/* * Copyright 2008 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Jerome Glisse */ #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #define AMDGPU_CS_MAX_PRIORITY 32u #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1) /* This is based on the bucket sort with O(n) time complexity. * An item with priority "i" is added to bucket[i]. The lists are then * concatenated in descending order. */ struct amdgpu_cs_buckets { struct list_head bucket[AMDGPU_CS_NUM_BUCKETS]; }; static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b) { unsigned i; for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) INIT_LIST_HEAD(&b->bucket[i]); } static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b, struct list_head *item, unsigned priority) { /* Since buffers which appear sooner in the relocation list are * likely to be used more often than buffers which appear later * in the list, the sort mustn't change the ordering of buffers * with the same priority, i.e. it must be stable. */ list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]); } static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b, struct list_head *out_list) { unsigned i; /* Connect the sorted buckets in the output list. */ for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) { list_splice(&b->bucket[i], out_list); } } int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type, u32 ip_instance, u32 ring, struct amdgpu_ring **out_ring) { /* Right now all IPs have only one instance - multiple rings. */ if (ip_instance != 0) { DRM_ERROR("invalid ip instance: %d\n", ip_instance); return -EINVAL; } switch (ip_type) { default: DRM_ERROR("unknown ip type: %d\n", ip_type); return -EINVAL; case AMDGPU_HW_IP_GFX: if (ring < adev->gfx.num_gfx_rings) { *out_ring = &adev->gfx.gfx_ring[ring]; } else { DRM_ERROR("only %d gfx rings are supported now\n", adev->gfx.num_gfx_rings); return -EINVAL; } break; case AMDGPU_HW_IP_COMPUTE: if (ring < adev->gfx.num_compute_rings) { *out_ring = &adev->gfx.compute_ring[ring]; } else { DRM_ERROR("only %d compute rings are supported now\n", adev->gfx.num_compute_rings); return -EINVAL; } break; case AMDGPU_HW_IP_DMA: if (ring < 2) { *out_ring = &adev->sdma[ring].ring; } else { DRM_ERROR("only two SDMA rings are supported\n"); return -EINVAL; } break; case AMDGPU_HW_IP_UVD: *out_ring = &adev->uvd.ring; break; case AMDGPU_HW_IP_VCE: if (ring < 2){ *out_ring = &adev->vce.ring[ring]; } else { DRM_ERROR("only two VCE rings are supported\n"); return -EINVAL; } break; } return 0; } static void amdgpu_job_work_func(struct work_struct *work) { struct amdgpu_cs_parser *sched_job = container_of(work, struct amdgpu_cs_parser, job_work); mutex_lock(&sched_job->job_lock); if (sched_job->free_job) sched_job->free_job(sched_job); mutex_unlock(&sched_job->job_lock); /* after processing job, free memory */ kfree(sched_job); } struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev, struct drm_file *filp, struct amdgpu_ctx *ctx, struct amdgpu_ib *ibs, uint32_t num_ibs) { struct amdgpu_cs_parser *parser; int i; parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL); if (!parser) return NULL; parser->adev = adev; parser->filp = filp; parser->ctx = ctx; parser->ibs = ibs; parser->num_ibs = num_ibs; if (amdgpu_enable_scheduler) { mutex_init(&parser->job_lock); INIT_WORK(&parser->job_work, amdgpu_job_work_func); } for (i = 0; i < num_ibs; i++) ibs[i].ctx = ctx; return parser; } int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data) { union drm_amdgpu_cs *cs = data; uint64_t *chunk_array_user; uint64_t *chunk_array = NULL; struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_bo_list *bo_list = NULL; unsigned size, i; int r = 0; if (!cs->in.num_chunks) goto out; p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); if (!p->ctx) { r = -EINVAL; goto out; } bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle); if (bo_list && !bo_list->has_userptr) { p->bo_list = amdgpu_bo_list_clone(bo_list); amdgpu_bo_list_put(bo_list); if (!p->bo_list) return -ENOMEM; } else if (bo_list && bo_list->has_userptr) p->bo_list = bo_list; else p->bo_list = NULL; /* get chunks */ INIT_LIST_HEAD(&p->validated); chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); if (chunk_array == NULL) { r = -ENOMEM; goto out; } chunk_array_user = (uint64_t __user *)(cs->in.chunks); if (copy_from_user(chunk_array, chunk_array_user, sizeof(uint64_t)*cs->in.num_chunks)) { r = -EFAULT; goto out; } p->nchunks = cs->in.num_chunks; p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), GFP_KERNEL); if (p->chunks == NULL) { r = -ENOMEM; goto out; } for (i = 0; i < p->nchunks; i++) { struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; struct drm_amdgpu_cs_chunk user_chunk; uint32_t __user *cdata; chunk_ptr = (void __user *)chunk_array[i]; if (copy_from_user(&user_chunk, chunk_ptr, sizeof(struct drm_amdgpu_cs_chunk))) { r = -EFAULT; goto out; } p->chunks[i].chunk_id = user_chunk.chunk_id; p->chunks[i].length_dw = user_chunk.length_dw; size = p->chunks[i].length_dw; cdata = (void __user *)user_chunk.chunk_data; p->chunks[i].user_ptr = cdata; p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t)); if (p->chunks[i].kdata == NULL) { r = -ENOMEM; goto out; } size *= sizeof(uint32_t); if (copy_from_user(p->chunks[i].kdata, cdata, size)) { r = -EFAULT; goto out; } switch (p->chunks[i].chunk_id) { case AMDGPU_CHUNK_ID_IB: p->num_ibs++; break; case AMDGPU_CHUNK_ID_FENCE: size = sizeof(struct drm_amdgpu_cs_chunk_fence); if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) { uint32_t handle; struct drm_gem_object *gobj; struct drm_amdgpu_cs_chunk_fence *fence_data; fence_data = (void *)p->chunks[i].kdata; handle = fence_data->handle; gobj = drm_gem_object_lookup(p->adev->ddev, p->filp, handle); if (gobj == NULL) { r = -EINVAL; goto out; } p->uf.bo = gem_to_amdgpu_bo(gobj); p->uf.offset = fence_data->offset; } else { r = -EINVAL; goto out; } break; case AMDGPU_CHUNK_ID_DEPENDENCIES: break; default: r = -EINVAL; goto out; } } p->ibs = kmalloc_array(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL); if (!p->ibs) r = -ENOMEM; out: kfree(chunk_array); return r; } /* Returns how many bytes TTM can move per IB. */ static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev) { u64 real_vram_size = adev->mc.real_vram_size; u64 vram_usage = atomic64_read(&adev->vram_usage); /* This function is based on the current VRAM usage. * * - If all of VRAM is free, allow relocating the number of bytes that * is equal to 1/4 of the size of VRAM for this IB. * - If more than one half of VRAM is occupied, only allow relocating * 1 MB of data for this IB. * * - From 0 to one half of used VRAM, the threshold decreases * linearly. * __________________ * 1/4 of -|\ | * VRAM | \ | * | \ | * | \ | * | \ | * | \ | * | \ | * | \________|1 MB * |----------------| * VRAM 0 % 100 % * used used * * Note: It's a threshold, not a limit. The threshold must be crossed * for buffer relocations to stop, so any buffer of an arbitrary size * can be moved as long as the threshold isn't crossed before * the relocation takes place. We don't want to disable buffer * relocations completely. * * The idea is that buffers should be placed in VRAM at creation time * and TTM should only do a minimum number of relocations during * command submission. In practice, you need to submit at least * a dozen IBs to move all buffers to VRAM if they are in GTT. * * Also, things can get pretty crazy under memory pressure and actual * VRAM usage can change a lot, so playing safe even at 50% does * consistently increase performance. */ u64 half_vram = real_vram_size >> 1; u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage; u64 bytes_moved_threshold = half_free_vram >> 1; return max(bytes_moved_threshold, 1024*1024ull); } int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_device *adev = p->adev; struct amdgpu_bo_list_entry *lobj; struct list_head duplicates; struct amdgpu_bo *bo; u64 bytes_moved = 0, initial_bytes_moved; u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev); int r; INIT_LIST_HEAD(&duplicates); r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates); if (unlikely(r != 0)) { return r; } list_for_each_entry(lobj, &p->validated, tv.head) { bo = lobj->robj; if (!bo->pin_count) { u32 domain = lobj->prefered_domains; u32 current_domain = amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type); /* Check if this buffer will be moved and don't move it * if we have moved too many buffers for this IB already. * * Note that this allows moving at least one buffer of * any size, because it doesn't take the current "bo" * into account. We don't want to disallow buffer moves * completely. */ if (current_domain != AMDGPU_GEM_DOMAIN_CPU && (domain & current_domain) == 0 && /* will be moved */ bytes_moved > bytes_moved_threshold) { /* don't move it */ domain = current_domain; } retry: amdgpu_ttm_placement_from_domain(bo, domain); initial_bytes_moved = atomic64_read(&adev->num_bytes_moved); r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); bytes_moved += atomic64_read(&adev->num_bytes_moved) - initial_bytes_moved; if (unlikely(r)) { if (r != -ERESTARTSYS && domain != lobj->allowed_domains) { domain = lobj->allowed_domains; goto retry; } ttm_eu_backoff_reservation(&p->ticket, &p->validated); return r; } } lobj->bo_va = amdgpu_vm_bo_find(vm, bo); } return 0; } static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_cs_buckets buckets; bool need_mmap_lock = false; int i, r; if (p->bo_list) { need_mmap_lock = p->bo_list->has_userptr; amdgpu_cs_buckets_init(&buckets); for (i = 0; i < p->bo_list->num_entries; i++) amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head, p->bo_list->array[i].priority); amdgpu_cs_buckets_get_list(&buckets, &p->validated); } p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm, &p->validated); if (need_mmap_lock) down_read(¤t->mm->mmap_sem); r = amdgpu_cs_list_validate(p); if (need_mmap_lock) up_read(¤t->mm->mmap_sem); return r; } static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) { struct amdgpu_bo_list_entry *e; int r; list_for_each_entry(e, &p->validated, tv.head) { struct reservation_object *resv = e->robj->tbo.resv; r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp); if (r) return r; } return 0; } static int cmp_size_smaller_first(void *priv, struct list_head *a, struct list_head *b) { struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head); struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head); /* Sort A before B if A is smaller. */ return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages; } static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff) { if (!error) { /* Sort the buffer list from the smallest to largest buffer, * which affects the order of buffers in the LRU list. * This assures that the smallest buffers are added first * to the LRU list, so they are likely to be later evicted * first, instead of large buffers whose eviction is more * expensive. * * This slightly lowers the number of bytes moved by TTM * per frame under memory pressure. */ list_sort(NULL, &parser->validated, cmp_size_smaller_first); ttm_eu_fence_buffer_objects(&parser->ticket, &parser->validated, &parser->ibs[parser->num_ibs-1].fence->base); } else if (backoff) { ttm_eu_backoff_reservation(&parser->ticket, &parser->validated); } } static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser) { unsigned i; if (parser->ctx) amdgpu_ctx_put(parser->ctx); if (parser->bo_list) { if (!parser->bo_list->has_userptr) amdgpu_bo_list_free(parser->bo_list); else amdgpu_bo_list_put(parser->bo_list); } drm_free_large(parser->vm_bos); for (i = 0; i < parser->nchunks; i++) drm_free_large(parser->chunks[i].kdata); kfree(parser->chunks); if (parser->ibs) for (i = 0; i < parser->num_ibs; i++) amdgpu_ib_free(parser->adev, &parser->ibs[i]); kfree(parser->ibs); if (parser->uf.bo) drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base); if (!amdgpu_enable_scheduler) kfree(parser); } /** * cs_parser_fini() - clean parser states * @parser: parser structure holding parsing context. * @error: error number * * If error is set than unvalidate buffer, otherwise just free memory * used by parsing context. **/ static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff) { amdgpu_cs_parser_fini_early(parser, error, backoff); amdgpu_cs_parser_fini_late(parser); } static int amdgpu_cs_parser_run_job(struct amdgpu_cs_parser *sched_job) { amdgpu_cs_parser_fini_early(sched_job, 0, true); return 0; } static int amdgpu_cs_parser_free_job(struct amdgpu_cs_parser *sched_job) { amdgpu_cs_parser_fini_late(sched_job); return 0; } static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p, struct amdgpu_vm *vm) { struct amdgpu_device *adev = p->adev; struct amdgpu_bo_va *bo_va; struct amdgpu_bo *bo; int i, r; r = amdgpu_vm_update_page_directory(adev, vm); if (r) return r; r = amdgpu_vm_clear_freed(adev, vm); if (r) return r; if (p->bo_list) { for (i = 0; i < p->bo_list->num_entries; i++) { struct fence *f; /* ignore duplicates */ bo = p->bo_list->array[i].robj; if (!bo) continue; bo_va = p->bo_list->array[i].bo_va; if (bo_va == NULL) continue; r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem); if (r) return r; f = bo_va->last_pt_update; r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f); if (r) return r; } } return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync); } static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev, struct amdgpu_cs_parser *parser) { struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; struct amdgpu_ring *ring; int i, r; if (parser->num_ibs == 0) return 0; /* Only for UVD/VCE VM emulation */ for (i = 0; i < parser->num_ibs; i++) { ring = parser->ibs[i].ring; if (ring->funcs->parse_cs) { r = amdgpu_ring_parse_cs(ring, parser, i); if (r) return r; } } mutex_lock(&vm->mutex); r = amdgpu_bo_vm_update_pte(parser, vm); if (r) { goto out; } amdgpu_cs_sync_rings(parser); if (!amdgpu_enable_scheduler) r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs, parser->filp); out: mutex_unlock(&vm->mutex); return r; } static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r) { if (r == -EDEADLK) { r = amdgpu_gpu_reset(adev); if (!r) r = -EAGAIN; } return r; } static int amdgpu_cs_ib_fill(struct amdgpu_device *adev, struct amdgpu_cs_parser *parser) { struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; int i, j; int r; for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) { struct amdgpu_cs_chunk *chunk; struct amdgpu_ib *ib; struct drm_amdgpu_cs_chunk_ib *chunk_ib; struct amdgpu_ring *ring; chunk = &parser->chunks[i]; ib = &parser->ibs[j]; chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) continue; r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type, chunk_ib->ip_instance, chunk_ib->ring, &ring); if (r) return r; if (ring->funcs->parse_cs) { struct amdgpu_bo_va_mapping *m; struct amdgpu_bo *aobj = NULL; uint64_t offset; uint8_t *kptr; m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start, &aobj); if (!aobj) { DRM_ERROR("IB va_start is invalid\n"); return -EINVAL; } if ((chunk_ib->va_start + chunk_ib->ib_bytes) > (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) { DRM_ERROR("IB va_start+ib_bytes is invalid\n"); return -EINVAL; } /* the IB should be reserved at this point */ r = amdgpu_bo_kmap(aobj, (void **)&kptr); if (r) { return r; } offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE; kptr += chunk_ib->va_start - offset; r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib); if (r) { DRM_ERROR("Failed to get ib !\n"); return r; } memcpy(ib->ptr, kptr, chunk_ib->ib_bytes); amdgpu_bo_kunmap(aobj); } else { r = amdgpu_ib_get(ring, vm, 0, ib); if (r) { DRM_ERROR("Failed to get ib !\n"); return r; } ib->gpu_addr = chunk_ib->va_start; } ib->length_dw = chunk_ib->ib_bytes / 4; ib->flags = chunk_ib->flags; ib->ctx = parser->ctx; j++; } if (!parser->num_ibs) return 0; /* add GDS resources to first IB */ if (parser->bo_list) { struct amdgpu_bo *gds = parser->bo_list->gds_obj; struct amdgpu_bo *gws = parser->bo_list->gws_obj; struct amdgpu_bo *oa = parser->bo_list->oa_obj; struct amdgpu_ib *ib = &parser->ibs[0]; if (gds) { ib->gds_base = amdgpu_bo_gpu_offset(gds); ib->gds_size = amdgpu_bo_size(gds); } if (gws) { ib->gws_base = amdgpu_bo_gpu_offset(gws); ib->gws_size = amdgpu_bo_size(gws); } if (oa) { ib->oa_base = amdgpu_bo_gpu_offset(oa); ib->oa_size = amdgpu_bo_size(oa); } } /* wrap the last IB with user fence */ if (parser->uf.bo) { struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1]; /* UVD & VCE fw doesn't support user fences */ if (ib->ring->type == AMDGPU_RING_TYPE_UVD || ib->ring->type == AMDGPU_RING_TYPE_VCE) return -EINVAL; ib->user = &parser->uf; } return 0; } static int amdgpu_cs_dependencies(struct amdgpu_device *adev, struct amdgpu_cs_parser *p) { struct amdgpu_fpriv *fpriv = p->filp->driver_priv; struct amdgpu_ib *ib; int i, j, r; if (!p->num_ibs) return 0; /* Add dependencies to first IB */ ib = &p->ibs[0]; for (i = 0; i < p->nchunks; ++i) { struct drm_amdgpu_cs_chunk_dep *deps; struct amdgpu_cs_chunk *chunk; unsigned num_deps; chunk = &p->chunks[i]; if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES) continue; deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata; num_deps = chunk->length_dw * 4 / sizeof(struct drm_amdgpu_cs_chunk_dep); for (j = 0; j < num_deps; ++j) { struct amdgpu_ring *ring; struct amdgpu_ctx *ctx; struct fence *fence; r = amdgpu_cs_get_ring(adev, deps[j].ip_type, deps[j].ip_instance, deps[j].ring, &ring); if (r) return r; ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id); if (ctx == NULL) return -EINVAL; fence = amdgpu_ctx_get_fence(ctx, ring, deps[j].handle); if (IS_ERR(fence)) { r = PTR_ERR(fence); amdgpu_ctx_put(ctx); return r; } else if (fence) { r = amdgpu_sync_fence(adev, &ib->sync, fence); fence_put(fence); amdgpu_ctx_put(ctx); if (r) return r; } } } return 0; } static int amdgpu_cs_parser_prepare_job(struct amdgpu_cs_parser *sched_job) { int r, i; struct amdgpu_cs_parser *parser = sched_job; struct amdgpu_device *adev = sched_job->adev; bool reserved_buffers = false; r = amdgpu_cs_parser_relocs(parser); if (r) { if (r != -ERESTARTSYS) { if (r == -ENOMEM) DRM_ERROR("Not enough memory for command submission!\n"); else DRM_ERROR("Failed to process the buffer list %d!\n", r); } } if (!r) { reserved_buffers = true; r = amdgpu_cs_ib_fill(adev, parser); } if (!r) { r = amdgpu_cs_dependencies(adev, parser); if (r) DRM_ERROR("Failed in the dependencies handling %d!\n", r); } if (r) { amdgpu_cs_parser_fini(parser, r, reserved_buffers); return r; } for (i = 0; i < parser->num_ibs; i++) trace_amdgpu_cs(parser, i); r = amdgpu_cs_ib_vm_chunk(adev, parser); return r; } static struct amdgpu_ring *amdgpu_cs_parser_get_ring( struct amdgpu_device *adev, struct amdgpu_cs_parser *parser) { int i, r; struct amdgpu_cs_chunk *chunk; struct drm_amdgpu_cs_chunk_ib *chunk_ib; struct amdgpu_ring *ring; for (i = 0; i < parser->nchunks; i++) { chunk = &parser->chunks[i]; chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) continue; r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type, chunk_ib->ip_instance, chunk_ib->ring, &ring); if (r) return NULL; break; } return ring; } int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { struct amdgpu_device *adev = dev->dev_private; union drm_amdgpu_cs *cs = data; struct amdgpu_cs_parser *parser; int r; down_read(&adev->exclusive_lock); if (!adev->accel_working) { up_read(&adev->exclusive_lock); return -EBUSY; } parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0); if (!parser) return -ENOMEM; r = amdgpu_cs_parser_init(parser, data); if (r) { DRM_ERROR("Failed to initialize parser !\n"); amdgpu_cs_parser_fini(parser, r, false); up_read(&adev->exclusive_lock); r = amdgpu_cs_handle_lockup(adev, r); return r; } if (amdgpu_enable_scheduler && parser->num_ibs) { struct amdgpu_ring * ring = amdgpu_cs_parser_get_ring(adev, parser); parser->ibs[parser->num_ibs - 1].sequence = atomic64_inc_return( &parser->ctx->rings[ring->idx].entity.last_queued_v_seq); if (ring->is_pte_ring || (parser->bo_list && parser->bo_list->has_userptr)) { r = amdgpu_cs_parser_prepare_job(parser); if (r) goto out; } else parser->prepare_job = amdgpu_cs_parser_prepare_job; parser->ring = ring; parser->run_job = amdgpu_cs_parser_run_job; parser->free_job = amdgpu_cs_parser_free_job; amd_sched_push_job(ring->scheduler, &parser->ctx->rings[ring->idx].entity, parser); cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence; up_read(&adev->exclusive_lock); return 0; } r = amdgpu_cs_parser_prepare_job(parser); if (r) goto out; cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence; out: amdgpu_cs_parser_fini(parser, r, true); up_read(&adev->exclusive_lock); r = amdgpu_cs_handle_lockup(adev, r); return r; } /** * amdgpu_cs_wait_ioctl - wait for a command submission to finish * * @dev: drm device * @data: data from userspace * @filp: file private * * Wait for the command submission identified by handle to finish. */ int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_wait_cs *wait = data; struct amdgpu_device *adev = dev->dev_private; unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); struct amdgpu_ring *ring = NULL; struct amdgpu_ctx *ctx; struct fence *fence; long r; r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance, wait->in.ring, &ring); if (r) return r; ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); if (ctx == NULL) return -EINVAL; fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle); if (IS_ERR(fence)) r = PTR_ERR(fence); else if (fence) { r = fence_wait_timeout(fence, true, timeout); fence_put(fence); } else r = 1; amdgpu_ctx_put(ctx); if (r < 0) return r; memset(wait, 0, sizeof(*wait)); wait->out.status = (r == 0); return 0; } /** * amdgpu_cs_find_bo_va - find bo_va for VM address * * @parser: command submission parser context * @addr: VM address * @bo: resulting BO of the mapping found * * Search the buffer objects in the command submission context for a certain * virtual memory address. Returns allocation structure when found, NULL * otherwise. */ struct amdgpu_bo_va_mapping * amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, uint64_t addr, struct amdgpu_bo **bo) { struct amdgpu_bo_list_entry *reloc; struct amdgpu_bo_va_mapping *mapping; addr /= AMDGPU_GPU_PAGE_SIZE; list_for_each_entry(reloc, &parser->validated, tv.head) { if (!reloc->bo_va) continue; list_for_each_entry(mapping, &reloc->bo_va->valids, list) { if (mapping->it.start > addr || addr > mapping->it.last) continue; *bo = reloc->bo_va->bo; return mapping; } list_for_each_entry(mapping, &reloc->bo_va->invalids, list) { if (mapping->it.start > addr || addr > mapping->it.last) continue; *bo = reloc->bo_va->bo; return mapping; } } return NULL; }