/* * r8169.c: RealTek 8169/8168/8101 ethernet driver. * * Copyright (c) 2002 ShuChen * Copyright (c) 2003 - 2007 Francois Romieu * Copyright (c) a lot of people too. Please respect their work. * * See MAINTAINERS file for support contact information. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTL8169_VERSION "2.3LK-NAPI" #define MODULENAME "r8169" #define PFX MODULENAME ": " #ifdef RTL8169_DEBUG #define assert(expr) \ if (!(expr)) { \ printk( "Assertion failed! %s,%s,%s,line=%d\n", \ #expr,__FILE__,__func__,__LINE__); \ } #define dprintk(fmt, args...) \ do { printk(KERN_DEBUG PFX fmt, ## args); } while (0) #else #define assert(expr) do {} while (0) #define dprintk(fmt, args...) do {} while (0) #endif /* RTL8169_DEBUG */ #define R8169_MSG_DEFAULT \ (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN) #define TX_BUFFS_AVAIL(tp) \ (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1) /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static const int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; /* MAC address length */ #define MAC_ADDR_LEN 6 #define MAX_READ_REQUEST_SHIFT 12 #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */ #define RxPacketMaxSize 0x3FE8 /* 16K - 1 - ETH_HLEN - VLAN - CRC... */ #define SafeMtu 0x1c20 /* ... actually life sucks beyond ~7k */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define R8169_REGS_SIZE 256 #define R8169_NAPI_WEIGHT 64 #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 256 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc)) #define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc)) #define RTL8169_TX_TIMEOUT (6*HZ) #define RTL8169_PHY_TIMEOUT (10*HZ) #define RTL_EEPROM_SIG 0x8129 #define RTL_EEPROM_SIG_ADDR 0x0000 #define RTL_EEPROM_MAC_ADDR 0x0007 /* write/read MMIO register */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg))) enum mac_version { RTL_GIGA_MAC_VER_01 = 0x01, // 8169 RTL_GIGA_MAC_VER_02 = 0x02, // 8169S RTL_GIGA_MAC_VER_03 = 0x03, // 8110S RTL_GIGA_MAC_VER_04 = 0x04, // 8169SB RTL_GIGA_MAC_VER_05 = 0x05, // 8110SCd RTL_GIGA_MAC_VER_06 = 0x06, // 8110SCe RTL_GIGA_MAC_VER_07 = 0x07, // 8102e RTL_GIGA_MAC_VER_08 = 0x08, // 8102e RTL_GIGA_MAC_VER_09 = 0x09, // 8102e RTL_GIGA_MAC_VER_10 = 0x0a, // 8101e RTL_GIGA_MAC_VER_11 = 0x0b, // 8168Bb RTL_GIGA_MAC_VER_12 = 0x0c, // 8168Be RTL_GIGA_MAC_VER_13 = 0x0d, // 8101Eb RTL_GIGA_MAC_VER_14 = 0x0e, // 8101 ? RTL_GIGA_MAC_VER_15 = 0x0f, // 8101 ? RTL_GIGA_MAC_VER_16 = 0x11, // 8101Ec RTL_GIGA_MAC_VER_17 = 0x10, // 8168Bf RTL_GIGA_MAC_VER_18 = 0x12, // 8168CP RTL_GIGA_MAC_VER_19 = 0x13, // 8168C RTL_GIGA_MAC_VER_20 = 0x14, // 8168C RTL_GIGA_MAC_VER_21 = 0x15, // 8168C RTL_GIGA_MAC_VER_22 = 0x16, // 8168C RTL_GIGA_MAC_VER_23 = 0x17, // 8168CP RTL_GIGA_MAC_VER_24 = 0x18, // 8168CP RTL_GIGA_MAC_VER_25 = 0x19 // 8168D }; #define _R(NAME,MAC,MASK) \ { .name = NAME, .mac_version = MAC, .RxConfigMask = MASK } static const struct { const char *name; u8 mac_version; u32 RxConfigMask; /* Clears the bits supported by this chip */ } rtl_chip_info[] = { _R("RTL8169", RTL_GIGA_MAC_VER_01, 0xff7e1880), // 8169 _R("RTL8169s", RTL_GIGA_MAC_VER_02, 0xff7e1880), // 8169S _R("RTL8110s", RTL_GIGA_MAC_VER_03, 0xff7e1880), // 8110S _R("RTL8169sb/8110sb", RTL_GIGA_MAC_VER_04, 0xff7e1880), // 8169SB _R("RTL8169sc/8110sc", RTL_GIGA_MAC_VER_05, 0xff7e1880), // 8110SCd _R("RTL8169sc/8110sc", RTL_GIGA_MAC_VER_06, 0xff7e1880), // 8110SCe _R("RTL8102e", RTL_GIGA_MAC_VER_07, 0xff7e1880), // PCI-E _R("RTL8102e", RTL_GIGA_MAC_VER_08, 0xff7e1880), // PCI-E _R("RTL8102e", RTL_GIGA_MAC_VER_09, 0xff7e1880), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_10, 0xff7e1880), // PCI-E _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_11, 0xff7e1880), // PCI-E _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_12, 0xff7e1880), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_13, 0xff7e1880), // PCI-E 8139 _R("RTL8100e", RTL_GIGA_MAC_VER_14, 0xff7e1880), // PCI-E 8139 _R("RTL8100e", RTL_GIGA_MAC_VER_15, 0xff7e1880), // PCI-E 8139 _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_17, 0xff7e1880), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_16, 0xff7e1880), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_18, 0xff7e1880), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_19, 0xff7e1880), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_20, 0xff7e1880), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_21, 0xff7e1880), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_22, 0xff7e1880), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_23, 0xff7e1880), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_24, 0xff7e1880), // PCI-E _R("RTL8168d/8111d", RTL_GIGA_MAC_VER_25, 0xff7e1880) // PCI-E }; #undef _R enum cfg_version { RTL_CFG_0 = 0x00, RTL_CFG_1, RTL_CFG_2 }; static void rtl_hw_start_8169(struct net_device *); static void rtl_hw_start_8168(struct net_device *); static void rtl_hw_start_8101(struct net_device *); static struct pci_device_id rtl8169_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8136), 0, 0, RTL_CFG_2 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168), 0, 0, RTL_CFG_1 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_AT, 0xc107), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(0x16ec, 0x0116), 0, 0, RTL_CFG_0 }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 }, { 0x0001, 0x8168, PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 }, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static int rx_copybreak = 200; static int use_dac; static struct { u32 msg_enable; } debug = { -1 }; enum rtl_registers { MAC0 = 0, /* Ethernet hardware address. */ MAC4 = 4, MAR0 = 8, /* Multicast filter. */ CounterAddrLow = 0x10, CounterAddrHigh = 0x14, TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3c, IntrStatus = 0x3e, TxConfig = 0x40, RxConfig = 0x44, RxMissed = 0x4c, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5c, PHYAR = 0x60, PHYstatus = 0x6c, RxMaxSize = 0xda, CPlusCmd = 0xe0, IntrMitigate = 0xe2, RxDescAddrLow = 0xe4, RxDescAddrHigh = 0xe8, EarlyTxThres = 0xec, FuncEvent = 0xf0, FuncEventMask = 0xf4, FuncPresetState = 0xf8, FuncForceEvent = 0xfc, }; enum rtl8110_registers { TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6a, }; enum rtl8168_8101_registers { CSIDR = 0x64, CSIAR = 0x68, #define CSIAR_FLAG 0x80000000 #define CSIAR_WRITE_CMD 0x80000000 #define CSIAR_BYTE_ENABLE 0x0f #define CSIAR_BYTE_ENABLE_SHIFT 12 #define CSIAR_ADDR_MASK 0x0fff EPHYAR = 0x80, #define EPHYAR_FLAG 0x80000000 #define EPHYAR_WRITE_CMD 0x80000000 #define EPHYAR_REG_MASK 0x1f #define EPHYAR_REG_SHIFT 16 #define EPHYAR_DATA_MASK 0xffff DBG_REG = 0xd1, #define FIX_NAK_1 (1 << 4) #define FIX_NAK_2 (1 << 3) }; enum rtl_register_content { /* InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x0080, RxFIFOOver = 0x0040, LinkChg = 0x0020, RxOverflow = 0x0010, TxErr = 0x0008, TxOK = 0x0004, RxErr = 0x0002, RxOK = 0x0001, /* RxStatusDesc */ RxFOVF = (1 << 23), RxRWT = (1 << 22), RxRES = (1 << 21), RxRUNT = (1 << 20), RxCRC = (1 << 19), /* ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /* TXPoll register p.5 */ HPQ = 0x80, /* Poll cmd on the high prio queue */ NPQ = 0x40, /* Poll cmd on the low prio queue */ FSWInt = 0x01, /* Forced software interrupt */ /* Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xc0, Cfg9346_Program = 0x80, /* Programming mode */ Cfg9346_EECS = 0x08, /* Chip select */ Cfg9346_EESK = 0x04, /* Serial data clock */ Cfg9346_EEDI = 0x02, /* Data input */ Cfg9346_EEDO = 0x01, /* Data output */ /* rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /* RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, RxCfg9356SEL = 6, /* EEPROM type: 0 = 9346, 1 = 9356 */ /* TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /* Config1 register p.24 */ LEDS1 = (1 << 7), LEDS0 = (1 << 6), MSIEnable = (1 << 5), /* Enable Message Signaled Interrupt */ Speed_down = (1 << 4), MEMMAP = (1 << 3), IOMAP = (1 << 2), VPD = (1 << 1), PMEnable = (1 << 0), /* Power Management Enable */ /* Config2 register p. 25 */ PCI_Clock_66MHz = 0x01, PCI_Clock_33MHz = 0x00, /* Config3 register p.25 */ MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */ /* Config5 register p.27 */ BWF = (1 << 6), /* Accept Broadcast wakeup frame */ MWF = (1 << 5), /* Accept Multicast wakeup frame */ UWF = (1 << 4), /* Accept Unicast wakeup frame */ LanWake = (1 << 1), /* LanWake enable/disable */ PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ /* TBICSR p.28 */ TBIReset = 0x80000000, TBILoopback = 0x40000000, TBINwEnable = 0x20000000, TBINwRestart = 0x10000000, TBILinkOk = 0x02000000, TBINwComplete = 0x01000000, /* CPlusCmd p.31 */ EnableBist = (1 << 15), // 8168 8101 Mac_dbgo_oe = (1 << 14), // 8168 8101 Normal_mode = (1 << 13), // unused Force_half_dup = (1 << 12), // 8168 8101 Force_rxflow_en = (1 << 11), // 8168 8101 Force_txflow_en = (1 << 10), // 8168 8101 Cxpl_dbg_sel = (1 << 9), // 8168 8101 ASF = (1 << 8), // 8168 8101 PktCntrDisable = (1 << 7), // 8168 8101 Mac_dbgo_sel = 0x001c, // 8168 RxVlan = (1 << 6), RxChkSum = (1 << 5), PCIDAC = (1 << 4), PCIMulRW = (1 << 3), INTT_0 = 0x0000, // 8168 INTT_1 = 0x0001, // 8168 INTT_2 = 0x0002, // 8168 INTT_3 = 0x0003, // 8168 /* rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /* _TBICSRBit */ TBILinkOK = 0x02000000, /* DumpCounterCommand */ CounterDump = 0x8, }; enum desc_status_bit { DescOwn = (1 << 31), /* Descriptor is owned by NIC */ RingEnd = (1 << 30), /* End of descriptor ring */ FirstFrag = (1 << 29), /* First segment of a packet */ LastFrag = (1 << 28), /* Final segment of a packet */ /* Tx private */ LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */ MSSShift = 16, /* MSS value position */ MSSMask = 0xfff, /* MSS value + LargeSend bit: 12 bits */ IPCS = (1 << 18), /* Calculate IP checksum */ UDPCS = (1 << 17), /* Calculate UDP/IP checksum */ TCPCS = (1 << 16), /* Calculate TCP/IP checksum */ TxVlanTag = (1 << 17), /* Add VLAN tag */ /* Rx private */ PID1 = (1 << 18), /* Protocol ID bit 1/2 */ PID0 = (1 << 17), /* Protocol ID bit 2/2 */ #define RxProtoUDP (PID1) #define RxProtoTCP (PID0) #define RxProtoIP (PID1 | PID0) #define RxProtoMask RxProtoIP IPFail = (1 << 16), /* IP checksum failed */ UDPFail = (1 << 15), /* UDP/IP checksum failed */ TCPFail = (1 << 14), /* TCP/IP checksum failed */ RxVlanTag = (1 << 16), /* VLAN tag available */ }; #define RsvdMask 0x3fffc000 struct TxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct RxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct ring_info { struct sk_buff *skb; u32 len; u8 __pad[sizeof(void *) - sizeof(u32)]; }; enum features { RTL_FEATURE_WOL = (1 << 0), RTL_FEATURE_MSI = (1 << 1), RTL_FEATURE_GMII = (1 << 2), }; struct rtl8169_counters { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underun; }; struct rtl8169_private { void __iomem *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; /* Index of PCI device */ struct net_device *dev; struct napi_struct napi; spinlock_t lock; /* spin lock flag */ u32 msg_enable; int chipset; int mac_version; u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ u32 dirty_rx; u32 dirty_tx; struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */ struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */ dma_addr_t TxPhyAddr; dma_addr_t RxPhyAddr; struct sk_buff *Rx_skbuff[NUM_RX_DESC]; /* Rx data buffers */ struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */ unsigned align; unsigned rx_buf_sz; struct timer_list timer; u16 cp_cmd; u16 intr_event; u16 napi_event; u16 intr_mask; int phy_auto_nego_reg; int phy_1000_ctrl_reg; #ifdef CONFIG_R8169_VLAN struct vlan_group *vlgrp; #endif int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex); int (*get_settings)(struct net_device *, struct ethtool_cmd *); void (*phy_reset_enable)(void __iomem *); void (*hw_start)(struct net_device *); unsigned int (*phy_reset_pending)(void __iomem *); unsigned int (*link_ok)(void __iomem *); int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd); int pcie_cap; struct delayed_work task; unsigned features; struct mii_if_info mii; struct rtl8169_counters counters; }; MODULE_AUTHOR("Realtek and the Linux r8169 crew "); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); module_param(rx_copybreak, int, 0); MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); MODULE_LICENSE("GPL"); MODULE_VERSION(RTL8169_VERSION); static int rtl8169_open(struct net_device *dev); static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance); static int rtl8169_init_ring(struct net_device *dev); static void rtl_hw_start(struct net_device *dev); static int rtl8169_close(struct net_device *dev); static void rtl_set_rx_mode(struct net_device *dev); static void rtl8169_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8169_get_stats(struct net_device *dev); static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *, void __iomem *, u32 budget); static int rtl8169_change_mtu(struct net_device *dev, int new_mtu); static void rtl8169_down(struct net_device *dev); static void rtl8169_rx_clear(struct rtl8169_private *tp); static int rtl8169_poll(struct napi_struct *napi, int budget); static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift); static void mdio_write(void __iomem *ioaddr, int reg_addr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (reg_addr & 0x1f) << 16 | (value & 0xffff)); for (i = 20; i > 0; i--) { /* * Check if the RTL8169 has completed writing to the specified * MII register. */ if (!(RTL_R32(PHYAR) & 0x80000000)) break; udelay(25); } } static int mdio_read(void __iomem *ioaddr, int reg_addr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (reg_addr & 0x1f) << 16); for (i = 20; i > 0; i--) { /* * Check if the RTL8169 has completed retrieving data from * the specified MII register. */ if (RTL_R32(PHYAR) & 0x80000000) { value = RTL_R32(PHYAR) & 0xffff; break; } udelay(25); } return value; } static void mdio_patch(void __iomem *ioaddr, int reg_addr, int value) { mdio_write(ioaddr, reg_addr, mdio_read(ioaddr, reg_addr) | value); } static void rtl_mdio_write(struct net_device *dev, int phy_id, int location, int val) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; mdio_write(ioaddr, location, val); } static int rtl_mdio_read(struct net_device *dev, int phy_id, int location) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; return mdio_read(ioaddr, location); } static void rtl_ephy_write(void __iomem *ioaddr, int reg_addr, int value) { unsigned int i; RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) | (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); for (i = 0; i < 100; i++) { if (!(RTL_R32(EPHYAR) & EPHYAR_FLAG)) break; udelay(10); } } static u16 rtl_ephy_read(void __iomem *ioaddr, int reg_addr) { u16 value = 0xffff; unsigned int i; RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); for (i = 0; i < 100; i++) { if (RTL_R32(EPHYAR) & EPHYAR_FLAG) { value = RTL_R32(EPHYAR) & EPHYAR_DATA_MASK; break; } udelay(10); } return value; } static void rtl_csi_write(void __iomem *ioaddr, int addr, int value) { unsigned int i; RTL_W32(CSIDR, value); RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT); for (i = 0; i < 100; i++) { if (!(RTL_R32(CSIAR) & CSIAR_FLAG)) break; udelay(10); } } static u32 rtl_csi_read(void __iomem *ioaddr, int addr) { u32 value = ~0x00; unsigned int i; RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT); for (i = 0; i < 100; i++) { if (RTL_R32(CSIAR) & CSIAR_FLAG) { value = RTL_R32(CSIDR); break; } udelay(10); } return value; } static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr) { RTL_W16(IntrMask, 0x0000); RTL_W16(IntrStatus, 0xffff); } static void rtl8169_asic_down(void __iomem *ioaddr) { RTL_W8(ChipCmd, 0x00); rtl8169_irq_mask_and_ack(ioaddr); RTL_R16(CPlusCmd); } static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr) { return RTL_R32(TBICSR) & TBIReset; } static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr) { return mdio_read(ioaddr, MII_BMCR) & BMCR_RESET; } static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr) { return RTL_R32(TBICSR) & TBILinkOk; } static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr) { return RTL_R8(PHYstatus) & LinkStatus; } static void rtl8169_tbi_reset_enable(void __iomem *ioaddr) { RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset); } static void rtl8169_xmii_reset_enable(void __iomem *ioaddr) { unsigned int val; val = mdio_read(ioaddr, MII_BMCR) | BMCR_RESET; mdio_write(ioaddr, MII_BMCR, val & 0xffff); } static void rtl8169_check_link_status(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (tp->link_ok(ioaddr)) { netif_carrier_on(dev); if (netif_msg_ifup(tp)) printk(KERN_INFO PFX "%s: link up\n", dev->name); } else { if (netif_msg_ifdown(tp)) printk(KERN_INFO PFX "%s: link down\n", dev->name); netif_carrier_off(dev); } spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 options; wol->wolopts = 0; #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) wol->supported = WAKE_ANY; spin_lock_irq(&tp->lock); options = RTL_R8(Config1); if (!(options & PMEnable)) goto out_unlock; options = RTL_R8(Config3); if (options & LinkUp) wol->wolopts |= WAKE_PHY; if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; options = RTL_R8(Config5); if (options & UWF) wol->wolopts |= WAKE_UCAST; if (options & BWF) wol->wolopts |= WAKE_BCAST; if (options & MWF) wol->wolopts |= WAKE_MCAST; out_unlock: spin_unlock_irq(&tp->lock); } static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned int i; static struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_ANY, Config1, PMEnable }, { WAKE_PHY, Config3, LinkUp }, { WAKE_MAGIC, Config3, MagicPacket }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake } }; spin_lock_irq(&tp->lock); RTL_W8(Cfg9346, Cfg9346_Unlock); for (i = 0; i < ARRAY_SIZE(cfg); i++) { u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask; if (wol->wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(cfg[i].reg, options); } RTL_W8(Cfg9346, Cfg9346_Lock); if (wol->wolopts) tp->features |= RTL_FEATURE_WOL; else tp->features &= ~RTL_FEATURE_WOL; device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts); spin_unlock_irq(&tp->lock); return 0; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); strcpy(info->driver, MODULENAME); strcpy(info->version, RTL8169_VERSION); strcpy(info->bus_info, pci_name(tp->pci_dev)); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static int rtl8169_set_speed_tbi(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int ret = 0; u32 reg; reg = RTL_R32(TBICSR); if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) && (duplex == DUPLEX_FULL)) { RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart)); } else if (autoneg == AUTONEG_ENABLE) RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart); else { if (netif_msg_link(tp)) { printk(KERN_WARNING "%s: " "incorrect speed setting refused in TBI mode\n", dev->name); } ret = -EOPNOTSUPP; } return ret; } static int rtl8169_set_speed_xmii(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int auto_nego, giga_ctrl; auto_nego = mdio_read(ioaddr, MII_ADVERTISE); auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); giga_ctrl = mdio_read(ioaddr, MII_CTRL1000); giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); if (autoneg == AUTONEG_ENABLE) { auto_nego |= (ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF; } else { if (speed == SPEED_10) auto_nego |= ADVERTISE_10HALF | ADVERTISE_10FULL; else if (speed == SPEED_100) auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL; else if (speed == SPEED_1000) giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF; if (duplex == DUPLEX_HALF) auto_nego &= ~(ADVERTISE_10FULL | ADVERTISE_100FULL); if (duplex == DUPLEX_FULL) auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_100HALF); /* This tweak comes straight from Realtek's driver. */ if ((speed == SPEED_100) && (duplex == DUPLEX_HALF) && ((tp->mac_version == RTL_GIGA_MAC_VER_13) || (tp->mac_version == RTL_GIGA_MAC_VER_16))) { auto_nego = ADVERTISE_100HALF | ADVERTISE_CSMA; } } /* The 8100e/8101e/8102e do Fast Ethernet only. */ if ((tp->mac_version == RTL_GIGA_MAC_VER_07) || (tp->mac_version == RTL_GIGA_MAC_VER_08) || (tp->mac_version == RTL_GIGA_MAC_VER_09) || (tp->mac_version == RTL_GIGA_MAC_VER_10) || (tp->mac_version == RTL_GIGA_MAC_VER_13) || (tp->mac_version == RTL_GIGA_MAC_VER_14) || (tp->mac_version == RTL_GIGA_MAC_VER_15) || (tp->mac_version == RTL_GIGA_MAC_VER_16)) { if ((giga_ctrl & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)) && netif_msg_link(tp)) { printk(KERN_INFO "%s: PHY does not support 1000Mbps.\n", dev->name); } giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); } auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if ((tp->mac_version == RTL_GIGA_MAC_VER_11) || (tp->mac_version == RTL_GIGA_MAC_VER_12) || (tp->mac_version >= RTL_GIGA_MAC_VER_17)) { /* * Wake up the PHY. * Vendor specific (0x1f) and reserved (0x0e) MII registers. */ mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x0e, 0x0000); } tp->phy_auto_nego_reg = auto_nego; tp->phy_1000_ctrl_reg = giga_ctrl; mdio_write(ioaddr, MII_ADVERTISE, auto_nego); mdio_write(ioaddr, MII_CTRL1000, giga_ctrl); mdio_write(ioaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); return 0; } static int rtl8169_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); int ret; ret = tp->set_speed(dev, autoneg, speed, duplex); if (netif_running(dev) && (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL)) mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT); return ret; } static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int ret; spin_lock_irqsave(&tp->lock, flags); ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex); spin_unlock_irqrestore(&tp->lock, flags); return ret; } static u32 rtl8169_get_rx_csum(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->cp_cmd & RxChkSum; } static int rtl8169_set_rx_csum(struct net_device *dev, u32 data) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (data) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } #ifdef CONFIG_R8169_VLAN static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return (tp->vlgrp && vlan_tx_tag_present(skb)) ? TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; } static void rtl8169_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->vlgrp = grp; if (tp->vlgrp) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); } static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); struct vlan_group *vlgrp = tp->vlgrp; int ret; if (vlgrp && (opts2 & RxVlanTag)) { vlan_hwaccel_receive_skb(skb, vlgrp, swab16(opts2 & 0xffff)); ret = 0; } else ret = -1; desc->opts2 = 0; return ret; } #else /* !CONFIG_R8169_VLAN */ static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return 0; } static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { return -1; } #endif static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u32 status; cmd->supported = SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE; cmd->port = PORT_FIBRE; cmd->transceiver = XCVR_INTERNAL; status = RTL_R32(TBICSR); cmd->advertising = (status & TBINwEnable) ? ADVERTISED_Autoneg : 0; cmd->autoneg = !!(status & TBINwEnable); cmd->speed = SPEED_1000; cmd->duplex = DUPLEX_FULL; /* Always set */ return 0; } static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); return mii_ethtool_gset(&tp->mii, cmd); } static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int rc; spin_lock_irqsave(&tp->lock, flags); rc = tp->get_settings(dev, cmd); spin_unlock_irqrestore(&tp->lock, flags); return rc; } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; if (regs->len > R8169_REGS_SIZE) regs->len = R8169_REGS_SIZE; spin_lock_irqsave(&tp->lock, flags); memcpy_fromio(p, tp->mmio_addr, regs->len); spin_unlock_irqrestore(&tp->lock, flags); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; static int rtl8169_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8169_gstrings); default: return -EOPNOTSUPP; } } static void rtl8169_update_counters(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct rtl8169_counters *counters; dma_addr_t paddr; u32 cmd; int wait = 1000; /* * Some chips are unable to dump tally counters when the receiver * is disabled. */ if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0) return; counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr); if (!counters) return; RTL_W32(CounterAddrHigh, (u64)paddr >> 32); cmd = (u64)paddr & DMA_32BIT_MASK; RTL_W32(CounterAddrLow, cmd); RTL_W32(CounterAddrLow, cmd | CounterDump); while (wait--) { if ((RTL_R32(CounterAddrLow) & CounterDump) == 0) { /* copy updated counters */ memcpy(&tp->counters, counters, sizeof(*counters)); break; } udelay(10); } RTL_W32(CounterAddrLow, 0); RTL_W32(CounterAddrHigh, 0); pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr); } static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); ASSERT_RTNL(); rtl8169_update_counters(dev); data[0] = le64_to_cpu(tp->counters.tx_packets); data[1] = le64_to_cpu(tp->counters.rx_packets); data[2] = le64_to_cpu(tp->counters.tx_errors); data[3] = le32_to_cpu(tp->counters.rx_errors); data[4] = le16_to_cpu(tp->counters.rx_missed); data[5] = le16_to_cpu(tp->counters.align_errors); data[6] = le32_to_cpu(tp->counters.tx_one_collision); data[7] = le32_to_cpu(tp->counters.tx_multi_collision); data[8] = le64_to_cpu(tp->counters.rx_unicast); data[9] = le64_to_cpu(tp->counters.rx_broadcast); data[10] = le32_to_cpu(tp->counters.rx_multicast); data[11] = le16_to_cpu(tp->counters.tx_aborted); data[12] = le16_to_cpu(tp->counters.tx_underun); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } static const struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_settings = rtl8169_get_settings, .set_settings = rtl8169_set_settings, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_rx_csum = rtl8169_get_rx_csum, .set_rx_csum = rtl8169_set_rx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .set_sg = ethtool_op_set_sg, .set_tso = ethtool_op_set_tso, .get_regs = rtl8169_get_regs, .get_wol = rtl8169_get_wol, .set_wol = rtl8169_set_wol, .get_strings = rtl8169_get_strings, .get_sset_count = rtl8169_get_sset_count, .get_ethtool_stats = rtl8169_get_ethtool_stats, }; static void rtl8169_write_gmii_reg_bit(void __iomem *ioaddr, int reg, int bitnum, int bitval) { int val; val = mdio_read(ioaddr, reg); val = (bitval == 1) ? val | (bitval << bitnum) : val & ~(0x0001 << bitnum); mdio_write(ioaddr, reg, val & 0xffff); } static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr) { /* * The driver currently handles the 8168Bf and the 8168Be identically * but they can be identified more specifically through the test below * if needed: * * (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be * * Same thing for the 8101Eb and the 8101Ec: * * (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec */ const struct { u32 mask; u32 val; int mac_version; } mac_info[] = { /* 8168D family. */ { 0x7c800000, 0x28000000, RTL_GIGA_MAC_VER_25 }, /* 8168C family. */ { 0x7cf00000, 0x3ca00000, RTL_GIGA_MAC_VER_24 }, { 0x7cf00000, 0x3c900000, RTL_GIGA_MAC_VER_23 }, { 0x7cf00000, 0x3c800000, RTL_GIGA_MAC_VER_18 }, { 0x7c800000, 0x3c800000, RTL_GIGA_MAC_VER_24 }, { 0x7cf00000, 0x3c000000, RTL_GIGA_MAC_VER_19 }, { 0x7cf00000, 0x3c200000, RTL_GIGA_MAC_VER_20 }, { 0x7cf00000, 0x3c300000, RTL_GIGA_MAC_VER_21 }, { 0x7cf00000, 0x3c400000, RTL_GIGA_MAC_VER_22 }, { 0x7c800000, 0x3c000000, RTL_GIGA_MAC_VER_22 }, /* 8168B family. */ { 0x7cf00000, 0x38000000, RTL_GIGA_MAC_VER_12 }, { 0x7cf00000, 0x38500000, RTL_GIGA_MAC_VER_17 }, { 0x7c800000, 0x38000000, RTL_GIGA_MAC_VER_17 }, { 0x7c800000, 0x30000000, RTL_GIGA_MAC_VER_11 }, /* 8101 family. */ { 0x7cf00000, 0x34a00000, RTL_GIGA_MAC_VER_09 }, { 0x7cf00000, 0x24a00000, RTL_GIGA_MAC_VER_09 }, { 0x7cf00000, 0x34900000, RTL_GIGA_MAC_VER_08 }, { 0x7cf00000, 0x24900000, RTL_GIGA_MAC_VER_08 }, { 0x7cf00000, 0x34800000, RTL_GIGA_MAC_VER_07 }, { 0x7cf00000, 0x24800000, RTL_GIGA_MAC_VER_07 }, { 0x7cf00000, 0x34000000, RTL_GIGA_MAC_VER_13 }, { 0x7cf00000, 0x34300000, RTL_GIGA_MAC_VER_10 }, { 0x7cf00000, 0x34200000, RTL_GIGA_MAC_VER_16 }, { 0x7c800000, 0x34800000, RTL_GIGA_MAC_VER_09 }, { 0x7c800000, 0x24800000, RTL_GIGA_MAC_VER_09 }, { 0x7c800000, 0x34000000, RTL_GIGA_MAC_VER_16 }, /* FIXME: where did these entries come from ? -- FR */ { 0xfc800000, 0x38800000, RTL_GIGA_MAC_VER_15 }, { 0xfc800000, 0x30800000, RTL_GIGA_MAC_VER_14 }, /* 8110 family. */ { 0xfc800000, 0x98000000, RTL_GIGA_MAC_VER_06 }, { 0xfc800000, 0x18000000, RTL_GIGA_MAC_VER_05 }, { 0xfc800000, 0x10000000, RTL_GIGA_MAC_VER_04 }, { 0xfc800000, 0x04000000, RTL_GIGA_MAC_VER_03 }, { 0xfc800000, 0x00800000, RTL_GIGA_MAC_VER_02 }, { 0xfc800000, 0x00000000, RTL_GIGA_MAC_VER_01 }, { 0x00000000, 0x00000000, RTL_GIGA_MAC_VER_01 } /* Catch-all */ }, *p = mac_info; u32 reg; reg = RTL_R32(TxConfig); while ((reg & p->mask) != p->val) p++; tp->mac_version = p->mac_version; if (p->mask == 0x00000000) { struct pci_dev *pdev = tp->pci_dev; dev_info(&pdev->dev, "unknown MAC (%08x)\n", reg); } } static void rtl8169_print_mac_version(struct rtl8169_private *tp) { dprintk("mac_version = 0x%02x\n", tp->mac_version); } struct phy_reg { u16 reg; u16 val; }; static void rtl_phy_write(void __iomem *ioaddr, struct phy_reg *regs, int len) { while (len-- > 0) { mdio_write(ioaddr, regs->reg, regs->val); regs++; } } static void rtl8169s_hw_phy_config(void __iomem *ioaddr) { struct { u16 regs[5]; /* Beware of bit-sign propagation */ } phy_magic[5] = { { { 0x0000, //w 4 15 12 0 0x00a1, //w 3 15 0 00a1 0x0008, //w 2 15 0 0008 0x1020, //w 1 15 0 1020 0x1000 } },{ //w 0 15 0 1000 { 0x7000, //w 4 15 12 7 0xff41, //w 3 15 0 ff41 0xde60, //w 2 15 0 de60 0x0140, //w 1 15 0 0140 0x0077 } },{ //w 0 15 0 0077 { 0xa000, //w 4 15 12 a 0xdf01, //w 3 15 0 df01 0xdf20, //w 2 15 0 df20 0xff95, //w 1 15 0 ff95 0xfa00 } },{ //w 0 15 0 fa00 { 0xb000, //w 4 15 12 b 0xff41, //w 3 15 0 ff41 0xde20, //w 2 15 0 de20 0x0140, //w 1 15 0 0140 0x00bb } },{ //w 0 15 0 00bb { 0xf000, //w 4 15 12 f 0xdf01, //w 3 15 0 df01 0xdf20, //w 2 15 0 df20 0xff95, //w 1 15 0 ff95 0xbf00 } //w 0 15 0 bf00 } }, *p = phy_magic; unsigned int i; mdio_write(ioaddr, 0x1f, 0x0001); //w 31 2 0 1 mdio_write(ioaddr, 0x15, 0x1000); //w 21 15 0 1000 mdio_write(ioaddr, 0x18, 0x65c7); //w 24 15 0 65c7 rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0 for (i = 0; i < ARRAY_SIZE(phy_magic); i++, p++) { int val, pos = 4; val = (mdio_read(ioaddr, pos) & 0x0fff) | (p->regs[0] & 0xffff); mdio_write(ioaddr, pos, val); while (--pos >= 0) mdio_write(ioaddr, pos, p->regs[4 - pos] & 0xffff); rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 1); //w 4 11 11 1 rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0 } mdio_write(ioaddr, 0x1f, 0x0000); //w 31 2 0 0 } static void rtl8169sb_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x01, 0x90d0 }, { 0x1f, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bb_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; mdio_write(ioaddr, 0x1f, 0x0001); mdio_patch(ioaddr, 0x16, 1 << 0); rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bef_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_1_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0000 }, { 0x1d, 0x0f00 }, { 0x1f, 0x0002 }, { 0x0c, 0x1ec8 }, { 0x1f, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_2_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0000 } }; mdio_write(ioaddr, 0x1f, 0x0000); mdio_patch(ioaddr, 0x14, 1 << 5); mdio_patch(ioaddr, 0x0d, 1 << 5); rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168c_1_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1f, 0x0002 }, { 0x00, 0x88d4 }, { 0x01, 0x82b1 }, { 0x03, 0x7002 }, { 0x08, 0x9e30 }, { 0x09, 0x01f0 }, { 0x0a, 0x5500 }, { 0x0c, 0x00c8 }, { 0x1f, 0x0003 }, { 0x12, 0xc096 }, { 0x16, 0x000a }, { 0x1f, 0x0000 }, { 0x1f, 0x0000 }, { 0x09, 0x2000 }, { 0x09, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); mdio_patch(ioaddr, 0x14, 1 << 5); mdio_patch(ioaddr, 0x0d, 1 << 5); mdio_write(ioaddr, 0x1f, 0x0000); } static void rtl8168c_2_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0x9000 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x0761 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); mdio_patch(ioaddr, 0x16, 1 << 0); mdio_patch(ioaddr, 0x14, 1 << 5); mdio_patch(ioaddr, 0x0d, 1 << 5); mdio_write(ioaddr, 0x1f, 0x0000); } static void rtl8168c_3_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x5461 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); mdio_patch(ioaddr, 0x16, 1 << 0); mdio_patch(ioaddr, 0x14, 1 << 5); mdio_patch(ioaddr, 0x0d, 1 << 5); mdio_write(ioaddr, 0x1f, 0x0000); } static void rtl8168c_4_hw_phy_config(void __iomem *ioaddr) { rtl8168c_3_hw_phy_config(ioaddr); } static void rtl8168d_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init_0[] = { { 0x1f, 0x0001 }, { 0x09, 0x2770 }, { 0x08, 0x04d0 }, { 0x0b, 0xad15 }, { 0x0c, 0x5bf0 }, { 0x1c, 0xf101 }, { 0x1f, 0x0003 }, { 0x14, 0x94d7 }, { 0x12, 0xf4d6 }, { 0x09, 0xca0f }, { 0x1f, 0x0002 }, { 0x0b, 0x0b10 }, { 0x0c, 0xd1f7 }, { 0x1f, 0x0002 }, { 0x06, 0x5461 }, { 0x1f, 0x0002 }, { 0x05, 0x6662 }, { 0x1f, 0x0000 }, { 0x14, 0x0060 }, { 0x1f, 0x0000 }, { 0x0d, 0xf8a0 }, { 0x1f, 0x0005 }, { 0x05, 0xffc2 } }; rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0)); if (mdio_read(ioaddr, 0x06) == 0xc400) { struct phy_reg phy_reg_init_1[] = { { 0x1f, 0x0005 }, { 0x01, 0x0300 }, { 0x1f, 0x0000 }, { 0x11, 0x401c }, { 0x16, 0x4100 }, { 0x1f, 0x0005 }, { 0x07, 0x0010 }, { 0x05, 0x83dc }, { 0x06, 0x087d }, { 0x05, 0x8300 }, { 0x06, 0x0101 }, { 0x06, 0x05f8 }, { 0x06, 0xf9fa }, { 0x06, 0xfbef }, { 0x06, 0x79e2 }, { 0x06, 0x835f }, { 0x06, 0xe0f8 }, { 0x06, 0x9ae1 }, { 0x06, 0xf89b }, { 0x06, 0xef31 }, { 0x06, 0x3b65 }, { 0x06, 0xaa07 }, { 0x06, 0x81e4 }, { 0x06, 0xf89a }, { 0x06, 0xe5f8 }, { 0x06, 0x9baf }, { 0x06, 0x06ae }, { 0x05, 0x83dc }, { 0x06, 0x8300 }, }; rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1)); } mdio_write(ioaddr, 0x1f, 0x0000); } static void rtl8102e_hw_phy_config(void __iomem *ioaddr) { struct phy_reg phy_reg_init[] = { { 0x1f, 0x0003 }, { 0x08, 0x441d }, { 0x01, 0x9100 }, { 0x1f, 0x0000 } }; mdio_write(ioaddr, 0x1f, 0x0000); mdio_patch(ioaddr, 0x11, 1 << 12); mdio_patch(ioaddr, 0x19, 1 << 13); rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl_hw_phy_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; rtl8169_print_mac_version(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01: break; case RTL_GIGA_MAC_VER_02: case RTL_GIGA_MAC_VER_03: rtl8169s_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_04: rtl8169sb_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_07: case RTL_GIGA_MAC_VER_08: case RTL_GIGA_MAC_VER_09: rtl8102e_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_11: rtl8168bb_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_12: rtl8168bef_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_17: rtl8168bef_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_18: rtl8168cp_1_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_19: rtl8168c_1_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_20: rtl8168c_2_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_21: rtl8168c_3_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_22: rtl8168c_4_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: rtl8168cp_2_hw_phy_config(ioaddr); break; case RTL_GIGA_MAC_VER_25: rtl8168d_hw_phy_config(ioaddr); break; default: break; } } static void rtl8169_phy_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; void __iomem *ioaddr = tp->mmio_addr; unsigned long timeout = RTL8169_PHY_TIMEOUT; assert(tp->mac_version > RTL_GIGA_MAC_VER_01); if (!(tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL)) return; spin_lock_irq(&tp->lock); if (tp->phy_reset_pending(ioaddr)) { /* * A busy loop could burn quite a few cycles on nowadays CPU. * Let's delay the execution of the timer for a few ticks. */ timeout = HZ/10; goto out_mod_timer; } if (tp->link_ok(ioaddr)) goto out_unlock; if (netif_msg_link(tp)) printk(KERN_WARNING "%s: PHY reset until link up\n", dev->name); tp->phy_reset_enable(ioaddr); out_mod_timer: mod_timer(timer, jiffies + timeout); out_unlock: spin_unlock_irq(&tp->lock); } static inline void rtl8169_delete_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if (tp->mac_version <= RTL_GIGA_MAC_VER_01) return; del_timer_sync(timer); } static inline void rtl8169_request_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if (tp->mac_version <= RTL_GIGA_MAC_VER_01) return; mod_timer(timer, jiffies + RTL8169_PHY_TIMEOUT); } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; disable_irq(pdev->irq); rtl8169_interrupt(pdev->irq, dev); enable_irq(pdev->irq); } #endif static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { iounmap(ioaddr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(dev); } static void rtl8169_phy_reset(struct net_device *dev, struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; unsigned int i; tp->phy_reset_enable(ioaddr); for (i = 0; i < 100; i++) { if (!tp->phy_reset_pending(ioaddr)) return; msleep(1); } if (netif_msg_link(tp)) printk(KERN_ERR "%s: PHY reset failed.\n", dev->name); } static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; rtl_hw_phy_config(dev); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); } pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08); if (tp->mac_version == RTL_GIGA_MAC_VER_02) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); dprintk("Set PHY Reg 0x0bh = 0x00h\n"); mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0 } rtl8169_phy_reset(dev, tp); /* * rtl8169_set_speed_xmii takes good care of the Fast Ethernet * only 8101. Don't panic. */ rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL); if ((RTL_R8(PHYstatus) & TBI_Enable) && netif_msg_link(tp)) printk(KERN_INFO PFX "%s: TBI auto-negotiating\n", dev->name); } static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr) { void __iomem *ioaddr = tp->mmio_addr; u32 high; u32 low; low = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24); high = addr[4] | (addr[5] << 8); spin_lock_irq(&tp->lock); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W32(MAC0, low); RTL_W32(MAC4, high); RTL_W8(Cfg9346, Cfg9346_Lock); spin_unlock_irq(&tp->lock); } static int rtl_set_mac_address(struct net_device *dev, void *p) { struct rtl8169_private *tp = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); rtl_rar_set(tp, dev->dev_addr); return 0; } static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct rtl8169_private *tp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV; } static int rtl_xmii_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd) { switch (cmd) { case SIOCGMIIPHY: data->phy_id = 32; /* Internal PHY */ return 0; case SIOCGMIIREG: data->val_out = mdio_read(tp->mmio_addr, data->reg_num & 0x1f); return 0; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; mdio_write(tp->mmio_addr, data->reg_num & 0x1f, data->val_in); return 0; } return -EOPNOTSUPP; } static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd) { return -EOPNOTSUPP; } static const struct rtl_cfg_info { void (*hw_start)(struct net_device *); unsigned int region; unsigned int align; u16 intr_event; u16 napi_event; unsigned features; } rtl_cfg_infos [] = { [RTL_CFG_0] = { .hw_start = rtl_hw_start_8169, .region = 1, .align = 0, .intr_event = SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxOK | RxErr, .napi_event = RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_GMII }, [RTL_CFG_1] = { .hw_start = rtl_hw_start_8168, .region = 2, .align = 8, .intr_event = SYSErr | LinkChg | RxOverflow | TxErr | TxOK | RxOK | RxErr, .napi_event = TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_GMII | RTL_FEATURE_MSI }, [RTL_CFG_2] = { .hw_start = rtl_hw_start_8101, .region = 2, .align = 8, .intr_event = SYSErr | LinkChg | RxOverflow | PCSTimeout | RxFIFOOver | TxErr | TxOK | RxOK | RxErr, .napi_event = RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_MSI } }; /* Cfg9346_Unlock assumed. */ static unsigned rtl_try_msi(struct pci_dev *pdev, void __iomem *ioaddr, const struct rtl_cfg_info *cfg) { unsigned msi = 0; u8 cfg2; cfg2 = RTL_R8(Config2) & ~MSIEnable; if (cfg->features & RTL_FEATURE_MSI) { if (pci_enable_msi(pdev)) { dev_info(&pdev->dev, "no MSI. Back to INTx.\n"); } else { cfg2 |= MSIEnable; msi = RTL_FEATURE_MSI; } } RTL_W8(Config2, cfg2); return msi; } static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp) { if (tp->features & RTL_FEATURE_MSI) { pci_disable_msi(pdev); tp->features &= ~RTL_FEATURE_MSI; } } static const struct net_device_ops rtl8169_netdev_ops = { .ndo_open = rtl8169_open, .ndo_stop = rtl8169_close, .ndo_get_stats = rtl8169_get_stats, .ndo_start_xmit = rtl8169_start_xmit, .ndo_tx_timeout = rtl8169_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = rtl8169_change_mtu, .ndo_set_mac_address = rtl_set_mac_address, .ndo_do_ioctl = rtl8169_ioctl, .ndo_set_multicast_list = rtl_set_rx_mode, #ifdef CONFIG_R8169_VLAN .ndo_vlan_rx_register = rtl8169_vlan_rx_register, #endif #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = rtl8169_netpoll, #endif }; /* Delay between EEPROM clock transitions. Force out buffered PCI writes. */ #define RTL_EEPROM_DELAY() RTL_R8(Cfg9346) #define RTL_EEPROM_READ_CMD 6 /* read 16bit word stored in EEPROM. EEPROM is addressed by words. */ static u16 rtl_eeprom_read(void __iomem *ioaddr, int addr) { u16 result = 0; int cmd, cmd_len, i; /* check for EEPROM address size (in bits) */ if (RTL_R32(RxConfig) & (1 << RxCfg9356SEL)) { /* EEPROM is 93C56 */ cmd_len = 3 + 8; /* 3 bits for command id and 8 for address */ cmd = (RTL_EEPROM_READ_CMD << 8) | (addr & 0xff); } else { /* EEPROM is 93C46 */ cmd_len = 3 + 6; /* 3 bits for command id and 6 for address */ cmd = (RTL_EEPROM_READ_CMD << 6) | (addr & 0x3f); } /* enter programming mode */ RTL_W8(Cfg9346, Cfg9346_Program | Cfg9346_EECS); RTL_EEPROM_DELAY(); /* write command and requested address */ while (cmd_len--) { u8 x = Cfg9346_Program | Cfg9346_EECS; x |= (cmd & (1 << cmd_len)) ? Cfg9346_EEDI : 0; /* write a bit */ RTL_W8(Cfg9346, x); RTL_EEPROM_DELAY(); /* raise clock */ RTL_W8(Cfg9346, x | Cfg9346_EESK); RTL_EEPROM_DELAY(); } /* lower clock */ RTL_W8(Cfg9346, Cfg9346_Program | Cfg9346_EECS); RTL_EEPROM_DELAY(); /* read back 16bit value */ for (i = 16; i > 0; i--) { /* raise clock */ RTL_W8(Cfg9346, Cfg9346_Program | Cfg9346_EECS | Cfg9346_EESK); RTL_EEPROM_DELAY(); result <<= 1; result |= (RTL_R8(Cfg9346) & Cfg9346_EEDO) ? 1 : 0; /* lower clock */ RTL_W8(Cfg9346, Cfg9346_Program | Cfg9346_EECS); RTL_EEPROM_DELAY(); } RTL_W8(Cfg9346, Cfg9346_Program); /* leave programming mode */ RTL_W8(Cfg9346, Cfg9346_Lock); return result; } static void rtl_init_mac_address(struct rtl8169_private *tp, void __iomem *ioaddr) { struct pci_dev *pdev = tp->pci_dev; u16 x; u8 mac[8]; /* read EEPROM signature */ x = rtl_eeprom_read(ioaddr, RTL_EEPROM_SIG_ADDR); if (x != RTL_EEPROM_SIG) { dev_info(&pdev->dev, "Missing EEPROM signature: %04x\n", x); return; } /* read MAC address */ x = rtl_eeprom_read(ioaddr, RTL_EEPROM_MAC_ADDR); mac[0] = x & 0xff; mac[1] = x >> 8; x = rtl_eeprom_read(ioaddr, RTL_EEPROM_MAC_ADDR + 1); mac[2] = x & 0xff; mac[3] = x >> 8; x = rtl_eeprom_read(ioaddr, RTL_EEPROM_MAC_ADDR + 2); mac[4] = x & 0xff; mac[5] = x >> 8; if (netif_msg_probe(tp)) { DECLARE_MAC_BUF(buf); dev_info(&pdev->dev, "MAC address found in EEPROM: %s\n", print_mac(buf, mac)); } if (is_valid_ether_addr(mac)) rtl_rar_set(tp, mac); } static int __devinit rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data; const unsigned int region = cfg->region; struct rtl8169_private *tp; struct mii_if_info *mii; struct net_device *dev; void __iomem *ioaddr; unsigned int i; int rc; if (netif_msg_drv(&debug)) { printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n", MODULENAME, RTL8169_VERSION); } dev = alloc_etherdev(sizeof (*tp)); if (!dev) { if (netif_msg_drv(&debug)) dev_err(&pdev->dev, "unable to alloc new ethernet\n"); rc = -ENOMEM; goto out; } SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &rtl8169_netdev_ops; tp = netdev_priv(dev); tp->dev = dev; tp->pci_dev = pdev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); mii = &tp->mii; mii->dev = dev; mii->mdio_read = rtl_mdio_read; mii->mdio_write = rtl_mdio_write; mii->phy_id_mask = 0x1f; mii->reg_num_mask = 0x1f; mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII); /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pci_enable_device(pdev); if (rc < 0) { if (netif_msg_probe(tp)) dev_err(&pdev->dev, "enable failure\n"); goto err_out_free_dev_1; } rc = pci_set_mwi(pdev); if (rc < 0) goto err_out_disable_2; /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) { if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "region #%d not an MMIO resource, aborting\n", region); } rc = -ENODEV; goto err_out_mwi_3; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) { if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); } rc = -ENODEV; goto err_out_mwi_3; } rc = pci_request_regions(pdev, MODULENAME); if (rc < 0) { if (netif_msg_probe(tp)) dev_err(&pdev->dev, "could not request regions.\n"); goto err_out_mwi_3; } tp->cp_cmd = PCIMulRW | RxChkSum; if ((sizeof(dma_addr_t) > 4) && !pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) { tp->cp_cmd |= PCIDAC; dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc < 0) { if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "DMA configuration failed.\n"); } goto err_out_free_res_4; } } pci_set_master(pdev); /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE); if (!ioaddr) { if (netif_msg_probe(tp)) dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); rc = -EIO; goto err_out_free_res_4; } tp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (!tp->pcie_cap && netif_msg_probe(tp)) dev_info(&pdev->dev, "no PCI Express capability\n"); /* Unneeded ? Don't mess with Mrs. Murphy. */ rtl8169_irq_mask_and_ack(ioaddr); /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 0; i < 100; i++) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; msleep_interruptible(1); } /* Identify chip attached to board */ rtl8169_get_mac_version(tp, ioaddr); rtl8169_print_mac_version(tp); for (i = 0; i < ARRAY_SIZE(rtl_chip_info); i++) { if (tp->mac_version == rtl_chip_info[i].mac_version) break; } if (i == ARRAY_SIZE(rtl_chip_info)) { /* Unknown chip: assume array element #0, original RTL-8169 */ if (netif_msg_probe(tp)) { dev_printk(KERN_DEBUG, &pdev->dev, "unknown chip version, assuming %s\n", rtl_chip_info[0].name); } i = 0; } tp->chipset = i; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Config1, RTL_R8(Config1) | PMEnable); RTL_W8(Config5, RTL_R8(Config5) & PMEStatus); if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0) tp->features |= RTL_FEATURE_WOL; if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0) tp->features |= RTL_FEATURE_WOL; tp->features |= rtl_try_msi(pdev, ioaddr, cfg); RTL_W8(Cfg9346, Cfg9346_Lock); if ((tp->mac_version <= RTL_GIGA_MAC_VER_06) && (RTL_R8(PHYstatus) & TBI_Enable)) { tp->set_speed = rtl8169_set_speed_tbi; tp->get_settings = rtl8169_gset_tbi; tp->phy_reset_enable = rtl8169_tbi_reset_enable; tp->phy_reset_pending = rtl8169_tbi_reset_pending; tp->link_ok = rtl8169_tbi_link_ok; tp->do_ioctl = rtl_tbi_ioctl; tp->phy_1000_ctrl_reg = ADVERTISE_1000FULL; /* Implied by TBI */ } else { tp->set_speed = rtl8169_set_speed_xmii; tp->get_settings = rtl8169_gset_xmii; tp->phy_reset_enable = rtl8169_xmii_reset_enable; tp->phy_reset_pending = rtl8169_xmii_reset_pending; tp->link_ok = rtl8169_xmii_link_ok; tp->do_ioctl = rtl_xmii_ioctl; } spin_lock_init(&tp->lock); tp->mmio_addr = ioaddr; rtl_init_mac_address(tp, ioaddr); /* Get MAC address */ for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops); dev->watchdog_timeo = RTL8169_TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT); #ifdef CONFIG_R8169_VLAN dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; #endif tp->intr_mask = 0xffff; tp->align = cfg->align; tp->hw_start = cfg->hw_start; tp->intr_event = cfg->intr_event; tp->napi_event = cfg->napi_event; init_timer(&tp->timer); tp->timer.data = (unsigned long) dev; tp->timer.function = rtl8169_phy_timer; rc = register_netdev(dev); if (rc < 0) goto err_out_msi_5; pci_set_drvdata(pdev, dev); if (netif_msg_probe(tp)) { u32 xid = RTL_R32(TxConfig) & 0x7cf0f8ff; printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "XID %08x IRQ %d\n", dev->name, rtl_chip_info[tp->chipset].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], xid, dev->irq); } rtl8169_init_phy(dev, tp); device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL); out: return rc; err_out_msi_5: rtl_disable_msi(pdev, tp); iounmap(ioaddr); err_out_free_res_4: pci_release_regions(pdev); err_out_mwi_3: pci_clear_mwi(pdev); err_out_disable_2: pci_disable_device(pdev); err_out_free_dev_1: free_netdev(dev); goto out; } static void __devexit rtl8169_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); flush_scheduled_work(); unregister_netdev(dev); rtl_disable_msi(pdev, tp); rtl8169_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } static void rtl8169_set_rxbufsize(struct rtl8169_private *tp, struct net_device *dev) { unsigned int mtu = dev->mtu; tp->rx_buf_sz = (mtu > RX_BUF_SIZE) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE; } static int rtl8169_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; int retval = -ENOMEM; rtl8169_set_rxbufsize(tp, dev); /* * Rx and Tx desscriptors needs 256 bytes alignment. * pci_alloc_consistent provides more. */ tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES, &tp->TxPhyAddr); if (!tp->TxDescArray) goto out; tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES, &tp->RxPhyAddr); if (!tp->RxDescArray) goto err_free_tx_0; retval = rtl8169_init_ring(dev); if (retval < 0) goto err_free_rx_1; INIT_DELAYED_WORK(&tp->task, NULL); smp_mb(); retval = request_irq(dev->irq, rtl8169_interrupt, (tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED, dev->name, dev); if (retval < 0) goto err_release_ring_2; napi_enable(&tp->napi); rtl_hw_start(dev); rtl8169_request_timer(dev); rtl8169_check_link_status(dev, tp, tp->mmio_addr); out: return retval; err_release_ring_2: rtl8169_rx_clear(tp); err_free_rx_1: pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); err_free_tx_0: pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); goto out; } static void rtl8169_hw_reset(void __iomem *ioaddr) { /* Disable interrupts */ rtl8169_irq_mask_and_ack(ioaddr); /* Reset the chipset */ RTL_W8(ChipCmd, CmdReset); /* PCI commit */ RTL_R8(ChipCmd); } static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; u32 cfg = rtl8169_rx_config; cfg |= (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); RTL_W32(RxConfig, cfg); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); } static void rtl_hw_start(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned int i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 0; i < 100; i++) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; msleep_interruptible(1); } tp->hw_start(dev); netif_start_queue(dev); } static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp, void __iomem *ioaddr) { /* * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh * register to be written before TxDescAddrLow to work. * Switching from MMIO to I/O access fixes the issue as well. */ RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32); RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_32BIT_MASK); RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32); RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_32BIT_MASK); } static u16 rtl_rw_cpluscmd(void __iomem *ioaddr) { u16 cmd; cmd = RTL_R16(CPlusCmd); RTL_W16(CPlusCmd, cmd); return cmd; } static void rtl_set_rx_max_size(void __iomem *ioaddr) { /* Low hurts. Let's disable the filtering. */ RTL_W16(RxMaxSize, 16383); } static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version) { struct { u32 mac_version; u32 clk; u32 val; } cfg2_info [] = { { RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd { RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff }, { RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe { RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff } }, *p = cfg2_info; unsigned int i; u32 clk; clk = RTL_R8(Config2) & PCI_Clock_66MHz; for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) { if ((p->mac_version == mac_version) && (p->clk == clk)) { RTL_W32(0x7c, p->val); break; } } } static void rtl_hw_start_8169(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; if (tp->mac_version == RTL_GIGA_MAC_VER_05) { RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); } RTL_W8(Cfg9346, Cfg9346_Unlock); if ((tp->mac_version == RTL_GIGA_MAC_VER_01) || (tp->mac_version == RTL_GIGA_MAC_VER_02) || (tp->mac_version == RTL_GIGA_MAC_VER_03) || (tp->mac_version == RTL_GIGA_MAC_VER_04)) RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(EarlyTxThres, EarlyTxThld); rtl_set_rx_max_size(ioaddr); if ((tp->mac_version == RTL_GIGA_MAC_VER_01) || (tp->mac_version == RTL_GIGA_MAC_VER_02) || (tp->mac_version == RTL_GIGA_MAC_VER_03) || (tp->mac_version == RTL_GIGA_MAC_VER_04)) rtl_set_rx_tx_config_registers(tp); tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW; if ((tp->mac_version == RTL_GIGA_MAC_VER_02) || (tp->mac_version == RTL_GIGA_MAC_VER_03)) { dprintk("Set MAC Reg C+CR Offset 0xE0. " "Bit-3 and bit-14 MUST be 1\n"); tp->cp_cmd |= (1 << 14); } RTL_W16(CPlusCmd, tp->cp_cmd); rtl8169_set_magic_reg(ioaddr, tp->mac_version); /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); rtl_set_rx_tx_desc_registers(tp, ioaddr); if ((tp->mac_version != RTL_GIGA_MAC_VER_01) && (tp->mac_version != RTL_GIGA_MAC_VER_02) && (tp->mac_version != RTL_GIGA_MAC_VER_03) && (tp->mac_version != RTL_GIGA_MAC_VER_04)) { RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); rtl_set_rx_tx_config_registers(tp); } RTL_W8(Cfg9346, Cfg9346_Lock); /* Initially a 10 us delay. Turned it into a PCI commit. - FR */ RTL_R8(IntrMask); RTL_W32(RxMissed, 0); rtl_set_rx_mode(dev); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, tp->intr_event); } static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); int cap = tp->pcie_cap; if (cap) { u16 ctl; pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl); ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | force; pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl); } } static void rtl_csi_access_enable(void __iomem *ioaddr) { u32 csi; csi = rtl_csi_read(ioaddr, 0x070c) & 0x00ffffff; rtl_csi_write(ioaddr, 0x070c, csi | 0x27000000); } struct ephy_info { unsigned int offset; u16 mask; u16 bits; }; static void rtl_ephy_init(void __iomem *ioaddr, struct ephy_info *e, int len) { u16 w; while (len-- > 0) { w = (rtl_ephy_read(ioaddr, e->offset) & ~e->mask) | e->bits; rtl_ephy_write(ioaddr, e->offset, w); e++; } } static void rtl_disable_clock_request(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); int cap = tp->pcie_cap; if (cap) { u16 ctl; pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl); ctl &= ~PCI_EXP_LNKCTL_CLKREQ_EN; pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl); } } #define R8168_CPCMD_QUIRK_MASK (\ EnableBist | \ Mac_dbgo_oe | \ Force_half_dup | \ Force_rxflow_en | \ Force_txflow_en | \ Cxpl_dbg_sel | \ ASF | \ PktCntrDisable | \ Mac_dbgo_sel) static void rtl_hw_start_8168bb(void __iomem *ioaddr, struct pci_dev *pdev) { RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); rtl_tx_performance_tweak(pdev, (0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN); } static void rtl_hw_start_8168bef(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8168bb(ioaddr, pdev); RTL_W8(EarlyTxThres, EarlyTxThld); RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0)); } static void __rtl_hw_start_8168cp(void __iomem *ioaddr, struct pci_dev *pdev) { RTL_W8(Config1, RTL_R8(Config1) | Speed_down); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); rtl_disable_clock_request(pdev); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168cp_1(void __iomem *ioaddr, struct pci_dev *pdev) { static struct ephy_info e_info_8168cp[] = { { 0x01, 0, 0x0001 }, { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0042 }, { 0x06, 0x0080, 0x0000 }, { 0x07, 0, 0x2000 } }; rtl_csi_access_enable(ioaddr); rtl_ephy_init(ioaddr, e_info_8168cp, ARRAY_SIZE(e_info_8168cp)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168cp_2(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable(ioaddr); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168cp_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable(ioaddr); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); /* Magic. */ RTL_W8(DBG_REG, 0x20); RTL_W8(EarlyTxThres, EarlyTxThld); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168c_1(void __iomem *ioaddr, struct pci_dev *pdev) { static struct ephy_info e_info_8168c_1[] = { { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0002 }, { 0x06, 0x0080, 0x0000 } }; rtl_csi_access_enable(ioaddr); RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2); rtl_ephy_init(ioaddr, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168c_2(void __iomem *ioaddr, struct pci_dev *pdev) { static struct ephy_info e_info_8168c_2[] = { { 0x01, 0, 0x0001 }, { 0x03, 0x0400, 0x0220 } }; rtl_csi_access_enable(ioaddr); rtl_ephy_init(ioaddr, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168c_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8168c_2(ioaddr, pdev); } static void rtl_hw_start_8168c_4(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable(ioaddr); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168d(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable(ioaddr); rtl_disable_clock_request(pdev); RTL_W8(EarlyTxThres, EarlyTxThld); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(EarlyTxThres, EarlyTxThld); rtl_set_rx_max_size(ioaddr); tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_W16(IntrMitigate, 0x5151); /* Work around for RxFIFO overflow. */ if (tp->mac_version == RTL_GIGA_MAC_VER_11) { tp->intr_event |= RxFIFOOver | PCSTimeout; tp->intr_event &= ~RxOverflow; } rtl_set_rx_tx_desc_registers(tp, ioaddr); rtl_set_rx_mode(dev); RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); RTL_R8(IntrMask); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: rtl_hw_start_8168bb(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: rtl_hw_start_8168bef(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_18: rtl_hw_start_8168cp_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_19: rtl_hw_start_8168c_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_20: rtl_hw_start_8168c_2(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_21: rtl_hw_start_8168c_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_22: rtl_hw_start_8168c_4(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_23: rtl_hw_start_8168cp_2(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_24: rtl_hw_start_8168cp_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_25: rtl_hw_start_8168d(ioaddr, pdev); break; default: printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n", dev->name, tp->mac_version); break; } RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(Cfg9346, Cfg9346_Lock); RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); RTL_W16(IntrMask, tp->intr_event); } #define R810X_CPCMD_QUIRK_MASK (\ EnableBist | \ Mac_dbgo_oe | \ Force_half_dup | \ Force_half_dup | \ Force_txflow_en | \ Cxpl_dbg_sel | \ ASF | \ PktCntrDisable | \ PCIDAC | \ PCIMulRW) static void rtl_hw_start_8102e_1(void __iomem *ioaddr, struct pci_dev *pdev) { static struct ephy_info e_info_8102e_1[] = { { 0x01, 0, 0x6e65 }, { 0x02, 0, 0x091f }, { 0x03, 0, 0xc2f9 }, { 0x06, 0, 0xafb5 }, { 0x07, 0, 0x0e00 }, { 0x19, 0, 0xec80 }, { 0x01, 0, 0x2e65 }, { 0x01, 0, 0x6e65 } }; u8 cfg1; rtl_csi_access_enable(ioaddr); RTL_W8(DBG_REG, FIX_NAK_1); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(Config1, LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); cfg1 = RTL_R8(Config1); if ((cfg1 & LEDS0) && (cfg1 & LEDS1)) RTL_W8(Config1, cfg1 & ~LEDS0); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK); rtl_ephy_init(ioaddr, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1)); } static void rtl_hw_start_8102e_2(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable(ioaddr); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8102e_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8102e_2(ioaddr, pdev); rtl_ephy_write(ioaddr, 0x03, 0xc2f9); } static void rtl_hw_start_8101(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; if ((tp->mac_version == RTL_GIGA_MAC_VER_13) || (tp->mac_version == RTL_GIGA_MAC_VER_16)) { int cap = tp->pcie_cap; if (cap) { pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_NOSNOOP_EN); } } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_07: rtl_hw_start_8102e_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_08: rtl_hw_start_8102e_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_09: rtl_hw_start_8102e_2(ioaddr, pdev); break; } RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(EarlyTxThres, EarlyTxThld); rtl_set_rx_max_size(ioaddr); tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_W16(IntrMitigate, 0x0000); rtl_set_rx_tx_desc_registers(tp, ioaddr); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); rtl_set_rx_tx_config_registers(tp); RTL_W8(Cfg9346, Cfg9346_Lock); RTL_R8(IntrMask); rtl_set_rx_mode(dev); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000); RTL_W16(IntrMask, tp->intr_event); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8169_private *tp = netdev_priv(dev); int ret = 0; if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu) return -EINVAL; dev->mtu = new_mtu; if (!netif_running(dev)) goto out; rtl8169_down(dev); rtl8169_set_rxbufsize(tp, dev); ret = rtl8169_init_ring(dev); if (ret < 0) goto out; napi_enable(&tp->napi); rtl_hw_start(dev); rtl8169_request_timer(dev); out: return ret; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = cpu_to_le64(0x0badbadbadbadbadull); desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8169_free_rx_skb(struct rtl8169_private *tp, struct sk_buff **sk_buff, struct RxDesc *desc) { struct pci_dev *pdev = tp->pci_dev; pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(*sk_buff); *sk_buff = NULL; rtl8169_make_unusable_by_asic(desc); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz); } static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->addr = cpu_to_le64(mapping); wmb(); rtl8169_mark_to_asic(desc, rx_buf_sz); } static struct sk_buff *rtl8169_alloc_rx_skb(struct pci_dev *pdev, struct net_device *dev, struct RxDesc *desc, int rx_buf_sz, unsigned int align) { struct sk_buff *skb; dma_addr_t mapping; unsigned int pad; pad = align ? align : NET_IP_ALIGN; skb = netdev_alloc_skb(dev, rx_buf_sz + pad); if (!skb) goto err_out; skb_reserve(skb, align ? ((pad - 1) & (unsigned long)skb->data) : pad); mapping = pci_map_single(pdev, skb->data, rx_buf_sz, PCI_DMA_FROMDEVICE); rtl8169_map_to_asic(desc, mapping, rx_buf_sz); out: return skb; err_out: rtl8169_make_unusable_by_asic(desc); goto out; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_skbuff[i]) { rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i, tp->RxDescArray + i); } } } static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev, u32 start, u32 end) { u32 cur; for (cur = start; end - cur != 0; cur++) { struct sk_buff *skb; unsigned int i = cur % NUM_RX_DESC; WARN_ON((s32)(end - cur) < 0); if (tp->Rx_skbuff[i]) continue; skb = rtl8169_alloc_rx_skb(tp->pci_dev, dev, tp->RxDescArray + i, tp->rx_buf_sz, tp->align); if (!skb) break; tp->Rx_skbuff[i] = skb; } return cur - start; } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0; } static int rtl8169_init_ring(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info)); memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *)); if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC) goto err_out; rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8169_rx_clear(tp); return -ENOMEM; } static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) { unsigned int entry = i % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (skb) { dev_kfree_skb(skb); tx_skb->skb = NULL; } tp->dev->stats.tx_dropped++; } } tp->cur_tx = tp->dirty_tx = 0; } static void rtl8169_schedule_work(struct net_device *dev, work_func_t task) { struct rtl8169_private *tp = netdev_priv(dev); PREPARE_DELAYED_WORK(&tp->task, task); schedule_delayed_work(&tp->task, 4); } static void rtl8169_wait_for_quiescence(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; synchronize_irq(dev->irq); /* Wait for any pending NAPI task to complete */ napi_disable(&tp->napi); rtl8169_irq_mask_and_ack(ioaddr); tp->intr_mask = 0xffff; RTL_W16(IntrMask, tp->intr_event); napi_enable(&tp->napi); } static void rtl8169_reinit_task(struct work_struct *work) { struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; int ret; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; rtl8169_wait_for_quiescence(dev); rtl8169_close(dev); ret = rtl8169_open(dev); if (unlikely(ret < 0)) { if (net_ratelimit() && netif_msg_drv(tp)) { printk(KERN_ERR PFX "%s: reinit failure (status = %d)." " Rescheduling.\n", dev->name, ret); } rtl8169_schedule_work(dev, rtl8169_reinit_task); } out_unlock: rtnl_unlock(); } static void rtl8169_reset_task(struct work_struct *work) { struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; rtl8169_wait_for_quiescence(dev); rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0); rtl8169_tx_clear(tp); if (tp->dirty_rx == tp->cur_rx) { rtl8169_init_ring_indexes(tp); rtl_hw_start(dev); netif_wake_queue(dev); rtl8169_check_link_status(dev, tp, tp->mmio_addr); } else { if (net_ratelimit() && netif_msg_intr(tp)) { printk(KERN_EMERG PFX "%s: Rx buffers shortage\n", dev->name); } rtl8169_schedule_work(dev, rtl8169_reset_task); } out_unlock: rtnl_unlock(); } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_hw_reset(tp->mmio_addr); /* Let's wait a bit while any (async) irq lands on */ rtl8169_schedule_work(dev, rtl8169_reset_task); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 opts1) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc * uninitialized_var(txd); entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = frag->size; addr = ((void *) page_address(frag->page)) + frag->page_offset; mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; } static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev) { if (dev->features & NETIF_F_TSO) { u32 mss = skb_shinfo(skb)->gso_size; if (mss) return LargeSend | ((mss & MSSMask) << MSSShift); } if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) return IPCS | TCPCS; else if (ip->protocol == IPPROTO_UDP) return IPCS | UDPCS; WARN_ON(1); /* we need a WARN() */ } return 0; } static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; void __iomem *ioaddr = tp->mmio_addr; dma_addr_t mapping; u32 status, len; u32 opts1; int ret = NETDEV_TX_OK; if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) { if (netif_msg_drv(tp)) { printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", dev->name); } goto err_stop; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop; opts1 = DescOwn | rtl8169_tso_csum(skb, dev); frags = rtl8169_xmit_frags(tp, skb, opts1); if (frags) { len = skb_headlen(skb); opts1 |= FirstFrag; } else { len = skb->len; opts1 |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE); tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb)); wmb(); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); dev->trans_start = jiffies; tp->cur_tx += frags + 1; smp_wmb(); RTL_W8(TxPoll, NPQ); /* set polling bit */ if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) { netif_stop_queue(dev); smp_rmb(); if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS) netif_wake_queue(dev); } out: return ret; err_stop: netif_stop_queue(dev); ret = NETDEV_TX_BUSY; dev->stats.tx_dropped++; goto out; } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; void __iomem *ioaddr = tp->mmio_addr; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); if (netif_msg_intr(tp)) { printk(KERN_ERR "%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n", dev->name, pci_cmd, pci_status); } /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done; * - it makes iop3xx happy. * * Feel free to adjust to your needs. */ if (pdev->broken_parity_status) pci_cmd &= ~PCI_COMMAND_PARITY; else pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); /* The infamous DAC f*ckup only happens at boot time */ if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) { if (netif_msg_intr(tp)) printk(KERN_INFO "%s: disabling PCI DAC.\n", dev->name); tp->cp_cmd &= ~PCIDAC; RTL_W16(CPlusCmd, tp->cp_cmd); dev->features &= ~NETIF_F_HIGHDMA; } rtl8169_hw_reset(ioaddr); rtl8169_schedule_work(dev, rtl8169_reinit_task); } static void rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned int dirty_tx, tx_left; dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 len = tx_skb->len; u32 status; rmb(); status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; dev->stats.tx_bytes += len; dev->stats.tx_packets++; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { dev_kfree_skb_irq(tx_skb->skb); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; smp_wmb(); if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) { netif_wake_queue(dev); } /* * 8168 hack: TxPoll requests are lost when the Tx packets are * too close. Let's kick an extra TxPoll request when a burst * of start_xmit activity is detected (if it is not detected, * it is slow enough). -- FR */ smp_rmb(); if (tp->cur_tx != dirty_tx) RTL_W8(TxPoll, NPQ); } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc) { u32 opts1 = le32_to_cpu(desc->opts1); u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail)) || ((status == RxProtoIP) && !(opts1 & IPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } static inline bool rtl8169_try_rx_copy(struct sk_buff **sk_buff, struct rtl8169_private *tp, int pkt_size, dma_addr_t addr) { struct sk_buff *skb; bool done = false; if (pkt_size >= rx_copybreak) goto out; skb = netdev_alloc_skb(tp->dev, pkt_size + NET_IP_ALIGN); if (!skb) goto out; pci_dma_sync_single_for_cpu(tp->pci_dev, addr, pkt_size, PCI_DMA_FROMDEVICE); skb_reserve(skb, NET_IP_ALIGN); skb_copy_from_linear_data(*sk_buff, skb->data, pkt_size); *sk_buff = skb; done = true; out: return done; } static int rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr, u32 budget) { unsigned int cur_rx, rx_left; unsigned int delta, count; cur_rx = tp->cur_rx; rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx; rx_left = min(rx_left, budget); for (; rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; rmb(); status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; if (unlikely(status & RxRES)) { if (netif_msg_rx_err(tp)) { printk(KERN_INFO "%s: Rx ERROR. status = %08x\n", dev->name, status); } dev->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) dev->stats.rx_length_errors++; if (status & RxCRC) dev->stats.rx_crc_errors++; if (status & RxFOVF) { rtl8169_schedule_work(dev, rtl8169_reset_task); dev->stats.rx_fifo_errors++; } rtl8169_mark_to_asic(desc, tp->rx_buf_sz); } else { struct sk_buff *skb = tp->Rx_skbuff[entry]; dma_addr_t addr = le64_to_cpu(desc->addr); int pkt_size = (status & 0x00001FFF) - 4; struct pci_dev *pdev = tp->pci_dev; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { dev->stats.rx_dropped++; dev->stats.rx_length_errors++; rtl8169_mark_to_asic(desc, tp->rx_buf_sz); continue; } rtl8169_rx_csum(skb, desc); if (rtl8169_try_rx_copy(&skb, tp, pkt_size, addr)) { pci_dma_sync_single_for_device(pdev, addr, pkt_size, PCI_DMA_FROMDEVICE); rtl8169_mark_to_asic(desc, tp->rx_buf_sz); } else { pci_unmap_single(pdev, addr, tp->rx_buf_sz, PCI_DMA_FROMDEVICE); tp->Rx_skbuff[entry] = NULL; } skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0) netif_receive_skb(skb); dev->stats.rx_bytes += pkt_size; dev->stats.rx_packets++; } /* Work around for AMD plateform. */ if ((desc->opts2 & cpu_to_le32(0xfffe000)) && (tp->mac_version == RTL_GIGA_MAC_VER_05)) { desc->opts2 = 0; cur_rx++; } } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx); if (!delta && count && netif_msg_intr(tp)) printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name); tp->dirty_rx += delta; /* * FIXME: until there is periodic timer to try and refill the ring, * a temporary shortage may definitely kill the Rx process. * - disable the asic to try and avoid an overflow and kick it again * after refill ? * - how do others driver handle this condition (Uh oh...). */ if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp)) printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name); return count; } static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance) { struct net_device *dev = dev_instance; struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int handled = 0; int status; status = RTL_R16(IntrStatus); /* hotplug/major error/no more work/shared irq */ if ((status == 0xffff) || !status) goto out; handled = 1; if (unlikely(!netif_running(dev))) { rtl8169_asic_down(ioaddr); goto out; } status &= tp->intr_mask; RTL_W16(IntrStatus, (status & RxFIFOOver) ? (status | RxOverflow) : status); if (!(status & tp->intr_event)) goto out; /* Work around for rx fifo overflow */ if (unlikely(status & RxFIFOOver) && (tp->mac_version == RTL_GIGA_MAC_VER_11)) { netif_stop_queue(dev); rtl8169_tx_timeout(dev); goto out; } if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(dev); goto out; } if (status & LinkChg) rtl8169_check_link_status(dev, tp, ioaddr); if (status & tp->napi_event) { RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event); tp->intr_mask = ~tp->napi_event; if (likely(netif_rx_schedule_prep(&tp->napi))) __netif_rx_schedule(&tp->napi); else if (netif_msg_intr(tp)) { printk(KERN_INFO "%s: interrupt %04x in poll\n", dev->name, status); } } out: return IRQ_RETVAL(handled); } static int rtl8169_poll(struct napi_struct *napi, int budget) { struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi); struct net_device *dev = tp->dev; void __iomem *ioaddr = tp->mmio_addr; int work_done; work_done = rtl8169_rx_interrupt(dev, tp, ioaddr, (u32) budget); rtl8169_tx_interrupt(dev, tp, ioaddr); if (work_done < budget) { netif_rx_complete(napi); tp->intr_mask = 0xffff; /* * 20040426: the barrier is not strictly required but the * behavior of the irq handler could be less predictable * without it. Btw, the lack of flush for the posted pci * write is safe - FR */ smp_wmb(); RTL_W16(IntrMask, tp->intr_event); } return work_done; } static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr) { struct rtl8169_private *tp = netdev_priv(dev); if (tp->mac_version > RTL_GIGA_MAC_VER_06) return; dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff); RTL_W32(RxMissed, 0); } static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned int intrmask; rtl8169_delete_timer(dev); netif_stop_queue(dev); napi_disable(&tp->napi); core_down: spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); rtl8169_rx_missed(dev, ioaddr); spin_unlock_irq(&tp->lock); synchronize_irq(dev->irq); /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_sched(); /* FIXME: should this be synchronize_irq()? */ /* * And now for the 50k$ question: are IRQ disabled or not ? * * Two paths lead here: * 1) dev->close * -> netif_running() is available to sync the current code and the * IRQ handler. See rtl8169_interrupt for details. * 2) dev->change_mtu * -> rtl8169_poll can not be issued again and re-enable the * interruptions. Let's simply issue the IRQ down sequence again. * * No loop if hotpluged or major error (0xffff). */ intrmask = RTL_R16(IntrMask); if (intrmask && (intrmask != 0xffff)) goto core_down; rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; /* update counters before going down */ rtl8169_update_counters(dev); rtl8169_down(dev); free_irq(dev->irq, dev); pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; return 0; } static void rtl_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ if (netif_msg_link(tp)) { printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); } rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct dev_mc_list *mclist; unsigned int i; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); if (tp->mac_version > RTL_GIGA_MAC_VER_06) { u32 data = mc_filter[0]; mc_filter[0] = swab32(mc_filter[1]); mc_filter[1] = swab32(data); } RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(MAR0 + 4, mc_filter[1]); RTL_W32(RxConfig, tmp); spin_unlock_irqrestore(&tp->lock, flags); } /** * rtl8169_get_stats - Get rtl8169 read/write statistics * @dev: The Ethernet Device to get statistics for * * Get TX/RX statistics for rtl8169 */ static struct net_device_stats *rtl8169_get_stats(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&tp->lock, flags); rtl8169_rx_missed(dev, ioaddr); spin_unlock_irqrestore(&tp->lock, flags); } return &dev->stats; } #ifdef CONFIG_PM static int rtl8169_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; if (!netif_running(dev)) goto out_pci_suspend; netif_device_detach(dev); netif_stop_queue(dev); spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); rtl8169_rx_missed(dev, ioaddr); spin_unlock_irq(&tp->lock); out_pci_suspend: pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, state), (tp->features & RTL_FEATURE_WOL) ? 1 : 0); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int rtl8169_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_enable_wake(pdev, PCI_D0, 0); if (!netif_running(dev)) goto out; netif_device_attach(dev); rtl8169_schedule_work(dev, rtl8169_reset_task); out: return 0; } static void rtl_shutdown(struct pci_dev *pdev) { rtl8169_suspend(pdev, PMSG_SUSPEND); } #endif /* CONFIG_PM */ static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl8169_init_one, .remove = __devexit_p(rtl8169_remove_one), #ifdef CONFIG_PM .suspend = rtl8169_suspend, .resume = rtl8169_resume, .shutdown = rtl_shutdown, #endif }; static int __init rtl8169_init_module(void) { return pci_register_driver(&rtl8169_pci_driver); } static void __exit rtl8169_cleanup_module(void) { pci_unregister_driver(&rtl8169_pci_driver); } module_init(rtl8169_init_module); module_exit(rtl8169_cleanup_module);