/* * Copyright 2013 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * TILE-Gx KGDB support. */ #include #include #include #include #include #include static tile_bundle_bits singlestep_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP; static unsigned long stepped_addr; static tile_bundle_bits stepped_instr; struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0])}, { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1])}, { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2])}, { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3])}, { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4])}, { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5])}, { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6])}, { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7])}, { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8])}, { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9])}, { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10])}, { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11])}, { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12])}, { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13])}, { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14])}, { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15])}, { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16])}, { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17])}, { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18])}, { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19])}, { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20])}, { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21])}, { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22])}, { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23])}, { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24])}, { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25])}, { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26])}, { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27])}, { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28])}, { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29])}, { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30])}, { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31])}, { "r32", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[32])}, { "r33", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[33])}, { "r34", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[34])}, { "r35", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[35])}, { "r36", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[36])}, { "r37", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[37])}, { "r38", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[38])}, { "r39", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[39])}, { "r40", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[40])}, { "r41", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[41])}, { "r42", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[42])}, { "r43", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[43])}, { "r44", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[44])}, { "r45", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[45])}, { "r46", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[46])}, { "r47", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[47])}, { "r48", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[48])}, { "r49", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[49])}, { "r50", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[50])}, { "r51", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[51])}, { "r52", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[52])}, { "tp", GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)}, { "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)}, { "lr", GDB_SIZEOF_REG, offsetof(struct pt_regs, lr)}, { "sn", GDB_SIZEOF_REG, -1}, { "idn0", GDB_SIZEOF_REG, -1}, { "idn1", GDB_SIZEOF_REG, -1}, { "udn0", GDB_SIZEOF_REG, -1}, { "udn1", GDB_SIZEOF_REG, -1}, { "udn2", GDB_SIZEOF_REG, -1}, { "udn3", GDB_SIZEOF_REG, -1}, { "zero", GDB_SIZEOF_REG, -1}, { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc)}, { "faultnum", GDB_SIZEOF_REG, offsetof(struct pt_regs, faultnum)}, }; char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return NULL; if (dbg_reg_def[regno].offset != -1) memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, dbg_reg_def[regno].size); else memset(mem, 0, dbg_reg_def[regno].size); return dbg_reg_def[regno].name; } int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return -EINVAL; if (dbg_reg_def[regno].offset != -1) memcpy((void *)regs + dbg_reg_def[regno].offset, mem, dbg_reg_def[regno].size); return 0; } /* * Similar to pt_regs_to_gdb_regs() except that process is sleeping and so * we may not be able to get all the info. */ void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task) { struct pt_regs *thread_regs; const int NGPRS = TREG_LAST_GPR + 1; if (task == NULL) return; thread_regs = task_pt_regs(task); memcpy(gdb_regs, thread_regs, NGPRS * sizeof(unsigned long)); memset(&gdb_regs[NGPRS], 0, (TILEGX_PC_REGNUM - NGPRS) * sizeof(unsigned long)); gdb_regs[TILEGX_PC_REGNUM] = thread_regs->pc; gdb_regs[TILEGX_FAULTNUM_REGNUM] = thread_regs->faultnum; } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) { regs->pc = pc; } static void kgdb_call_nmi_hook(void *ignored) { kgdb_nmicallback(raw_smp_processor_id(), NULL); } void kgdb_roundup_cpus(unsigned long flags) { local_irq_enable(); smp_call_function(kgdb_call_nmi_hook, NULL, 0); local_irq_disable(); } /* * Convert a kernel address to the writable kernel text mapping. */ static unsigned long writable_address(unsigned long addr) { unsigned long ret = 0; if (core_kernel_text(addr)) ret = ktext_writable_addr(addr); else if (is_module_text_address(addr)) ret = addr; else pr_err("Unknown virtual address 0x%lx\n", addr); return ret; } /* * Calculate the new address for after a step. */ static unsigned long get_step_address(struct pt_regs *regs) { int src_reg; int jump_off; int br_off; unsigned long addr; unsigned int opcode; tile_bundle_bits bundle; /* Move to the next instruction by default. */ addr = regs->pc + TILEGX_BUNDLE_SIZE_IN_BYTES; bundle = *(unsigned long *)instruction_pointer(regs); /* 0: X mode, Otherwise: Y mode. */ if (bundle & TILEGX_BUNDLE_MODE_MASK) { if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 && get_RRROpcodeExtension_Y1(bundle) == UNARY_RRR_1_OPCODE_Y1) { opcode = get_UnaryOpcodeExtension_Y1(bundle); switch (opcode) { case JALR_UNARY_OPCODE_Y1: case JALRP_UNARY_OPCODE_Y1: case JR_UNARY_OPCODE_Y1: case JRP_UNARY_OPCODE_Y1: src_reg = get_SrcA_Y1(bundle); dbg_get_reg(src_reg, &addr, regs); break; } } } else if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) { if (get_RRROpcodeExtension_X1(bundle) == UNARY_RRR_0_OPCODE_X1) { opcode = get_UnaryOpcodeExtension_X1(bundle); switch (opcode) { case JALR_UNARY_OPCODE_X1: case JALRP_UNARY_OPCODE_X1: case JR_UNARY_OPCODE_X1: case JRP_UNARY_OPCODE_X1: src_reg = get_SrcA_X1(bundle); dbg_get_reg(src_reg, &addr, regs); break; } } } else if (get_Opcode_X1(bundle) == JUMP_OPCODE_X1) { opcode = get_JumpOpcodeExtension_X1(bundle); switch (opcode) { case JAL_JUMP_OPCODE_X1: case J_JUMP_OPCODE_X1: jump_off = sign_extend(get_JumpOff_X1(bundle), 27); addr = regs->pc + (jump_off << TILEGX_LOG2_BUNDLE_SIZE_IN_BYTES); break; } } else if (get_Opcode_X1(bundle) == BRANCH_OPCODE_X1) { br_off = 0; opcode = get_BrType_X1(bundle); switch (opcode) { case BEQZT_BRANCH_OPCODE_X1: case BEQZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) == 0) br_off = get_BrOff_X1(bundle); break; case BGEZT_BRANCH_OPCODE_X1: case BGEZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) >= 0) br_off = get_BrOff_X1(bundle); break; case BGTZT_BRANCH_OPCODE_X1: case BGTZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) > 0) br_off = get_BrOff_X1(bundle); break; case BLBCT_BRANCH_OPCODE_X1: case BLBC_BRANCH_OPCODE_X1: if (!(get_SrcA_X1(bundle) & 1)) br_off = get_BrOff_X1(bundle); break; case BLBST_BRANCH_OPCODE_X1: case BLBS_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) & 1) br_off = get_BrOff_X1(bundle); break; case BLEZT_BRANCH_OPCODE_X1: case BLEZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) <= 0) br_off = get_BrOff_X1(bundle); break; case BLTZT_BRANCH_OPCODE_X1: case BLTZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) < 0) br_off = get_BrOff_X1(bundle); break; case BNEZT_BRANCH_OPCODE_X1: case BNEZ_BRANCH_OPCODE_X1: if (get_SrcA_X1(bundle) != 0) br_off = get_BrOff_X1(bundle); break; } if (br_off != 0) { br_off = sign_extend(br_off, 17); addr = regs->pc + (br_off << TILEGX_LOG2_BUNDLE_SIZE_IN_BYTES); } } return addr; } /* * Replace the next instruction after the current instruction with a * breakpoint instruction. */ static void do_single_step(struct pt_regs *regs) { unsigned long addr_wr; /* Determine where the target instruction will send us to. */ stepped_addr = get_step_address(regs); probe_kernel_read((char *)&stepped_instr, (char *)stepped_addr, BREAK_INSTR_SIZE); addr_wr = writable_address(stepped_addr); probe_kernel_write((char *)addr_wr, (char *)&singlestep_insn, BREAK_INSTR_SIZE); smp_wmb(); flush_icache_range(stepped_addr, stepped_addr + BREAK_INSTR_SIZE); } static void undo_single_step(struct pt_regs *regs) { unsigned long addr_wr; if (stepped_instr == 0) return; addr_wr = writable_address(stepped_addr); probe_kernel_write((char *)addr_wr, (char *)&stepped_instr, BREAK_INSTR_SIZE); stepped_instr = 0; smp_wmb(); flush_icache_range(stepped_addr, stepped_addr + BREAK_INSTR_SIZE); } /* * Calls linux_debug_hook before the kernel dies. If KGDB is enabled, * then try to fall into the debugger. */ static int kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) { int ret; unsigned long flags; struct die_args *args = (struct die_args *)ptr; struct pt_regs *regs = args->regs; #ifdef CONFIG_KPROBES /* * Return immediately if the kprobes fault notifier has set * DIE_PAGE_FAULT. */ if (cmd == DIE_PAGE_FAULT) return NOTIFY_DONE; #endif /* CONFIG_KPROBES */ switch (cmd) { case DIE_BREAK: case DIE_COMPILED_BPT: break; case DIE_SSTEPBP: local_irq_save(flags); kgdb_handle_exception(0, SIGTRAP, 0, regs); local_irq_restore(flags); return NOTIFY_STOP; default: /* Userspace events, ignore. */ if (user_mode(regs)) return NOTIFY_DONE; } local_irq_save(flags); ret = kgdb_handle_exception(args->trapnr, args->signr, args->err, regs); local_irq_restore(flags); if (ret) return NOTIFY_DONE; return NOTIFY_STOP; } static struct notifier_block kgdb_notifier = { .notifier_call = kgdb_notify, }; /* * kgdb_arch_handle_exception - Handle architecture specific GDB packets. * @vector: The error vector of the exception that happened. * @signo: The signal number of the exception that happened. * @err_code: The error code of the exception that happened. * @remcom_in_buffer: The buffer of the packet we have read. * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into. * @regs: The &struct pt_regs of the current process. * * This function MUST handle the 'c' and 's' command packets, * as well packets to set / remove a hardware breakpoint, if used. * If there are additional packets which the hardware needs to handle, * they are handled here. The code should return -1 if it wants to * process more packets, and a %0 or %1 if it wants to exit from the * kgdb callback. */ int kgdb_arch_handle_exception(int vector, int signo, int err_code, char *remcom_in_buffer, char *remcom_out_buffer, struct pt_regs *regs) { char *ptr; unsigned long address; /* Undo any stepping we may have done. */ undo_single_step(regs); switch (remcom_in_buffer[0]) { case 'c': case 's': case 'D': case 'k': /* * Try to read optional parameter, pc unchanged if no parm. * If this was a compiled-in breakpoint, we need to move * to the next instruction or we will just breakpoint * over and over again. */ ptr = &remcom_in_buffer[1]; if (kgdb_hex2long(&ptr, &address)) regs->pc = address; else if (*(unsigned long *)regs->pc == compiled_bpt) regs->pc += BREAK_INSTR_SIZE; if (remcom_in_buffer[0] == 's') { do_single_step(regs); kgdb_single_step = 1; atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id()); } else atomic_set(&kgdb_cpu_doing_single_step, -1); return 0; } return -1; /* this means that we do not want to exit from the handler */ } struct kgdb_arch arch_kgdb_ops; /* * kgdb_arch_init - Perform any architecture specific initalization. * * This function will handle the initalization of any architecture * specific callbacks. */ int kgdb_arch_init(void) { tile_bundle_bits bundle = TILEGX_BPT_BUNDLE; memcpy(arch_kgdb_ops.gdb_bpt_instr, &bundle, BREAK_INSTR_SIZE); return register_die_notifier(&kgdb_notifier); } /* * kgdb_arch_exit - Perform any architecture specific uninitalization. * * This function will handle the uninitalization of any architecture * specific callbacks, for dynamic registration and unregistration. */ void kgdb_arch_exit(void) { unregister_die_notifier(&kgdb_notifier); } int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) { int err; unsigned long addr_wr = writable_address(bpt->bpt_addr); if (addr_wr == 0) return -1; err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE); if (err) return err; err = probe_kernel_write((char *)addr_wr, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); smp_wmb(); flush_icache_range((unsigned long)bpt->bpt_addr, (unsigned long)bpt->bpt_addr + BREAK_INSTR_SIZE); return err; } int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) { int err; unsigned long addr_wr = writable_address(bpt->bpt_addr); if (addr_wr == 0) return -1; err = probe_kernel_write((char *)addr_wr, (char *)bpt->saved_instr, BREAK_INSTR_SIZE); smp_wmb(); flush_icache_range((unsigned long)bpt->bpt_addr, (unsigned long)bpt->bpt_addr + BREAK_INSTR_SIZE); return err; }