// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2010 Matt Turner. * Copyright 2012 Red Hat * * Authors: Matthew Garrett * Matt Turner * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mgag200_drv.h" #define MGAG200_LUT_SIZE 256 /* * This file contains setup code for the CRTC. */ static void mga_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); struct drm_framebuffer *fb; u16 *r_ptr, *g_ptr, *b_ptr; int i; if (!crtc->enabled) return; if (!mdev->display_pipe.plane.state) return; fb = mdev->display_pipe.plane.state->fb; r_ptr = crtc->gamma_store; g_ptr = r_ptr + crtc->gamma_size; b_ptr = g_ptr + crtc->gamma_size; WREG8(DAC_INDEX + MGA1064_INDEX, 0); if (fb && fb->format->cpp[0] * 8 == 16) { int inc = (fb->format->depth == 15) ? 8 : 4; u8 r, b; for (i = 0; i < MGAG200_LUT_SIZE; i += inc) { if (fb->format->depth == 16) { if (i > (MGAG200_LUT_SIZE >> 1)) { r = b = 0; } else { r = *r_ptr++ >> 8; b = *b_ptr++ >> 8; r_ptr++; b_ptr++; } } else { r = *r_ptr++ >> 8; b = *b_ptr++ >> 8; } /* VGA registers */ WREG8(DAC_INDEX + MGA1064_COL_PAL, r); WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, b); } return; } for (i = 0; i < MGAG200_LUT_SIZE; i++) { /* VGA registers */ WREG8(DAC_INDEX + MGA1064_COL_PAL, *r_ptr++ >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, *b_ptr++ >> 8); } } static inline void mga_wait_vsync(struct mga_device *mdev) { unsigned long timeout = jiffies + HZ/10; unsigned int status = 0; do { status = RREG32(MGAREG_Status); } while ((status & 0x08) && time_before(jiffies, timeout)); timeout = jiffies + HZ/10; status = 0; do { status = RREG32(MGAREG_Status); } while (!(status & 0x08) && time_before(jiffies, timeout)); } static inline void mga_wait_busy(struct mga_device *mdev) { unsigned long timeout = jiffies + HZ; unsigned int status = 0; do { status = RREG8(MGAREG_Status + 2); } while ((status & 0x01) && time_before(jiffies, timeout)); } #define P_ARRAY_SIZE 9 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta, permitteddelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1}; unsigned int fvv; unsigned int i; if (mdev->unique_rev_id <= 0x03) { m = n = p = 0; vcomax = 320000; vcomin = 160000; pllreffreq = 25000; delta = 0xffffffff; permitteddelta = clock * 5 / 1000; for (testp = 8; testp > 0; testp /= 2) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testn = 17; testn < 256; testn++) { for (testm = 1; testm < 32; testm++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = testm - 1; n = testn - 1; p = testp - 1; } } } } } else { m = n = p = 0; vcomax = 1600000; vcomin = 800000; pllreffreq = 25000; if (clock < 25000) clock = 25000; clock = clock * 2; delta = 0xFFFFFFFF; /* Permited delta is 0.5% as VESA Specification */ permitteddelta = clock * 5 / 1000; for (i = 0 ; i < P_ARRAY_SIZE ; i++) { testp = pvalues_e4[i]; if ((clock * testp) > vcomax) continue; if ((clock * testp) < vcomin) continue; for (testn = 50; testn <= 256; testn++) { for (testm = 1; testm <= 32; testm++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = testm - 1; n = testn - 1; p = testp - 1; } } } } fvv = pllreffreq * (n + 1) / (m + 1); fvv = (fvv - 800000) / 50000; if (fvv > 15) fvv = 15; p |= (fvv << 4); m |= 0x80; clock = clock / 2; } if (delta > permitteddelta) { pr_warn("PLL delta too large\n"); return 1; } WREG_DAC(MGA1064_PIX_PLLC_M, m); WREG_DAC(MGA1064_PIX_PLLC_N, n); WREG_DAC(MGA1064_PIX_PLLC_P, p); if (mdev->unique_rev_id >= 0x04) { WREG_DAC(0x1a, 0x09); msleep(20); WREG_DAC(0x1a, 0x01); } return 0; } static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta; unsigned int testp, testm, testn, testp2; unsigned int p, m, n; unsigned int computed; int i, j, tmpcount, vcount; bool pll_locked = false; u8 tmp; m = n = p = 0; delta = 0xffffffff; if (mdev->type == G200_EW3) { vcomax = 800000; vcomin = 400000; pllreffreq = 25000; for (testp = 1; testp < 8; testp++) { for (testp2 = 1; testp2 < 8; testp2++) { if (testp < testp2) continue; if ((clock * testp * testp2) > vcomax) continue; if ((clock * testp * testp2) < vcomin) continue; for (testm = 1; testm < 26; testm++) { for (testn = 32; testn < 2048 ; testn++) { computed = (pllreffreq * testn) / (testm * testp * testp2); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = ((testn & 0x100) >> 1) | (testm); n = (testn & 0xFF); p = ((testn & 0x600) >> 3) | (testp2 << 3) | (testp); } } } } } } else { vcomax = 550000; vcomin = 150000; pllreffreq = 48000; for (testp = 1; testp < 9; testp++) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testm = 1; testm < 17; testm++) { for (testn = 1; testn < 151; testn++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = (testm - 1) | ((n >> 1) & 0x80); p = testp - 1; } } } } } for (i = 0; i <= 32 && pll_locked == false; i++) { if (i > 0) { WREG8(MGAREG_CRTC_INDEX, 0x1e); tmp = RREG8(MGAREG_CRTC_DATA); if (tmp < 0xff) WREG8(MGAREG_CRTC_DATA, tmp+1); } /* set pixclkdis to 1 */ WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_REMHEADCTL_CLKDIS; WREG8(DAC_DATA, tmp); /* select PLL Set C */ tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; WREG8(DAC_DATA, tmp); udelay(500); /* reset the PLL */ WREG8(DAC_INDEX, MGA1064_VREF_CTL); tmp = RREG8(DAC_DATA); tmp &= ~0x04; WREG8(DAC_DATA, tmp); udelay(50); /* program pixel pll register */ WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); udelay(50); /* turn pll on */ WREG8(DAC_INDEX, MGA1064_VREF_CTL); tmp = RREG8(DAC_DATA); tmp |= 0x04; WREG_DAC(MGA1064_VREF_CTL, tmp); udelay(500); /* select the pixel pll */ WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG8(DAC_DATA, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; WREG8(DAC_DATA, tmp); /* reset dotclock rate bit */ WREG8(MGAREG_SEQ_INDEX, 1); tmp = RREG8(MGAREG_SEQ_DATA); tmp &= ~0x8; WREG8(MGAREG_SEQ_DATA, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); vcount = RREG8(MGAREG_VCOUNT); for (j = 0; j < 30 && pll_locked == false; j++) { tmpcount = RREG8(MGAREG_VCOUNT); if (tmpcount < vcount) vcount = 0; if ((tmpcount - vcount) > 2) pll_locked = true; else udelay(5); } } WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_REMHEADCTL_CLKDIS; WREG_DAC(MGA1064_REMHEADCTL, tmp); return 0; } static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; u8 tmp; m = n = p = 0; vcomax = 550000; vcomin = 150000; pllreffreq = 50000; delta = 0xffffffff; for (testp = 16; testp > 0; testp--) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testn = 1; testn < 257; testn++) { for (testm = 1; testm < 17; testm++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = testm - 1; p = testp - 1; } } } } WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); tmp = RREG8(DAC_DATA); WREG8(DAC_DATA, tmp & ~0x40); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG8(DAC_DATA, tmp); WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); udelay(50); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG8(DAC_DATA, tmp); udelay(500); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG8(DAC_DATA, tmp); WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); tmp = RREG8(DAC_DATA); WREG8(DAC_DATA, tmp | 0x40); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= (0x3 << 2); WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); return 0; } static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; int i, j, tmpcount, vcount; u8 tmp; bool pll_locked = false; m = n = p = 0; if (mdev->type == G200_EH3) { vcomax = 3000000; vcomin = 1500000; pllreffreq = 25000; delta = 0xffffffff; testp = 0; for (testm = 150; testm >= 6; testm--) { if (clock * testm > vcomax) continue; if (clock * testm < vcomin) continue; for (testn = 120; testn >= 60; testn--) { computed = (pllreffreq * testn) / testm; if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn; m = testm; p = testp; } if (delta == 0) break; } if (delta == 0) break; } } else { vcomax = 800000; vcomin = 400000; pllreffreq = 33333; delta = 0xffffffff; for (testp = 16; testp > 0; testp >>= 1) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testm = 1; testm < 33; testm++) { for (testn = 17; testn < 257; testn++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = (testm - 1); p = testp - 1; } if ((clock * testp) >= 600000) p |= 0x80; } } } } for (i = 0; i <= 32 && pll_locked == false; i++) { WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG8(DAC_DATA, tmp); udelay(500); WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); udelay(500); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG8(DAC_DATA, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG8(DAC_DATA, tmp); vcount = RREG8(MGAREG_VCOUNT); for (j = 0; j < 30 && pll_locked == false; j++) { tmpcount = RREG8(MGAREG_VCOUNT); if (tmpcount < vcount) vcount = 0; if ((tmpcount - vcount) > 2) pll_locked = true; else udelay(5); } } return 0; } static int mga_g200er_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta; int testr, testn, testm, testo; unsigned int p, m, n; unsigned int computed, vco; int tmp; const unsigned int m_div_val[] = { 1, 2, 4, 8 }; m = n = p = 0; vcomax = 1488000; vcomin = 1056000; pllreffreq = 48000; delta = 0xffffffff; for (testr = 0; testr < 4; testr++) { if (delta == 0) break; for (testn = 5; testn < 129; testn++) { if (delta == 0) break; for (testm = 3; testm >= 0; testm--) { if (delta == 0) break; for (testo = 5; testo < 33; testo++) { vco = pllreffreq * (testn + 1) / (testr + 1); if (vco < vcomin) continue; if (vco > vcomax) continue; computed = vco / (m_div_val[testm] * (testo + 1)); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = testm | (testo << 3); n = testn; p = testr | (testr << 3); } } } } } WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG8(DAC_DATA, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_REMHEADCTL_CLKDIS; WREG8(DAC_DATA, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= (0x3<<2) | 0xc0; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG8(DAC_DATA, tmp); udelay(500); WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); udelay(50); return 0; } static int mga_crtc_set_plls(struct mga_device *mdev, long clock) { u8 misc; switch(mdev->type) { case G200_SE_A: case G200_SE_B: return mga_g200se_set_plls(mdev, clock); break; case G200_WB: case G200_EW3: return mga_g200wb_set_plls(mdev, clock); break; case G200_EV: return mga_g200ev_set_plls(mdev, clock); break; case G200_EH: case G200_EH3: return mga_g200eh_set_plls(mdev, clock); break; case G200_ER: return mga_g200er_set_plls(mdev, clock); break; } misc = RREG8(MGA_MISC_IN); misc &= ~MGAREG_MISC_CLK_SEL_MASK; misc |= MGAREG_MISC_CLK_SEL_MGA_MSK; WREG8(MGA_MISC_OUT, misc); return 0; } static void mga_g200wb_prepare(struct drm_crtc *crtc) { struct mga_device *mdev = to_mga_device(crtc->dev); u8 tmp; int iter_max; /* 1- The first step is to warn the BMC of an upcoming mode change. * We are putting the misc<0> to output.*/ WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); tmp = RREG8(DAC_DATA); tmp |= 0x10; WREG_DAC(MGA1064_GEN_IO_CTL, tmp); /* we are putting a 1 on the misc<0> line */ WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); tmp = RREG8(DAC_DATA); tmp |= 0x10; WREG_DAC(MGA1064_GEN_IO_DATA, tmp); /* 2- Second step to mask and further scan request * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) */ WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); tmp |= 0x80; WREG_DAC(MGA1064_SPAREREG, tmp); /* 3a- the third step is to verifu if there is an active scan * We are searching for a 0 on remhsyncsts ) */ iter_max = 300; while (!(tmp & 0x1) && iter_max) { WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); udelay(1000); iter_max--; } /* 3b- this step occurs only if the remove is actually scanning * we are waiting for the end of the frame which is a 1 on * remvsyncsts (XSPAREREG<1>) */ if (iter_max) { iter_max = 300; while ((tmp & 0x2) && iter_max) { WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); udelay(1000); iter_max--; } } } static void mga_g200wb_commit(struct drm_crtc *crtc) { u8 tmp; struct mga_device *mdev = to_mga_device(crtc->dev); /* 1- The first step is to ensure that the vrsten and hrsten are set */ WREG8(MGAREG_CRTCEXT_INDEX, 1); tmp = RREG8(MGAREG_CRTCEXT_DATA); WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); /* 2- second step is to assert the rstlvl2 */ WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); tmp = RREG8(DAC_DATA); tmp |= 0x8; WREG8(DAC_DATA, tmp); /* wait 10 us */ udelay(10); /* 3- deassert rstlvl2 */ tmp &= ~0x08; WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); WREG8(DAC_DATA, tmp); /* 4- remove mask of scan request */ WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); tmp &= ~0x80; WREG8(DAC_DATA, tmp); /* 5- put back a 0 on the misc<0> line */ WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); tmp = RREG8(DAC_DATA); tmp &= ~0x10; WREG_DAC(MGA1064_GEN_IO_DATA, tmp); } /* * This is how the framebuffer base address is stored in g200 cards: * * Assume @offset is the gpu_addr variable of the framebuffer object * * Then addr is the number of _pixels_ (not bytes) from the start of * VRAM to the first pixel we want to display. (divided by 2 for 32bit * framebuffers) * * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers * addr<20> -> CRTCEXT0<6> * addr<19-16> -> CRTCEXT0<3-0> * addr<15-8> -> CRTCC<7-0> * addr<7-0> -> CRTCD<7-0> * * CRTCEXT0 has to be programmed last to trigger an update and make the * new addr variable take effect. */ static void mgag200_set_startadd(struct mga_device *mdev, unsigned long offset) { struct drm_device *dev = mdev->dev; u32 startadd; u8 crtcc, crtcd, crtcext0; startadd = offset / 8; /* * Can't store addresses any higher than that, but we also * don't have more than 16 MiB of memory, so it should be fine. */ drm_WARN_ON(dev, startadd > 0x1fffff); RREG_ECRT(0x00, crtcext0); crtcc = (startadd >> 8) & 0xff; crtcd = startadd & 0xff; crtcext0 &= 0xb0; crtcext0 |= ((startadd >> 14) & BIT(6)) | ((startadd >> 16) & 0x0f); WREG_CRT(0x0c, crtcc); WREG_CRT(0x0d, crtcd); WREG_ECRT(0x00, crtcext0); } static void mgag200_set_pci_regs(struct mga_device *mdev) { uint32_t option = 0, option2 = 0; struct drm_device *dev = mdev->dev; switch (mdev->type) { case G200_SE_A: case G200_SE_B: if (mdev->has_sdram) option = 0x40049120; else option = 0x4004d120; option2 = 0x00008000; break; case G200_WB: case G200_EW3: option = 0x41049120; option2 = 0x0000b000; break; case G200_EV: option = 0x00000120; option2 = 0x0000b000; break; case G200_EH: case G200_EH3: option = 0x00000120; option2 = 0x0000b000; break; case G200_ER: break; } if (option) pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); if (option2) pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); } static void mgag200_set_dac_regs(struct mga_device *mdev) { size_t i; u8 dacvalue[] = { /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 }; switch (mdev->type) { case G200_SE_A: case G200_SE_B: dacvalue[MGA1064_VREF_CTL] = 0x03; dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; break; case G200_WB: case G200_EW3: dacvalue[MGA1064_VREF_CTL] = 0x07; break; case G200_EV: dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; break; case G200_EH: case G200_EH3: dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; break; case G200_ER: break; } for (i = 0; i < ARRAY_SIZE(dacvalue); i++) { if ((i <= 0x17) || (i == 0x1b) || (i == 0x1c) || ((i >= 0x1f) && (i <= 0x29)) || ((i >= 0x30) && (i <= 0x37))) continue; if (IS_G200_SE(mdev) && ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) continue; if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH || mdev->type == G200_EW3 || mdev->type == G200_EH3) && (i >= 0x44) && (i <= 0x4e)) continue; WREG_DAC(i, dacvalue[i]); } if (mdev->type == G200_ER) WREG_DAC(0x90, 0); } static void mgag200_init_regs(struct mga_device *mdev) { u8 crtcext3, crtcext4, misc; mgag200_set_pci_regs(mdev); mgag200_set_dac_regs(mdev); WREG_SEQ(2, 0x0f); WREG_SEQ(3, 0x00); WREG_SEQ(4, 0x0e); WREG_CRT(10, 0); WREG_CRT(11, 0); WREG_CRT(12, 0); WREG_CRT(13, 0); WREG_CRT(14, 0); WREG_CRT(15, 0); RREG_ECRT(0x03, crtcext3); crtcext3 |= BIT(7); /* enable MGA mode */ crtcext4 = 0x00; WREG_ECRT(0x03, crtcext3); WREG_ECRT(0x04, crtcext4); if (mdev->type == G200_ER) WREG_ECRT(0x24, 0x5); if (mdev->type == G200_EW3) WREG_ECRT(0x34, 0x5); misc = RREG8(MGA_MISC_IN); misc |= MGAREG_MISC_IOADSEL | MGAREG_MISC_RAMMAPEN | MGAREG_MISC_HIGH_PG_SEL; WREG8(MGA_MISC_OUT, misc); } static void mgag200_set_mode_regs(struct mga_device *mdev, const struct drm_display_mode *mode) { unsigned int hdisplay, hsyncstart, hsyncend, htotal; unsigned int vdisplay, vsyncstart, vsyncend, vtotal; u8 misc, crtcext1, crtcext2, crtcext5; hdisplay = mode->hdisplay / 8 - 1; hsyncstart = mode->hsync_start / 8 - 1; hsyncend = mode->hsync_end / 8 - 1; htotal = mode->htotal / 8 - 1; /* Work around hardware quirk */ if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) htotal++; vdisplay = mode->vdisplay - 1; vsyncstart = mode->vsync_start - 1; vsyncend = mode->vsync_end - 1; vtotal = mode->vtotal - 2; misc = RREG8(MGA_MISC_IN); if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= MGAREG_MISC_HSYNCPOL; else misc &= ~MGAREG_MISC_HSYNCPOL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= MGAREG_MISC_VSYNCPOL; else misc &= ~MGAREG_MISC_VSYNCPOL; crtcext1 = (((htotal - 4) & 0x100) >> 8) | ((hdisplay & 0x100) >> 7) | ((hsyncstart & 0x100) >> 6) | (htotal & 0x40); if (mdev->type == G200_WB || mdev->type == G200_EW3) crtcext1 |= BIT(7) | /* vrsten */ BIT(3); /* hrsten */ crtcext2 = ((vtotal & 0xc00) >> 10) | ((vdisplay & 0x400) >> 8) | ((vdisplay & 0xc00) >> 7) | ((vsyncstart & 0xc00) >> 5) | ((vdisplay & 0x400) >> 3); crtcext5 = 0x00; WREG_CRT(0, htotal - 4); WREG_CRT(1, hdisplay); WREG_CRT(2, hdisplay); WREG_CRT(3, (htotal & 0x1F) | 0x80); WREG_CRT(4, hsyncstart); WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); WREG_CRT(6, vtotal & 0xFF); WREG_CRT(7, ((vtotal & 0x100) >> 8) | ((vdisplay & 0x100) >> 7) | ((vsyncstart & 0x100) >> 6) | ((vdisplay & 0x100) >> 5) | ((vdisplay & 0x100) >> 4) | /* linecomp */ ((vtotal & 0x200) >> 4) | ((vdisplay & 0x200) >> 3) | ((vsyncstart & 0x200) >> 2)); WREG_CRT(9, ((vdisplay & 0x200) >> 4) | ((vdisplay & 0x200) >> 3)); WREG_CRT(16, vsyncstart & 0xFF); WREG_CRT(17, (vsyncend & 0x0F) | 0x20); WREG_CRT(18, vdisplay & 0xFF); WREG_CRT(20, 0); WREG_CRT(21, vdisplay & 0xFF); WREG_CRT(22, (vtotal + 1) & 0xFF); WREG_CRT(23, 0xc3); WREG_CRT(24, vdisplay & 0xFF); WREG_ECRT(0x01, crtcext1); WREG_ECRT(0x02, crtcext2); WREG_ECRT(0x05, crtcext5); WREG8(MGA_MISC_OUT, misc); mga_crtc_set_plls(mdev, mode->clock); } static u8 mgag200_get_bpp_shift(struct mga_device *mdev, const struct drm_format_info *format) { return mdev->bpp_shifts[format->cpp[0] - 1]; } /* * Calculates the HW offset value from the framebuffer's pitch. The * offset is a multiple of the pixel size and depends on the display * format. */ static u32 mgag200_calculate_offset(struct mga_device *mdev, const struct drm_framebuffer *fb) { u32 offset = fb->pitches[0] / fb->format->cpp[0]; u8 bppshift = mgag200_get_bpp_shift(mdev, fb->format); if (fb->format->cpp[0] * 8 == 24) offset = (offset * 3) >> (4 - bppshift); else offset = offset >> (4 - bppshift); return offset; } static void mgag200_set_offset(struct mga_device *mdev, const struct drm_framebuffer *fb) { u8 crtc13, crtcext0; u32 offset = mgag200_calculate_offset(mdev, fb); RREG_ECRT(0, crtcext0); crtc13 = offset & 0xff; crtcext0 &= ~MGAREG_CRTCEXT0_OFFSET_MASK; crtcext0 |= (offset >> 4) & MGAREG_CRTCEXT0_OFFSET_MASK; WREG_CRT(0x13, crtc13); WREG_ECRT(0x00, crtcext0); } static void mgag200_set_format_regs(struct mga_device *mdev, const struct drm_framebuffer *fb) { struct drm_device *dev = mdev->dev; const struct drm_format_info *format = fb->format; unsigned int bpp, bppshift, scale; u8 crtcext3, xmulctrl; bpp = format->cpp[0] * 8; bppshift = mgag200_get_bpp_shift(mdev, format); switch (bpp) { case 24: scale = ((1 << bppshift) * 3) - 1; break; default: scale = (1 << bppshift) - 1; break; } RREG_ECRT(3, crtcext3); switch (bpp) { case 8: xmulctrl = MGA1064_MUL_CTL_8bits; break; case 16: if (format->depth == 15) xmulctrl = MGA1064_MUL_CTL_15bits; else xmulctrl = MGA1064_MUL_CTL_16bits; break; case 24: xmulctrl = MGA1064_MUL_CTL_24bits; break; case 32: xmulctrl = MGA1064_MUL_CTL_32_24bits; break; default: /* BUG: We should have caught this problem already. */ drm_WARN_ON(dev, "invalid format depth\n"); return; } crtcext3 &= ~GENMASK(2, 0); crtcext3 |= scale; WREG_DAC(MGA1064_MUL_CTL, xmulctrl); WREG_GFX(0, 0x00); WREG_GFX(1, 0x00); WREG_GFX(2, 0x00); WREG_GFX(3, 0x00); WREG_GFX(4, 0x00); WREG_GFX(5, 0x40); WREG_GFX(6, 0x05); WREG_GFX(7, 0x0f); WREG_GFX(8, 0x0f); WREG_ECRT(3, crtcext3); } static void mgag200_g200er_reset_tagfifo(struct mga_device *mdev) { static uint32_t RESET_FLAG = 0x00200000; /* undocumented magic value */ u8 seq1; u32 memctl; /* screen off */ RREG_SEQ(0x01, seq1); seq1 |= MGAREG_SEQ1_SCROFF; WREG_SEQ(0x01, seq1); memctl = RREG32(MGAREG_MEMCTL); memctl |= RESET_FLAG; WREG32(MGAREG_MEMCTL, memctl); udelay(1000); memctl &= ~RESET_FLAG; WREG32(MGAREG_MEMCTL, memctl); /* screen on */ RREG_SEQ(0x01, seq1); seq1 &= ~MGAREG_SEQ1_SCROFF; WREG_SEQ(0x01, seq1); } static void mgag200_g200se_set_hiprilvl(struct mga_device *mdev, const struct drm_display_mode *mode, const struct drm_framebuffer *fb) { unsigned int hiprilvl; u8 crtcext6; if (mdev->unique_rev_id >= 0x04) { hiprilvl = 0; } else if (mdev->unique_rev_id >= 0x02) { unsigned int bpp; unsigned long mb; if (fb->format->cpp[0] * 8 > 16) bpp = 32; else if (fb->format->cpp[0] * 8 > 8) bpp = 16; else bpp = 8; mb = (mode->clock * bpp) / 1000; if (mb > 3100) hiprilvl = 0; else if (mb > 2600) hiprilvl = 1; else if (mb > 1900) hiprilvl = 2; else if (mb > 1160) hiprilvl = 3; else if (mb > 440) hiprilvl = 4; else hiprilvl = 5; } else if (mdev->unique_rev_id >= 0x01) { hiprilvl = 3; } else { hiprilvl = 4; } crtcext6 = hiprilvl; /* implicitly sets maxhipri to 0 */ WREG_ECRT(0x06, crtcext6); } static void mgag200_g200ev_set_hiprilvl(struct mga_device *mdev) { WREG_ECRT(0x06, 0x00); } static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); u8 seq1 = 0, crtcext1 = 0; switch (mode) { case DRM_MODE_DPMS_ON: seq1 = 0; crtcext1 = 0; mga_crtc_load_lut(crtc); break; case DRM_MODE_DPMS_STANDBY: seq1 = 0x20; crtcext1 = 0x10; break; case DRM_MODE_DPMS_SUSPEND: seq1 = 0x20; crtcext1 = 0x20; break; case DRM_MODE_DPMS_OFF: seq1 = 0x20; crtcext1 = 0x30; break; } WREG8(MGAREG_SEQ_INDEX, 0x01); seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; mga_wait_vsync(mdev); mga_wait_busy(mdev); WREG8(MGAREG_SEQ_DATA, seq1); msleep(20); WREG8(MGAREG_CRTCEXT_INDEX, 0x01); crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; WREG8(MGAREG_CRTCEXT_DATA, crtcext1); } /* * This is called before a mode is programmed. A typical use might be to * enable DPMS during the programming to avoid seeing intermediate stages, * but that's not relevant to us */ static void mga_crtc_prepare(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); u8 tmp; /* mga_resume(crtc);*/ WREG8(MGAREG_CRTC_INDEX, 0x11); tmp = RREG8(MGAREG_CRTC_DATA); WREG_CRT(0x11, tmp | 0x80); if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { WREG_SEQ(0, 1); msleep(50); WREG_SEQ(1, 0x20); msleep(20); } else { WREG8(MGAREG_SEQ_INDEX, 0x1); tmp = RREG8(MGAREG_SEQ_DATA); /* start sync reset */ WREG_SEQ(0, 1); WREG_SEQ(1, tmp | 0x20); } if (mdev->type == G200_WB || mdev->type == G200_EW3) mga_g200wb_prepare(crtc); WREG_CRT(17, 0); } /* * This is called after a mode is programmed. It should reverse anything done * by the prepare function */ static void mga_crtc_commit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); u8 tmp; if (mdev->type == G200_WB || mdev->type == G200_EW3) mga_g200wb_commit(crtc); if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { msleep(50); WREG_SEQ(1, 0x0); msleep(20); WREG_SEQ(0, 0x3); } else { WREG8(MGAREG_SEQ_INDEX, 0x1); tmp = RREG8(MGAREG_SEQ_DATA); tmp &= ~0x20; WREG_SEQ(0x1, tmp); WREG_SEQ(0, 3); } mga_crtc_dpms(crtc, DRM_MODE_DPMS_ON); } /* * Connector */ static int mga_vga_get_modes(struct drm_connector *connector) { struct mga_connector *mga_connector = to_mga_connector(connector); struct edid *edid; int ret = 0; edid = drm_get_edid(connector, &mga_connector->i2c->adapter); if (edid) { drm_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); } return ret; } static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode, int bits_per_pixel) { uint32_t total_area, divisor; uint64_t active_area, pixels_per_second, bandwidth; uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8; divisor = 1024; if (!mode->htotal || !mode->vtotal || !mode->clock) return 0; active_area = mode->hdisplay * mode->vdisplay; total_area = mode->htotal * mode->vtotal; pixels_per_second = active_area * mode->clock * 1000; do_div(pixels_per_second, total_area); bandwidth = pixels_per_second * bytes_per_pixel * 100; do_div(bandwidth, divisor); return (uint32_t)(bandwidth); } #define MODE_BANDWIDTH MODE_BAD static enum drm_mode_status mga_vga_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct drm_device *dev = connector->dev; struct mga_device *mdev = to_mga_device(dev); int bpp = 32; if (IS_G200_SE(mdev)) { if (mdev->unique_rev_id == 0x01) { if (mode->hdisplay > 1600) return MODE_VIRTUAL_X; if (mode->vdisplay > 1200) return MODE_VIRTUAL_Y; if (mga_vga_calculate_mode_bandwidth(mode, bpp) > (24400 * 1024)) return MODE_BANDWIDTH; } else if (mdev->unique_rev_id == 0x02) { if (mode->hdisplay > 1920) return MODE_VIRTUAL_X; if (mode->vdisplay > 1200) return MODE_VIRTUAL_Y; if (mga_vga_calculate_mode_bandwidth(mode, bpp) > (30100 * 1024)) return MODE_BANDWIDTH; } else { if (mga_vga_calculate_mode_bandwidth(mode, bpp) > (55000 * 1024)) return MODE_BANDWIDTH; } } else if (mdev->type == G200_WB) { if (mode->hdisplay > 1280) return MODE_VIRTUAL_X; if (mode->vdisplay > 1024) return MODE_VIRTUAL_Y; if (mga_vga_calculate_mode_bandwidth(mode, bpp) > (31877 * 1024)) return MODE_BANDWIDTH; } else if (mdev->type == G200_EV && (mga_vga_calculate_mode_bandwidth(mode, bpp) > (32700 * 1024))) { return MODE_BANDWIDTH; } else if (mdev->type == G200_EH && (mga_vga_calculate_mode_bandwidth(mode, bpp) > (37500 * 1024))) { return MODE_BANDWIDTH; } else if (mdev->type == G200_ER && (mga_vga_calculate_mode_bandwidth(mode, bpp) > (55000 * 1024))) { return MODE_BANDWIDTH; } if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 || (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) { return MODE_H_ILLEGAL; } if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { return MODE_BAD; } /* Validate the mode input by the user */ if (connector->cmdline_mode.specified) { if (connector->cmdline_mode.bpp_specified) bpp = connector->cmdline_mode.bpp; } if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->vram_fb_available) { if (connector->cmdline_mode.specified) connector->cmdline_mode.specified = false; return MODE_BAD; } return MODE_OK; } static void mga_connector_destroy(struct drm_connector *connector) { struct mga_connector *mga_connector = to_mga_connector(connector); mgag200_i2c_destroy(mga_connector->i2c); drm_connector_cleanup(connector); } static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { .get_modes = mga_vga_get_modes, .mode_valid = mga_vga_mode_valid, }; static const struct drm_connector_funcs mga_vga_connector_funcs = { .reset = drm_atomic_helper_connector_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = mga_connector_destroy, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int mgag200_vga_connector_init(struct mga_device *mdev) { struct drm_device *dev = mdev->dev; struct mga_connector *mconnector = &mdev->connector; struct drm_connector *connector = &mconnector->base; struct mga_i2c_chan *i2c; int ret; i2c = mgag200_i2c_create(dev); if (!i2c) drm_warn(dev, "failed to add DDC bus\n"); ret = drm_connector_init_with_ddc(dev, connector, &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA, &i2c->adapter); if (ret) goto err_mgag200_i2c_destroy; drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); mconnector->i2c = i2c; return 0; err_mgag200_i2c_destroy: mgag200_i2c_destroy(i2c); return ret; } /* * Simple Display Pipe */ static enum drm_mode_status mgag200_simple_display_pipe_mode_valid(struct drm_simple_display_pipe *pipe, const struct drm_display_mode *mode) { return MODE_OK; } static void mgag200_handle_damage(struct mga_device *mdev, struct drm_framebuffer *fb, struct drm_rect *clip) { struct drm_device *dev = mdev->dev; void *vmap; vmap = drm_gem_shmem_vmap(fb->obj[0]); if (drm_WARN_ON(dev, !vmap)) return; /* BUG: SHMEM BO should always be vmapped */ drm_fb_memcpy_dstclip(mdev->vram, vmap, fb, clip); drm_gem_shmem_vunmap(fb->obj[0], vmap); /* Always scanout image at VRAM offset 0 */ mgag200_set_startadd(mdev, (u32)0); mgag200_set_offset(mdev, fb); } static void mgag200_simple_display_pipe_enable(struct drm_simple_display_pipe *pipe, struct drm_crtc_state *crtc_state, struct drm_plane_state *plane_state) { struct drm_crtc *crtc = &pipe->crtc; struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_framebuffer *fb = plane_state->fb; struct drm_rect fullscreen = { .x1 = 0, .x2 = fb->width, .y1 = 0, .y2 = fb->height, }; mga_crtc_prepare(crtc); mgag200_set_format_regs(mdev, fb); mgag200_set_mode_regs(mdev, adjusted_mode); if (mdev->type == G200_ER) mgag200_g200er_reset_tagfifo(mdev); if (IS_G200_SE(mdev)) mgag200_g200se_set_hiprilvl(mdev, adjusted_mode, fb); else if (mdev->type == G200_EV) mgag200_g200ev_set_hiprilvl(mdev); mga_crtc_commit(crtc); mgag200_handle_damage(mdev, fb, &fullscreen); } static void mgag200_simple_display_pipe_disable(struct drm_simple_display_pipe *pipe) { struct drm_crtc *crtc = &pipe->crtc; mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static int mgag200_simple_display_pipe_check(struct drm_simple_display_pipe *pipe, struct drm_plane_state *plane_state, struct drm_crtc_state *crtc_state) { struct drm_plane *plane = plane_state->plane; struct drm_framebuffer *new_fb = plane_state->fb; struct drm_framebuffer *fb = NULL; if (!new_fb) return 0; if (plane->state) fb = plane->state->fb; if (!fb || (fb->format != new_fb->format)) crtc_state->mode_changed = true; /* update PLL settings */ return 0; } static void mgag200_simple_display_pipe_update(struct drm_simple_display_pipe *pipe, struct drm_plane_state *old_state) { struct drm_plane *plane = &pipe->plane; struct drm_device *dev = plane->dev; struct mga_device *mdev = to_mga_device(dev); struct drm_plane_state *state = plane->state; struct drm_framebuffer *fb = state->fb; struct drm_rect damage; if (!fb) return; if (drm_atomic_helper_damage_merged(old_state, state, &damage)) mgag200_handle_damage(mdev, fb, &damage); } static const struct drm_simple_display_pipe_funcs mgag200_simple_display_pipe_funcs = { .mode_valid = mgag200_simple_display_pipe_mode_valid, .enable = mgag200_simple_display_pipe_enable, .disable = mgag200_simple_display_pipe_disable, .check = mgag200_simple_display_pipe_check, .update = mgag200_simple_display_pipe_update, .prepare_fb = drm_gem_fb_simple_display_pipe_prepare_fb, }; static const uint32_t mgag200_simple_display_pipe_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_RGB888, }; static const uint64_t mgag200_simple_display_pipe_fmtmods[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; /* * Mode config */ static const struct drm_mode_config_funcs mgag200_mode_config_funcs = { .fb_create = drm_gem_fb_create_with_dirty, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static unsigned int mgag200_preferred_depth(struct mga_device *mdev) { if (IS_G200_SE(mdev) && mdev->vram_fb_available < (2048*1024)) return 16; else return 32; } int mgag200_modeset_init(struct mga_device *mdev) { struct drm_device *dev = mdev->dev; struct drm_connector *connector = &mdev->connector.base; struct drm_simple_display_pipe *pipe = &mdev->display_pipe; size_t format_count = ARRAY_SIZE(mgag200_simple_display_pipe_formats); int ret; mdev->bpp_shifts[0] = 0; mdev->bpp_shifts[1] = 1; mdev->bpp_shifts[2] = 0; mdev->bpp_shifts[3] = 2; mgag200_init_regs(mdev); ret = drmm_mode_config_init(dev); if (ret) { drm_err(dev, "drmm_mode_config_init() failed, error %d\n", ret); return ret; } dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; dev->mode_config.preferred_depth = mgag200_preferred_depth(mdev); dev->mode_config.fb_base = mdev->mc.vram_base; dev->mode_config.funcs = &mgag200_mode_config_funcs; ret = mgag200_vga_connector_init(mdev); if (ret) { drm_err(dev, "mgag200_vga_connector_init() failed, error %d\n", ret); return ret; } ret = drm_simple_display_pipe_init(dev, pipe, &mgag200_simple_display_pipe_funcs, mgag200_simple_display_pipe_formats, format_count, mgag200_simple_display_pipe_fmtmods, connector); if (ret) { drm_err(dev, "drm_simple_display_pipe_init() failed, error %d\n", ret); return ret; } /* FIXME: legacy gamma tables; convert to CRTC state */ drm_mode_crtc_set_gamma_size(&pipe->crtc, MGAG200_LUT_SIZE); drm_mode_config_reset(dev); return 0; }