/* * Copyright (c) 2013 Linaro Ltd. * Copyright (c) 2013 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/sched.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/clk.h> #include <linux/of_dma.h> #include "virt-dma.h" #define DRIVER_NAME "k3-dma" #define DMA_ALIGN 3 #define DMA_MAX_SIZE 0x1ffc #define INT_STAT 0x00 #define INT_TC1 0x04 #define INT_ERR1 0x0c #define INT_ERR2 0x10 #define INT_TC1_MASK 0x18 #define INT_ERR1_MASK 0x20 #define INT_ERR2_MASK 0x24 #define INT_TC1_RAW 0x600 #define INT_ERR1_RAW 0x608 #define INT_ERR2_RAW 0x610 #define CH_PRI 0x688 #define CH_STAT 0x690 #define CX_CUR_CNT 0x704 #define CX_LLI 0x800 #define CX_CNT 0x810 #define CX_SRC 0x814 #define CX_DST 0x818 #define CX_CFG 0x81c #define AXI_CFG 0x820 #define AXI_CFG_DEFAULT 0x201201 #define CX_LLI_CHAIN_EN 0x2 #define CX_CFG_EN 0x1 #define CX_CFG_MEM2PER (0x1 << 2) #define CX_CFG_PER2MEM (0x2 << 2) #define CX_CFG_SRCINCR (0x1 << 31) #define CX_CFG_DSTINCR (0x1 << 30) struct k3_desc_hw { u32 lli; u32 reserved[3]; u32 count; u32 saddr; u32 daddr; u32 config; } __aligned(32); struct k3_dma_desc_sw { struct virt_dma_desc vd; dma_addr_t desc_hw_lli; size_t desc_num; size_t size; struct k3_desc_hw desc_hw[0]; }; struct k3_dma_phy; struct k3_dma_chan { u32 ccfg; struct virt_dma_chan vc; struct k3_dma_phy *phy; struct list_head node; enum dma_transfer_direction dir; dma_addr_t dev_addr; enum dma_status status; }; struct k3_dma_phy { u32 idx; void __iomem *base; struct k3_dma_chan *vchan; struct k3_dma_desc_sw *ds_run; struct k3_dma_desc_sw *ds_done; }; struct k3_dma_dev { struct dma_device slave; void __iomem *base; struct tasklet_struct task; spinlock_t lock; struct list_head chan_pending; struct k3_dma_phy *phy; struct k3_dma_chan *chans; struct clk *clk; u32 dma_channels; u32 dma_requests; }; #define to_k3_dma(dmadev) container_of(dmadev, struct k3_dma_dev, slave) static struct k3_dma_chan *to_k3_chan(struct dma_chan *chan) { return container_of(chan, struct k3_dma_chan, vc.chan); } static void k3_dma_pause_dma(struct k3_dma_phy *phy, bool on) { u32 val = 0; if (on) { val = readl_relaxed(phy->base + CX_CFG); val |= CX_CFG_EN; writel_relaxed(val, phy->base + CX_CFG); } else { val = readl_relaxed(phy->base + CX_CFG); val &= ~CX_CFG_EN; writel_relaxed(val, phy->base + CX_CFG); } } static void k3_dma_terminate_chan(struct k3_dma_phy *phy, struct k3_dma_dev *d) { u32 val = 0; k3_dma_pause_dma(phy, false); val = 0x1 << phy->idx; writel_relaxed(val, d->base + INT_TC1_RAW); writel_relaxed(val, d->base + INT_ERR1_RAW); writel_relaxed(val, d->base + INT_ERR2_RAW); } static void k3_dma_set_desc(struct k3_dma_phy *phy, struct k3_desc_hw *hw) { writel_relaxed(hw->lli, phy->base + CX_LLI); writel_relaxed(hw->count, phy->base + CX_CNT); writel_relaxed(hw->saddr, phy->base + CX_SRC); writel_relaxed(hw->daddr, phy->base + CX_DST); writel_relaxed(AXI_CFG_DEFAULT, phy->base + AXI_CFG); writel_relaxed(hw->config, phy->base + CX_CFG); } static u32 k3_dma_get_curr_cnt(struct k3_dma_dev *d, struct k3_dma_phy *phy) { u32 cnt = 0; cnt = readl_relaxed(d->base + CX_CUR_CNT + phy->idx * 0x10); cnt &= 0xffff; return cnt; } static u32 k3_dma_get_curr_lli(struct k3_dma_phy *phy) { return readl_relaxed(phy->base + CX_LLI); } static u32 k3_dma_get_chan_stat(struct k3_dma_dev *d) { return readl_relaxed(d->base + CH_STAT); } static void k3_dma_enable_dma(struct k3_dma_dev *d, bool on) { if (on) { /* set same priority */ writel_relaxed(0x0, d->base + CH_PRI); /* unmask irq */ writel_relaxed(0xffff, d->base + INT_TC1_MASK); writel_relaxed(0xffff, d->base + INT_ERR1_MASK); writel_relaxed(0xffff, d->base + INT_ERR2_MASK); } else { /* mask irq */ writel_relaxed(0x0, d->base + INT_TC1_MASK); writel_relaxed(0x0, d->base + INT_ERR1_MASK); writel_relaxed(0x0, d->base + INT_ERR2_MASK); } } static irqreturn_t k3_dma_int_handler(int irq, void *dev_id) { struct k3_dma_dev *d = (struct k3_dma_dev *)dev_id; struct k3_dma_phy *p; struct k3_dma_chan *c; u32 stat = readl_relaxed(d->base + INT_STAT); u32 tc1 = readl_relaxed(d->base + INT_TC1); u32 err1 = readl_relaxed(d->base + INT_ERR1); u32 err2 = readl_relaxed(d->base + INT_ERR2); u32 i, irq_chan = 0; while (stat) { i = __ffs(stat); stat &= (stat - 1); if (likely(tc1 & BIT(i))) { p = &d->phy[i]; c = p->vchan; if (c) { unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); vchan_cookie_complete(&p->ds_run->vd); p->ds_done = p->ds_run; spin_unlock_irqrestore(&c->vc.lock, flags); } irq_chan |= BIT(i); } if (unlikely((err1 & BIT(i)) || (err2 & BIT(i)))) dev_warn(d->slave.dev, "DMA ERR\n"); } writel_relaxed(irq_chan, d->base + INT_TC1_RAW); writel_relaxed(err1, d->base + INT_ERR1_RAW); writel_relaxed(err2, d->base + INT_ERR2_RAW); if (irq_chan) { tasklet_schedule(&d->task); return IRQ_HANDLED; } else return IRQ_NONE; } static int k3_dma_start_txd(struct k3_dma_chan *c) { struct k3_dma_dev *d = to_k3_dma(c->vc.chan.device); struct virt_dma_desc *vd = vchan_next_desc(&c->vc); if (!c->phy) return -EAGAIN; if (BIT(c->phy->idx) & k3_dma_get_chan_stat(d)) return -EAGAIN; if (vd) { struct k3_dma_desc_sw *ds = container_of(vd, struct k3_dma_desc_sw, vd); /* * fetch and remove request from vc->desc_issued * so vc->desc_issued only contains desc pending */ list_del(&ds->vd.node); c->phy->ds_run = ds; c->phy->ds_done = NULL; /* start dma */ k3_dma_set_desc(c->phy, &ds->desc_hw[0]); return 0; } c->phy->ds_done = NULL; c->phy->ds_run = NULL; return -EAGAIN; } static void k3_dma_tasklet(unsigned long arg) { struct k3_dma_dev *d = (struct k3_dma_dev *)arg; struct k3_dma_phy *p; struct k3_dma_chan *c, *cn; unsigned pch, pch_alloc = 0; /* check new dma request of running channel in vc->desc_issued */ list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) { spin_lock_irq(&c->vc.lock); p = c->phy; if (p && p->ds_done) { if (k3_dma_start_txd(c)) { /* No current txd associated with this channel */ dev_dbg(d->slave.dev, "pchan %u: free\n", p->idx); /* Mark this channel free */ c->phy = NULL; p->vchan = NULL; } } spin_unlock_irq(&c->vc.lock); } /* check new channel request in d->chan_pending */ spin_lock_irq(&d->lock); for (pch = 0; pch < d->dma_channels; pch++) { p = &d->phy[pch]; if (p->vchan == NULL && !list_empty(&d->chan_pending)) { c = list_first_entry(&d->chan_pending, struct k3_dma_chan, node); /* remove from d->chan_pending */ list_del_init(&c->node); pch_alloc |= 1 << pch; /* Mark this channel allocated */ p->vchan = c; c->phy = p; dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc); } } spin_unlock_irq(&d->lock); for (pch = 0; pch < d->dma_channels; pch++) { if (pch_alloc & (1 << pch)) { p = &d->phy[pch]; c = p->vchan; if (c) { spin_lock_irq(&c->vc.lock); k3_dma_start_txd(c); spin_unlock_irq(&c->vc.lock); } } } } static int k3_dma_alloc_chan_resources(struct dma_chan *chan) { return 0; } static void k3_dma_free_chan_resources(struct dma_chan *chan) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); unsigned long flags; spin_lock_irqsave(&d->lock, flags); list_del_init(&c->node); spin_unlock_irqrestore(&d->lock, flags); vchan_free_chan_resources(&c->vc); c->ccfg = 0; } static enum dma_status k3_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); struct k3_dma_phy *p; struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; size_t bytes = 0; ret = dma_cookie_status(&c->vc.chan, cookie, state); if (ret == DMA_COMPLETE) return ret; spin_lock_irqsave(&c->vc.lock, flags); p = c->phy; ret = c->status; /* * If the cookie is on our issue queue, then the residue is * its total size. */ vd = vchan_find_desc(&c->vc, cookie); if (vd) { bytes = container_of(vd, struct k3_dma_desc_sw, vd)->size; } else if ((!p) || (!p->ds_run)) { bytes = 0; } else { struct k3_dma_desc_sw *ds = p->ds_run; u32 clli = 0, index = 0; bytes = k3_dma_get_curr_cnt(d, p); clli = k3_dma_get_curr_lli(p); index = (clli - ds->desc_hw_lli) / sizeof(struct k3_desc_hw); for (; index < ds->desc_num; index++) { bytes += ds->desc_hw[index].count; /* end of lli */ if (!ds->desc_hw[index].lli) break; } } spin_unlock_irqrestore(&c->vc.lock, flags); dma_set_residue(state, bytes); return ret; } static void k3_dma_issue_pending(struct dma_chan *chan) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); /* add request to vc->desc_issued */ if (vchan_issue_pending(&c->vc)) { spin_lock(&d->lock); if (!c->phy) { if (list_empty(&c->node)) { /* if new channel, add chan_pending */ list_add_tail(&c->node, &d->chan_pending); /* check in tasklet */ tasklet_schedule(&d->task); dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc); } } spin_unlock(&d->lock); } else dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc); spin_unlock_irqrestore(&c->vc.lock, flags); } static void k3_dma_fill_desc(struct k3_dma_desc_sw *ds, dma_addr_t dst, dma_addr_t src, size_t len, u32 num, u32 ccfg) { if ((num + 1) < ds->desc_num) ds->desc_hw[num].lli = ds->desc_hw_lli + (num + 1) * sizeof(struct k3_desc_hw); ds->desc_hw[num].lli |= CX_LLI_CHAIN_EN; ds->desc_hw[num].count = len; ds->desc_hw[num].saddr = src; ds->desc_hw[num].daddr = dst; ds->desc_hw[num].config = ccfg; } static struct dma_async_tx_descriptor *k3_dma_prep_memcpy( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_desc_sw *ds; size_t copy = 0; int num = 0; if (!len) return NULL; num = DIV_ROUND_UP(len, DMA_MAX_SIZE); ds = kzalloc(sizeof(*ds) + num * sizeof(ds->desc_hw[0]), GFP_ATOMIC); if (!ds) { dev_dbg(chan->device->dev, "vchan %p: kzalloc fail\n", &c->vc); return NULL; } ds->desc_hw_lli = __virt_to_phys((unsigned long)&ds->desc_hw[0]); ds->size = len; ds->desc_num = num; num = 0; if (!c->ccfg) { /* default is memtomem, without calling device_config */ c->ccfg = CX_CFG_SRCINCR | CX_CFG_DSTINCR | CX_CFG_EN; c->ccfg |= (0xf << 20) | (0xf << 24); /* burst = 16 */ c->ccfg |= (0x3 << 12) | (0x3 << 16); /* width = 64 bit */ } do { copy = min_t(size_t, len, DMA_MAX_SIZE); k3_dma_fill_desc(ds, dst, src, copy, num++, c->ccfg); if (c->dir == DMA_MEM_TO_DEV) { src += copy; } else if (c->dir == DMA_DEV_TO_MEM) { dst += copy; } else { src += copy; dst += copy; } len -= copy; } while (len); ds->desc_hw[num-1].lli = 0; /* end of link */ return vchan_tx_prep(&c->vc, &ds->vd, flags); } static struct dma_async_tx_descriptor *k3_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_desc_sw *ds; size_t len, avail, total = 0; struct scatterlist *sg; dma_addr_t addr, src = 0, dst = 0; int num = sglen, i; if (sgl == NULL) return NULL; for_each_sg(sgl, sg, sglen, i) { avail = sg_dma_len(sg); if (avail > DMA_MAX_SIZE) num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1; } ds = kzalloc(sizeof(*ds) + num * sizeof(ds->desc_hw[0]), GFP_ATOMIC); if (!ds) { dev_dbg(chan->device->dev, "vchan %p: kzalloc fail\n", &c->vc); return NULL; } ds->desc_hw_lli = __virt_to_phys((unsigned long)&ds->desc_hw[0]); ds->desc_num = num; num = 0; for_each_sg(sgl, sg, sglen, i) { addr = sg_dma_address(sg); avail = sg_dma_len(sg); total += avail; do { len = min_t(size_t, avail, DMA_MAX_SIZE); if (dir == DMA_MEM_TO_DEV) { src = addr; dst = c->dev_addr; } else if (dir == DMA_DEV_TO_MEM) { src = c->dev_addr; dst = addr; } k3_dma_fill_desc(ds, dst, src, len, num++, c->ccfg); addr += len; avail -= len; } while (avail); } ds->desc_hw[num-1].lli = 0; /* end of link */ ds->size = total; return vchan_tx_prep(&c->vc, &ds->vd, flags); } static int k3_dma_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct k3_dma_chan *c = to_k3_chan(chan); u32 maxburst = 0, val = 0; enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; if (cfg == NULL) return -EINVAL; c->dir = cfg->direction; if (c->dir == DMA_DEV_TO_MEM) { c->ccfg = CX_CFG_DSTINCR; c->dev_addr = cfg->src_addr; maxburst = cfg->src_maxburst; width = cfg->src_addr_width; } else if (c->dir == DMA_MEM_TO_DEV) { c->ccfg = CX_CFG_SRCINCR; c->dev_addr = cfg->dst_addr; maxburst = cfg->dst_maxburst; width = cfg->dst_addr_width; } switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: case DMA_SLAVE_BUSWIDTH_2_BYTES: case DMA_SLAVE_BUSWIDTH_4_BYTES: case DMA_SLAVE_BUSWIDTH_8_BYTES: val = __ffs(width); break; default: val = 3; break; } c->ccfg |= (val << 12) | (val << 16); if ((maxburst == 0) || (maxburst > 16)) val = 16; else val = maxburst - 1; c->ccfg |= (val << 20) | (val << 24); c->ccfg |= CX_CFG_MEM2PER | CX_CFG_EN; /* specific request line */ c->ccfg |= c->vc.chan.chan_id << 4; return 0; } static int k3_dma_terminate_all(struct dma_chan *chan) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); struct k3_dma_phy *p = c->phy; unsigned long flags; LIST_HEAD(head); dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc); /* Prevent this channel being scheduled */ spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); /* Clear the tx descriptor lists */ spin_lock_irqsave(&c->vc.lock, flags); vchan_get_all_descriptors(&c->vc, &head); if (p) { /* vchan is assigned to a pchan - stop the channel */ k3_dma_terminate_chan(p, d); c->phy = NULL; p->vchan = NULL; p->ds_run = p->ds_done = NULL; } spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static int k3_dma_transfer_pause(struct dma_chan *chan) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); struct k3_dma_phy *p = c->phy; dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc); if (c->status == DMA_IN_PROGRESS) { c->status = DMA_PAUSED; if (p) { k3_dma_pause_dma(p, false); } else { spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); } } return 0; } static int k3_dma_transfer_resume(struct dma_chan *chan) { struct k3_dma_chan *c = to_k3_chan(chan); struct k3_dma_dev *d = to_k3_dma(chan->device); struct k3_dma_phy *p = c->phy; unsigned long flags; dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc); spin_lock_irqsave(&c->vc.lock, flags); if (c->status == DMA_PAUSED) { c->status = DMA_IN_PROGRESS; if (p) { k3_dma_pause_dma(p, true); } else if (!list_empty(&c->vc.desc_issued)) { spin_lock(&d->lock); list_add_tail(&c->node, &d->chan_pending); spin_unlock(&d->lock); } } spin_unlock_irqrestore(&c->vc.lock, flags); return 0; } static void k3_dma_free_desc(struct virt_dma_desc *vd) { struct k3_dma_desc_sw *ds = container_of(vd, struct k3_dma_desc_sw, vd); kfree(ds); } static struct of_device_id k3_pdma_dt_ids[] = { { .compatible = "hisilicon,k3-dma-1.0", }, {} }; MODULE_DEVICE_TABLE(of, k3_pdma_dt_ids); static struct dma_chan *k3_of_dma_simple_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct k3_dma_dev *d = ofdma->of_dma_data; unsigned int request = dma_spec->args[0]; if (request > d->dma_requests) return NULL; return dma_get_slave_channel(&(d->chans[request].vc.chan)); } static int k3_dma_probe(struct platform_device *op) { struct k3_dma_dev *d; const struct of_device_id *of_id; struct resource *iores; int i, ret, irq = 0; iores = platform_get_resource(op, IORESOURCE_MEM, 0); if (!iores) return -EINVAL; d = devm_kzalloc(&op->dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->base = devm_ioremap_resource(&op->dev, iores); if (IS_ERR(d->base)) return PTR_ERR(d->base); of_id = of_match_device(k3_pdma_dt_ids, &op->dev); if (of_id) { of_property_read_u32((&op->dev)->of_node, "dma-channels", &d->dma_channels); of_property_read_u32((&op->dev)->of_node, "dma-requests", &d->dma_requests); } d->clk = devm_clk_get(&op->dev, NULL); if (IS_ERR(d->clk)) { dev_err(&op->dev, "no dma clk\n"); return PTR_ERR(d->clk); } irq = platform_get_irq(op, 0); ret = devm_request_irq(&op->dev, irq, k3_dma_int_handler, 0, DRIVER_NAME, d); if (ret) return ret; /* init phy channel */ d->phy = devm_kzalloc(&op->dev, d->dma_channels * sizeof(struct k3_dma_phy), GFP_KERNEL); if (d->phy == NULL) return -ENOMEM; for (i = 0; i < d->dma_channels; i++) { struct k3_dma_phy *p = &d->phy[i]; p->idx = i; p->base = d->base + i * 0x40; } INIT_LIST_HEAD(&d->slave.channels); dma_cap_set(DMA_SLAVE, d->slave.cap_mask); dma_cap_set(DMA_MEMCPY, d->slave.cap_mask); d->slave.dev = &op->dev; d->slave.device_alloc_chan_resources = k3_dma_alloc_chan_resources; d->slave.device_free_chan_resources = k3_dma_free_chan_resources; d->slave.device_tx_status = k3_dma_tx_status; d->slave.device_prep_dma_memcpy = k3_dma_prep_memcpy; d->slave.device_prep_slave_sg = k3_dma_prep_slave_sg; d->slave.device_issue_pending = k3_dma_issue_pending; d->slave.device_config = k3_dma_config; d->slave.device_pause = k3_dma_transfer_pause; d->slave.device_resume = k3_dma_transfer_resume; d->slave.device_terminate_all = k3_dma_terminate_all; d->slave.copy_align = DMA_ALIGN; /* init virtual channel */ d->chans = devm_kzalloc(&op->dev, d->dma_requests * sizeof(struct k3_dma_chan), GFP_KERNEL); if (d->chans == NULL) return -ENOMEM; for (i = 0; i < d->dma_requests; i++) { struct k3_dma_chan *c = &d->chans[i]; c->status = DMA_IN_PROGRESS; INIT_LIST_HEAD(&c->node); c->vc.desc_free = k3_dma_free_desc; vchan_init(&c->vc, &d->slave); } /* Enable clock before accessing registers */ ret = clk_prepare_enable(d->clk); if (ret < 0) { dev_err(&op->dev, "clk_prepare_enable failed: %d\n", ret); return ret; } k3_dma_enable_dma(d, true); ret = dma_async_device_register(&d->slave); if (ret) return ret; ret = of_dma_controller_register((&op->dev)->of_node, k3_of_dma_simple_xlate, d); if (ret) goto of_dma_register_fail; spin_lock_init(&d->lock); INIT_LIST_HEAD(&d->chan_pending); tasklet_init(&d->task, k3_dma_tasklet, (unsigned long)d); platform_set_drvdata(op, d); dev_info(&op->dev, "initialized\n"); return 0; of_dma_register_fail: dma_async_device_unregister(&d->slave); return ret; } static int k3_dma_remove(struct platform_device *op) { struct k3_dma_chan *c, *cn; struct k3_dma_dev *d = platform_get_drvdata(op); dma_async_device_unregister(&d->slave); of_dma_controller_free((&op->dev)->of_node); list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) { list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); } tasklet_kill(&d->task); clk_disable_unprepare(d->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int k3_dma_suspend_dev(struct device *dev) { struct k3_dma_dev *d = dev_get_drvdata(dev); u32 stat = 0; stat = k3_dma_get_chan_stat(d); if (stat) { dev_warn(d->slave.dev, "chan %d is running fail to suspend\n", stat); return -1; } k3_dma_enable_dma(d, false); clk_disable_unprepare(d->clk); return 0; } static int k3_dma_resume_dev(struct device *dev) { struct k3_dma_dev *d = dev_get_drvdata(dev); int ret = 0; ret = clk_prepare_enable(d->clk); if (ret < 0) { dev_err(d->slave.dev, "clk_prepare_enable failed: %d\n", ret); return ret; } k3_dma_enable_dma(d, true); return 0; } #endif static SIMPLE_DEV_PM_OPS(k3_dma_pmops, k3_dma_suspend_dev, k3_dma_resume_dev); static struct platform_driver k3_pdma_driver = { .driver = { .name = DRIVER_NAME, .pm = &k3_dma_pmops, .of_match_table = k3_pdma_dt_ids, }, .probe = k3_dma_probe, .remove = k3_dma_remove, }; module_platform_driver(k3_pdma_driver); MODULE_DESCRIPTION("Hisilicon k3 DMA Driver"); MODULE_ALIAS("platform:k3dma"); MODULE_LICENSE("GPL v2");