/* * Accelerated GHASH implementation with ARMv8 PMULL instructions. * * Copyright (C) 2014 - 2018 Linaro Ltd. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel "); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("ghash"); #define GHASH_BLOCK_SIZE 16 #define GHASH_DIGEST_SIZE 16 #define GCM_IV_SIZE 12 struct ghash_key { u64 a; u64 b; be128 k; }; struct ghash_desc_ctx { u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; u8 buf[GHASH_BLOCK_SIZE]; u32 count; }; struct gcm_aes_ctx { struct crypto_aes_ctx aes_key; u64 h2[2]; struct ghash_key ghash_key; }; asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, struct ghash_key const *k, const char *head); asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, struct ghash_key const *k, const char *head); static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src, struct ghash_key const *k, const char *head); asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], const u8 src[], u64 const *k, u8 ctr[], u32 const rk[], int rounds, u8 ks[]); asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[], const u8 src[], u64 const *k, u8 ctr[], u32 const rk[], int rounds); asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[], u32 const rk[], int rounds); asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds); static int ghash_init(struct shash_desc *desc) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); *ctx = (struct ghash_desc_ctx){}; return 0; } static void ghash_do_update(int blocks, u64 dg[], const char *src, struct ghash_key *key, const char *head) { if (likely(may_use_simd())) { kernel_neon_begin(); pmull_ghash_update(blocks, dg, src, key, head); kernel_neon_end(); } else { be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; do { const u8 *in = src; if (head) { in = head; blocks++; head = NULL; } else { src += GHASH_BLOCK_SIZE; } crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); gf128mul_lle(&dst, &key->k); } while (--blocks); dg[0] = be64_to_cpu(dst.b); dg[1] = be64_to_cpu(dst.a); } } /* avoid hogging the CPU for too long */ #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) static int ghash_update(struct shash_desc *desc, const u8 *src, unsigned int len) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; ctx->count += len; if ((partial + len) >= GHASH_BLOCK_SIZE) { struct ghash_key *key = crypto_shash_ctx(desc->tfm); int blocks; if (partial) { int p = GHASH_BLOCK_SIZE - partial; memcpy(ctx->buf + partial, src, p); src += p; len -= p; } blocks = len / GHASH_BLOCK_SIZE; len %= GHASH_BLOCK_SIZE; do { int chunk = min(blocks, MAX_BLOCKS); ghash_do_update(chunk, ctx->digest, src, key, partial ? ctx->buf : NULL); blocks -= chunk; src += chunk * GHASH_BLOCK_SIZE; partial = 0; } while (unlikely(blocks > 0)); } if (len) memcpy(ctx->buf + partial, src, len); return 0; } static int ghash_final(struct shash_desc *desc, u8 *dst) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; if (partial) { struct ghash_key *key = crypto_shash_ctx(desc->tfm); memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); ghash_do_update(1, ctx->digest, ctx->buf, key, NULL); } put_unaligned_be64(ctx->digest[1], dst); put_unaligned_be64(ctx->digest[0], dst + 8); *ctx = (struct ghash_desc_ctx){}; return 0; } static int __ghash_setkey(struct ghash_key *key, const u8 *inkey, unsigned int keylen) { u64 a, b; /* needed for the fallback */ memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); /* perform multiplication by 'x' in GF(2^128) */ b = get_unaligned_be64(inkey); a = get_unaligned_be64(inkey + 8); key->a = (a << 1) | (b >> 63); key->b = (b << 1) | (a >> 63); if (b >> 63) key->b ^= 0xc200000000000000UL; return 0; } static int ghash_setkey(struct crypto_shash *tfm, const u8 *inkey, unsigned int keylen) { struct ghash_key *key = crypto_shash_ctx(tfm); if (keylen != GHASH_BLOCK_SIZE) { crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } return __ghash_setkey(key, inkey, keylen); } static struct shash_alg ghash_alg = { .base.cra_name = "ghash", .base.cra_driver_name = "ghash-ce", .base.cra_priority = 200, .base.cra_blocksize = GHASH_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ghash_key), .base.cra_module = THIS_MODULE, .digestsize = GHASH_DIGEST_SIZE, .init = ghash_init, .update = ghash_update, .final = ghash_final, .setkey = ghash_setkey, .descsize = sizeof(struct ghash_desc_ctx), }; static int num_rounds(struct crypto_aes_ctx *ctx) { /* * # of rounds specified by AES: * 128 bit key 10 rounds * 192 bit key 12 rounds * 256 bit key 14 rounds * => n byte key => 6 + (n/4) rounds */ return 6 + ctx->key_length / 4; } static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, unsigned int keylen) { struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); be128 h1, h2; u8 *key = (u8 *)&h1; int ret; ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen); if (ret) { tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){}, num_rounds(&ctx->aes_key)); __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); /* calculate H^2 (used for 2-way aggregation) */ h2 = h1; gf128mul_lle(&h2, &h1); ctx->h2[0] = (be64_to_cpu(h2.b) << 1) | (be64_to_cpu(h2.a) >> 63); ctx->h2[1] = (be64_to_cpu(h2.a) << 1) | (be64_to_cpu(h2.b) >> 63); if (be64_to_cpu(h2.a) >> 63) ctx->h2[1] ^= 0xc200000000000000UL; return 0; } static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 8: case 12 ... 16: break; default: return -EINVAL; } return 0; } static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], int *buf_count, struct gcm_aes_ctx *ctx) { if (*buf_count > 0) { int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); memcpy(&buf[*buf_count], src, buf_added); *buf_count += buf_added; src += buf_added; count -= buf_added; } if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { int blocks = count / GHASH_BLOCK_SIZE; ghash_do_update(blocks, dg, src, &ctx->ghash_key, *buf_count ? buf : NULL); src += blocks * GHASH_BLOCK_SIZE; count %= GHASH_BLOCK_SIZE; *buf_count = 0; } if (count > 0) { memcpy(buf, src, count); *buf_count = count; } } static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); u8 buf[GHASH_BLOCK_SIZE]; struct scatter_walk walk; u32 len = req->assoclen; int buf_count = 0; scatterwalk_start(&walk, req->src); do { u32 n = scatterwalk_clamp(&walk, len); u8 *p; if (!n) { scatterwalk_start(&walk, sg_next(walk.sg)); n = scatterwalk_clamp(&walk, len); } p = scatterwalk_map(&walk); gcm_update_mac(dg, p, n, buf, &buf_count, ctx); len -= n; scatterwalk_unmap(p); scatterwalk_advance(&walk, n); scatterwalk_done(&walk, 0, len); } while (len); if (buf_count) { memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL); } } static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx, u64 dg[], u8 tag[], int cryptlen) { u8 mac[AES_BLOCK_SIZE]; u128 lengths; lengths.a = cpu_to_be64(req->assoclen * 8); lengths.b = cpu_to_be64(cryptlen * 8); ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL); put_unaligned_be64(dg[1], mac); put_unaligned_be64(dg[0], mac + 8); crypto_xor(tag, mac, AES_BLOCK_SIZE); } static int gcm_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); struct skcipher_walk walk; u8 iv[AES_BLOCK_SIZE]; u8 ks[2 * AES_BLOCK_SIZE]; u8 tag[AES_BLOCK_SIZE]; u64 dg[2] = {}; int nrounds = num_rounds(&ctx->aes_key); int err; if (req->assoclen) gcm_calculate_auth_mac(req, dg); memcpy(iv, req->iv, GCM_IV_SIZE); put_unaligned_be32(1, iv + GCM_IV_SIZE); err = skcipher_walk_aead_encrypt(&walk, req, false); if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) { u32 const *rk = NULL; kernel_neon_begin(); pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); put_unaligned_be32(2, iv + GCM_IV_SIZE); pmull_gcm_encrypt_block(ks, iv, NULL, nrounds); put_unaligned_be32(3, iv + GCM_IV_SIZE); pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds); put_unaligned_be32(4, iv + GCM_IV_SIZE); do { int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; if (rk) kernel_neon_begin(); pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr, walk.src.virt.addr, ctx->h2, iv, rk, nrounds, ks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % (2 * AES_BLOCK_SIZE)); rk = ctx->aes_key.key_enc; } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); } else { __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); put_unaligned_be32(2, iv + GCM_IV_SIZE); while (walk.nbytes >= AES_BLOCK_SIZE) { int blocks = walk.nbytes / AES_BLOCK_SIZE; u8 *dst = walk.dst.virt.addr; u8 *src = walk.src.virt.addr; do { __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv, nrounds); crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE); crypto_inc(iv, AES_BLOCK_SIZE); dst += AES_BLOCK_SIZE; src += AES_BLOCK_SIZE; } while (--blocks > 0); ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg, walk.dst.virt.addr, &ctx->ghash_key, NULL); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } if (walk.nbytes) __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv, nrounds); } /* handle the tail */ if (walk.nbytes) { u8 buf[GHASH_BLOCK_SIZE]; unsigned int nbytes = walk.nbytes; u8 *dst = walk.dst.virt.addr; u8 *head = NULL; crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks, walk.nbytes); if (walk.nbytes > GHASH_BLOCK_SIZE) { head = dst; dst += GHASH_BLOCK_SIZE; nbytes %= GHASH_BLOCK_SIZE; } memcpy(buf, dst, nbytes); memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); err = skcipher_walk_done(&walk, 0); } if (err) return err; gcm_final(req, ctx, dg, tag, req->cryptlen); /* copy authtag to end of dst */ scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, crypto_aead_authsize(aead), 1); return 0; } static int gcm_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); unsigned int authsize = crypto_aead_authsize(aead); struct skcipher_walk walk; u8 iv[2 * AES_BLOCK_SIZE]; u8 tag[AES_BLOCK_SIZE]; u8 buf[2 * GHASH_BLOCK_SIZE]; u64 dg[2] = {}; int nrounds = num_rounds(&ctx->aes_key); int err; if (req->assoclen) gcm_calculate_auth_mac(req, dg); memcpy(iv, req->iv, GCM_IV_SIZE); put_unaligned_be32(1, iv + GCM_IV_SIZE); err = skcipher_walk_aead_decrypt(&walk, req, false); if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) { u32 const *rk = NULL; kernel_neon_begin(); pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); put_unaligned_be32(2, iv + GCM_IV_SIZE); do { int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; int rem = walk.total - blocks * AES_BLOCK_SIZE; if (rk) kernel_neon_begin(); pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr, walk.src.virt.addr, ctx->h2, iv, rk, nrounds); /* check if this is the final iteration of the loop */ if (rem < (2 * AES_BLOCK_SIZE)) { u8 *iv2 = iv + AES_BLOCK_SIZE; if (rem > AES_BLOCK_SIZE) { memcpy(iv2, iv, AES_BLOCK_SIZE); crypto_inc(iv2, AES_BLOCK_SIZE); } pmull_gcm_encrypt_block(iv, iv, NULL, nrounds); if (rem > AES_BLOCK_SIZE) pmull_gcm_encrypt_block(iv2, iv2, NULL, nrounds); } kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % (2 * AES_BLOCK_SIZE)); rk = ctx->aes_key.key_enc; } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); } else { __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); put_unaligned_be32(2, iv + GCM_IV_SIZE); while (walk.nbytes >= AES_BLOCK_SIZE) { int blocks = walk.nbytes / AES_BLOCK_SIZE; u8 *dst = walk.dst.virt.addr; u8 *src = walk.src.virt.addr; ghash_do_update(blocks, dg, walk.src.virt.addr, &ctx->ghash_key, NULL); do { __aes_arm64_encrypt(ctx->aes_key.key_enc, buf, iv, nrounds); crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); crypto_inc(iv, AES_BLOCK_SIZE); dst += AES_BLOCK_SIZE; src += AES_BLOCK_SIZE; } while (--blocks > 0); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } if (walk.nbytes) __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv, nrounds); } /* handle the tail */ if (walk.nbytes) { const u8 *src = walk.src.virt.addr; const u8 *head = NULL; unsigned int nbytes = walk.nbytes; if (walk.nbytes > GHASH_BLOCK_SIZE) { head = src; src += GHASH_BLOCK_SIZE; nbytes %= GHASH_BLOCK_SIZE; } memcpy(buf, src, nbytes); memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv, walk.nbytes); err = skcipher_walk_done(&walk, 0); } if (err) return err; gcm_final(req, ctx, dg, tag, req->cryptlen - authsize); /* compare calculated auth tag with the stored one */ scatterwalk_map_and_copy(buf, req->src, req->assoclen + req->cryptlen - authsize, authsize, 0); if (crypto_memneq(tag, buf, authsize)) return -EBADMSG; return 0; } static struct aead_alg gcm_aes_alg = { .ivsize = GCM_IV_SIZE, .chunksize = 2 * AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .setkey = gcm_setkey, .setauthsize = gcm_setauthsize, .encrypt = gcm_encrypt, .decrypt = gcm_decrypt, .base.cra_name = "gcm(aes)", .base.cra_driver_name = "gcm-aes-ce", .base.cra_priority = 300, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct gcm_aes_ctx), .base.cra_module = THIS_MODULE, }; static int __init ghash_ce_mod_init(void) { int ret; if (!(elf_hwcap & HWCAP_ASIMD)) return -ENODEV; if (elf_hwcap & HWCAP_PMULL) pmull_ghash_update = pmull_ghash_update_p64; else pmull_ghash_update = pmull_ghash_update_p8; ret = crypto_register_shash(&ghash_alg); if (ret) return ret; if (elf_hwcap & HWCAP_PMULL) { ret = crypto_register_aead(&gcm_aes_alg); if (ret) crypto_unregister_shash(&ghash_alg); } return ret; } static void __exit ghash_ce_mod_exit(void) { crypto_unregister_shash(&ghash_alg); crypto_unregister_aead(&gcm_aes_alg); } static const struct cpu_feature ghash_cpu_feature[] = { { cpu_feature(PMULL) }, { } }; MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); module_init(ghash_ce_mod_init); module_exit(ghash_ce_mod_exit);