligned_be16(&caps->user) * 1000000ULL; break; case 7: if (occ->sensors.caps.version == 1) return -EINVAL; val = caps->user_source; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_caps_3(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct caps_sensor_3 *caps; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index; switch (sattr->nr) { case 0: return snprintf(buf, PAGE_SIZE - 1, "system\n"); case 1: val = get_unaligned_be16(&caps->cap) * 1000000ULL; break; case 2: val = get_unaligned_be16(&caps->system_power) * 1000000ULL; break; case 3: val = get_unaligned_be16(&caps->n_cap) * 1000000ULL; break; case 4: val = get_unaligned_be16(&caps->max) * 1000000ULL; break; case 5: val = get_unaligned_be16(&caps->hard_min) * 1000000ULL; break; case 6: val = get_unaligned_be16(&caps->user) * 1000000ULL; break; case 7: val = caps->user_source; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_store_caps_user(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; u16 user_power_cap; unsigned long long value; struct occ *occ = dev_get_drvdata(dev); rc = kstrtoull(buf, 0, &value); if (rc) return rc; user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */ rc = occ_set_user_power_cap(occ, user_power_cap); if (rc) return rc; return count; } static ssize_t occ_show_extended(struct device *dev, struct device_attribute *attr, char *buf) { int rc; struct extended_sensor *extn; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; extn = ((struct extended_sensor *)sensors->extended.data) + sattr->index; switch (sattr->nr) { case 0: if (extn->flags & EXTN_FLAG_SENSOR_ID) rc = snprintf(buf, PAGE_SIZE - 1, "%u", get_unaligned_be32(&extn->sensor_id)); else rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n", extn->name[0], extn->name[1], extn->name[2], extn->name[3]); break; case 1: rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags); break; case 2: rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n", extn->data[0], extn->data[1], extn->data[2], extn->data[3], extn->data[4], extn->data[5]); break; default: return -EINVAL; } return rc; } /* * Some helper macros to make it easier to define an occ_attribute. Since these * are dynamically allocated, we shouldn't use the existing kernel macros which * stringify the name argument. */ #define ATTR_OCC(_name, _mode, _show, _store) { \ .attr = { \ .name = _name, \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \ }, \ .show = _show, \ .store = _store, \ } #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \ .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \ .index = _index, \ .nr = _nr, \ } #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \ ((struct sensor_device_attribute_2) \ SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index)) /* * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to * use our own instead of the built-in hwmon attribute types. */ static int occ_setup_sensor_attrs(struct occ *occ) { unsigned int i, s, num_attrs = 0; struct device *dev = occ->bus_dev; struct occ_sensors *sensors = &occ->sensors; struct occ_attribute *attr; struct temp_sensor_2 *temp; ssize_t (*show_temp)(struct device *, struct device_attribute *, char *) = occ_show_temp_1; ssize_t (*show_freq)(struct device *, struct device_attribute *, char *) = occ_show_freq_1; ssize_t (*show_power)(struct device *, struct device_attribute *, char *) = occ_show_power_1; ssize_t (*show_caps)(struct device *, struct device_attribute *, char *) = occ_show_caps_1_2; switch (sensors->temp.version) { case 1: num_attrs += (sensors->temp.num_sensors * 2); break; case 2: num_attrs += (sensors->temp.num_sensors * 4); show_temp = occ_show_temp_2; break; default: sensors->temp.num_sensors = 0; } switch (sensors->freq.version) { case 2: show_freq = occ_show_freq_2; /* fall through */ case 1: num_attrs += (sensors->freq.num_sensors * 2); break; default: sensors->freq.num_sensors = 0; } switch (sensors->power.version) { case 2: show_power = occ_show_power_2; /* fall through */ case 1: num_attrs += (sensors->power.num_sensors * 4); break; case 0xA0: num_attrs += (sensors->power.num_sensors * 16); show_power = occ_show_power_a0; break; default: sensors->power.num_sensors = 0; } switch (sensors->caps.version) { case 1: num_attrs += (sensors->caps.num_sensors * 7); break; case 3: show_caps = occ_show_caps_3; /* fall through */ case 2: num_attrs += (sensors->caps.num_sensors * 8); break; default: sensors->caps.num_sensors = 0; } switch (sensors->extended.version) { case 1: num_attrs += (sensors->extended.num_sensors * 3); break; default: sensors->extended.num_sensors = 0; } occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs, GFP_KERNEL); if (!occ->attrs) return -ENOMEM; /* null-terminated list */ occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) * num_attrs + 1, GFP_KERNEL); if (!occ->group.attrs) return -ENOMEM; attr = occ->attrs; for (i = 0; i < sensors->temp.num_sensors; ++i) { s = i + 1; temp = ((struct temp_sensor_2 *)sensors->temp.data) + i; snprintf(attr->name, sizeof(attr->name), "temp%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 0, i); attr++; if (sensors->temp.version > 1 && temp->fru_type == OCC_FRU_TYPE_VRM) { snprintf(attr->name, sizeof(attr->name), "temp%d_alarm", s); } else { snprintf(attr->name, sizeof(attr->name), "temp%d_input", s); } attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 1, i); attr++; if (sensors->temp.version > 1) { snprintf(attr->name, sizeof(attr->name), "temp%d_fru_type", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "temp%d_fault", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 3, i); attr++; } } for (i = 0; i < sensors->freq.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "freq%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "freq%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 1, i); attr++; } if (sensors->power.version == 0xA0) { /* * Special case for many-attribute power sensor. Split it into * a sensor number per power type, emulating several sensors. */ for (i = 0; i < sensors->power.num_sensors; ++i) { unsigned int j; unsigned int nr = 0; s = (i * 4) + 1; for (j = 0; j < 4; ++j) { snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, nr++, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_average", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, nr++, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_average_interval", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, nr++, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, nr++, i); attr++; s++; } } s = (sensors->power.num_sensors * 4) + 1; } else { for (i = 0; i < sensors->power.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_average", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_average_interval", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 3, i); attr++; } s = sensors->power.num_sensors + 1; } if (sensors->caps.num_sensors >= 1) { snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 0, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_cap", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 2, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_cap_not_redundant", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 3, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 4, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 5, 0); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_cap_user", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps, occ_store_caps_user, 6, 0); attr++; if (sensors->caps.version > 1) { snprintf(attr->name, sizeof(attr->name), "power%d_cap_user_source", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 7, 0); attr++; } } for (i = 0; i < sensors->extended.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "extn%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "extn%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 2, i); attr++; } /* put the sensors in the group */ for (i = 0; i < num_attrs; ++i) { sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr); occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr; } return 0; } /* only need to do this once at startup, as OCC won't change sensors on us */ static void occ_parse_poll_response(struct occ *occ) { unsigned int i, old_offset, offset = 0, size = 0; struct occ_sensor *sensor; struct occ_sensors *sensors = &occ->sensors; struct occ_response *resp = &occ->resp; struct occ_poll_response *poll = (struct occ_poll_response *)&resp->data[0]; struct occ_poll_response_header *header = &poll->header; struct occ_sensor_data_block *block = &poll->block; dev_info(occ->bus_dev, "OCC found, code level: %.16s\n", header->occ_code_level); for (i = 0; i < header->num_sensor_data_blocks; ++i) { block = (struct occ_sensor_data_block *)((u8 *)block + offset); old_offset = offset; offset = (block->header.num_sensors * block->header.sensor_length) + sizeof(block->header); size += offset; /* validate all the length/size fields */ if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) { dev_warn(occ->bus_dev, "exceeded response buffer\n"); return; } dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n", old_offset, offset - 1, block->header.eye_catcher, block->header.num_sensors); /* match sensor block type */ if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0) sensor = &sensors->temp; else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0) sensor = &sensors->freq; else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0) sensor = &sensors->power; else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0) sensor = &sensors->caps; else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0) sensor = &sensors->extended; else { dev_warn(occ->bus_dev, "sensor not supported %.4s\n", block->header.eye_catcher); continue; } sensor->num_sensors = block->header.num_sensors; sensor->version = block->header.sensor_format; sensor->data = &block->data; } dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size, sizeof(*header), size + sizeof(*header)); } int occ_setup(struct occ *occ, const char *name) { int rc; mutex_init(&occ->lock); occ->groups[0] = &occ->group; /* no need to lock */ rc = occ_poll(occ); if (rc == -ESHUTDOWN) { dev_info(occ->bus_dev, "host is not ready\n"); return rc; } else if (rc < 0) { dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n", rc); return rc; } occ_parse_poll_response(occ); rc = occ_setup_sensor_attrs(occ); if (rc) { dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n", rc); return rc; } occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name, occ, occ->groups); if (IS_ERR(occ->hwmon)) { rc = PTR_ERR(occ->hwmon); dev_err(occ->bus_dev, "failed to register hwmon device: %d\n", rc); return rc; } rc = occ_setup_sysfs(occ); if (rc) dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc); return rc; } EXPORT_SYMBOL_GPL(occ_setup); MODULE_AUTHOR("Eddie James "); MODULE_DESCRIPTION("Common OCC hwmon code"); MODULE_LICENSE("GPL");