/* * Copyright 2008-2010 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_RFS_ACCEL #include #endif #include #include #include #include "cq_enet_desc.h" #include "vnic_dev.h" #include "vnic_intr.h" #include "vnic_stats.h" #include "vnic_vic.h" #include "enic_res.h" #include "enic.h" #include "enic_dev.h" #include "enic_pp.h" #include "enic_clsf.h" #define ENIC_NOTIFY_TIMER_PERIOD (2 * HZ) #define WQ_ENET_MAX_DESC_LEN (1 << WQ_ENET_LEN_BITS) #define MAX_TSO (1 << 16) #define ENIC_DESC_MAX_SPLITS (MAX_TSO / WQ_ENET_MAX_DESC_LEN + 1) #define PCI_DEVICE_ID_CISCO_VIC_ENET 0x0043 /* ethernet vnic */ #define PCI_DEVICE_ID_CISCO_VIC_ENET_DYN 0x0044 /* enet dynamic vnic */ #define PCI_DEVICE_ID_CISCO_VIC_ENET_VF 0x0071 /* enet SRIOV VF */ #define RX_COPYBREAK_DEFAULT 256 /* Supported devices */ static const struct pci_device_id enic_id_table[] = { { PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET) }, { PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_DYN) }, { PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_VF) }, { 0, } /* end of table */ }; MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR("Scott Feldman "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, enic_id_table); #define ENIC_LARGE_PKT_THRESHOLD 1000 #define ENIC_MAX_COALESCE_TIMERS 10 /* Interrupt moderation table, which will be used to decide the * coalescing timer values * {rx_rate in Mbps, mapping percentage of the range} */ static struct enic_intr_mod_table mod_table[ENIC_MAX_COALESCE_TIMERS + 1] = { {4000, 0}, {4400, 10}, {5060, 20}, {5230, 30}, {5540, 40}, {5820, 50}, {6120, 60}, {6435, 70}, {6745, 80}, {7000, 90}, {0xFFFFFFFF, 100} }; /* This table helps the driver to pick different ranges for rx coalescing * timer depending on the link speed. */ static struct enic_intr_mod_range mod_range[ENIC_MAX_LINK_SPEEDS] = { {0, 0}, /* 0 - 4 Gbps */ {0, 3}, /* 4 - 10 Gbps */ {3, 6}, /* 10 - 40 Gbps */ }; static void enic_init_affinity_hint(struct enic *enic) { int numa_node = dev_to_node(&enic->pdev->dev); int i; for (i = 0; i < enic->intr_count; i++) { if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i) || (enic->msix[i].affinity_mask && !cpumask_empty(enic->msix[i].affinity_mask))) continue; if (zalloc_cpumask_var(&enic->msix[i].affinity_mask, GFP_KERNEL)) cpumask_set_cpu(cpumask_local_spread(i, numa_node), enic->msix[i].affinity_mask); } } static void enic_free_affinity_hint(struct enic *enic) { int i; for (i = 0; i < enic->intr_count; i++) { if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i)) continue; free_cpumask_var(enic->msix[i].affinity_mask); } } static void enic_set_affinity_hint(struct enic *enic) { int i; int err; for (i = 0; i < enic->intr_count; i++) { if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i) || !enic->msix[i].affinity_mask || cpumask_empty(enic->msix[i].affinity_mask)) continue; err = irq_set_affinity_hint(enic->msix_entry[i].vector, enic->msix[i].affinity_mask); if (err) netdev_warn(enic->netdev, "irq_set_affinity_hint failed, err %d\n", err); } for (i = 0; i < enic->wq_count; i++) { int wq_intr = enic_msix_wq_intr(enic, i); if (enic->msix[wq_intr].affinity_mask && !cpumask_empty(enic->msix[wq_intr].affinity_mask)) netif_set_xps_queue(enic->netdev, enic->msix[wq_intr].affinity_mask, i); } } static void enic_unset_affinity_hint(struct enic *enic) { int i; for (i = 0; i < enic->intr_count; i++) irq_set_affinity_hint(enic->msix_entry[i].vector, NULL); } static void enic_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti) { struct enic *enic = netdev_priv(netdev); __be16 port = ti->port; int err; spin_lock_bh(&enic->devcmd_lock); if (ti->type != UDP_TUNNEL_TYPE_VXLAN) { netdev_info(netdev, "udp_tnl: only vxlan tunnel offload supported"); goto error; } if (ti->sa_family != AF_INET) { netdev_info(netdev, "vxlan: only IPv4 offload supported"); goto error; } if (enic->vxlan.vxlan_udp_port_number) { if (ntohs(port) == enic->vxlan.vxlan_udp_port_number) netdev_warn(netdev, "vxlan: udp port already offloaded"); else netdev_info(netdev, "vxlan: offload supported for only one UDP port"); goto error; } err = vnic_dev_overlay_offload_cfg(enic->vdev, OVERLAY_CFG_VXLAN_PORT_UPDATE, ntohs(port)); if (err) goto error; err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN, enic->vxlan.patch_level); if (err) goto error; enic->vxlan.vxlan_udp_port_number = ntohs(port); netdev_info(netdev, "vxlan fw-vers-%d: offload enabled for udp port: %d, sa_family: %d ", (int)enic->vxlan.patch_level, ntohs(port), ti->sa_family); goto unlock; error: netdev_info(netdev, "failed to offload udp port: %d, sa_family: %d, type: %d", ntohs(port), ti->sa_family, ti->type); unlock: spin_unlock_bh(&enic->devcmd_lock); } static void enic_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti) { struct enic *enic = netdev_priv(netdev); int err; spin_lock_bh(&enic->devcmd_lock); if ((ti->sa_family != AF_INET) || ((ntohs(ti->port) != enic->vxlan.vxlan_udp_port_number)) || (ti->type != UDP_TUNNEL_TYPE_VXLAN)) { netdev_info(netdev, "udp_tnl: port:%d, sa_family: %d, type: %d not offloaded", ntohs(ti->port), ti->sa_family, ti->type); goto unlock; } err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN, OVERLAY_OFFLOAD_DISABLE); if (err) { netdev_err(netdev, "vxlan: del offload udp port: %d failed", ntohs(ti->port)); goto unlock; } enic->vxlan.vxlan_udp_port_number = 0; netdev_info(netdev, "vxlan: del offload udp port %d, family %d\n", ntohs(ti->port), ti->sa_family); unlock: spin_unlock_bh(&enic->devcmd_lock); } static netdev_features_t enic_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { const struct ethhdr *eth = (struct ethhdr *)skb_inner_mac_header(skb); struct enic *enic = netdev_priv(dev); struct udphdr *udph; u16 port = 0; u16 proto; if (!skb->encapsulation) return features; features = vxlan_features_check(skb, features); /* hardware only supports IPv4 vxlan tunnel */ if (vlan_get_protocol(skb) != htons(ETH_P_IP)) goto out; /* hardware does not support offload of ipv6 inner pkt */ if (eth->h_proto != ntohs(ETH_P_IP)) goto out; proto = ip_hdr(skb)->protocol; if (proto == IPPROTO_UDP) { udph = udp_hdr(skb); port = be16_to_cpu(udph->dest); } /* HW supports offload of only one UDP port. Remove CSUM and GSO MASK * for other UDP port tunnels */ if (port != enic->vxlan.vxlan_udp_port_number) goto out; return features; out: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } int enic_is_dynamic(struct enic *enic) { return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_DYN; } int enic_sriov_enabled(struct enic *enic) { return (enic->priv_flags & ENIC_SRIOV_ENABLED) ? 1 : 0; } static int enic_is_sriov_vf(struct enic *enic) { return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_VF; } int enic_is_valid_vf(struct enic *enic, int vf) { #ifdef CONFIG_PCI_IOV return vf >= 0 && vf < enic->num_vfs; #else return 0; #endif } static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf) { struct enic *enic = vnic_dev_priv(wq->vdev); if (buf->sop) pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_TODEVICE); else pci_unmap_page(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_TODEVICE); if (buf->os_buf) dev_kfree_skb_any(buf->os_buf); } static void enic_wq_free_buf(struct vnic_wq *wq, struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque) { enic_free_wq_buf(wq, buf); } static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc, u8 type, u16 q_number, u16 completed_index, void *opaque) { struct enic *enic = vnic_dev_priv(vdev); spin_lock(&enic->wq_lock[q_number]); vnic_wq_service(&enic->wq[q_number], cq_desc, completed_index, enic_wq_free_buf, opaque); if (netif_tx_queue_stopped(netdev_get_tx_queue(enic->netdev, q_number)) && vnic_wq_desc_avail(&enic->wq[q_number]) >= (MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS)) netif_wake_subqueue(enic->netdev, q_number); spin_unlock(&enic->wq_lock[q_number]); return 0; } static bool enic_log_q_error(struct enic *enic) { unsigned int i; u32 error_status; bool err = false; for (i = 0; i < enic->wq_count; i++) { error_status = vnic_wq_error_status(&enic->wq[i]); err |= error_status; if (error_status) netdev_err(enic->netdev, "WQ[%d] error_status %d\n", i, error_status); } for (i = 0; i < enic->rq_count; i++) { error_status = vnic_rq_error_status(&enic->rq[i]); err |= error_status; if (error_status) netdev_err(enic->netdev, "RQ[%d] error_status %d\n", i, error_status); } return err; } static void enic_msglvl_check(struct enic *enic) { u32 msg_enable = vnic_dev_msg_lvl(enic->vdev); if (msg_enable != enic->msg_enable) { netdev_info(enic->netdev, "msg lvl changed from 0x%x to 0x%x\n", enic->msg_enable, msg_enable); enic->msg_enable = msg_enable; } } static void enic_mtu_check(struct enic *enic) { u32 mtu = vnic_dev_mtu(enic->vdev); struct net_device *netdev = enic->netdev; if (mtu && mtu != enic->port_mtu) { enic->port_mtu = mtu; if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) { mtu = max_t(int, ENIC_MIN_MTU, min_t(int, ENIC_MAX_MTU, mtu)); if (mtu != netdev->mtu) schedule_work(&enic->change_mtu_work); } else { if (mtu < netdev->mtu) netdev_warn(netdev, "interface MTU (%d) set higher " "than switch port MTU (%d)\n", netdev->mtu, mtu); } } } static void enic_link_check(struct enic *enic) { int link_status = vnic_dev_link_status(enic->vdev); int carrier_ok = netif_carrier_ok(enic->netdev); if (link_status && !carrier_ok) { netdev_info(enic->netdev, "Link UP\n"); netif_carrier_on(enic->netdev); } else if (!link_status && carrier_ok) { netdev_info(enic->netdev, "Link DOWN\n"); netif_carrier_off(enic->netdev); } } static void enic_notify_check(struct enic *enic) { enic_msglvl_check(enic); enic_mtu_check(enic); enic_link_check(enic); } #define ENIC_TEST_INTR(pba, i) (pba & (1 << i)) static irqreturn_t enic_isr_legacy(int irq, void *data) { struct net_device *netdev = data; struct enic *enic = netdev_priv(netdev); unsigned int io_intr = enic_legacy_io_intr(); unsigned int err_intr = enic_legacy_err_intr(); unsigned int notify_intr = enic_legacy_notify_intr(); u32 pba; vnic_intr_mask(&enic->intr[io_intr]); pba = vnic_intr_legacy_pba(enic->legacy_pba); if (!pba) { vnic_intr_unmask(&enic->intr[io_intr]); return IRQ_NONE; /* not our interrupt */ } if (ENIC_TEST_INTR(pba, notify_intr)) { enic_notify_check(enic); vnic_intr_return_all_credits(&enic->intr[notify_intr]); } if (ENIC_TEST_INTR(pba, err_intr)) { vnic_intr_return_all_credits(&enic->intr[err_intr]); enic_log_q_error(enic); /* schedule recovery from WQ/RQ error */ schedule_work(&enic->reset); return IRQ_HANDLED; } if (ENIC_TEST_INTR(pba, io_intr)) napi_schedule_irqoff(&enic->napi[0]); else vnic_intr_unmask(&enic->intr[io_intr]); return IRQ_HANDLED; } static irqreturn_t enic_isr_msi(int irq, void *data) { struct enic *enic = data; /* With MSI, there is no sharing of interrupts, so this is * our interrupt and there is no need to ack it. The device * is not providing per-vector masking, so the OS will not * write to PCI config space to mask/unmask the interrupt. * We're using mask_on_assertion for MSI, so the device * automatically masks the interrupt when the interrupt is * generated. Later, when exiting polling, the interrupt * will be unmasked (see enic_poll). * * Also, the device uses the same PCIe Traffic Class (TC) * for Memory Write data and MSI, so there are no ordering * issues; the MSI will always arrive at the Root Complex * _after_ corresponding Memory Writes (i.e. descriptor * writes). */ napi_schedule_irqoff(&enic->napi[0]); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix(int irq, void *data) { struct napi_struct *napi = data; napi_schedule_irqoff(napi); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_err(int irq, void *data) { struct enic *enic = data; unsigned int intr = enic_msix_err_intr(enic); vnic_intr_return_all_credits(&enic->intr[intr]); if (enic_log_q_error(enic)) /* schedule recovery from WQ/RQ error */ schedule_work(&enic->reset); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_notify(int irq, void *data) { struct enic *enic = data; unsigned int intr = enic_msix_notify_intr(enic); enic_notify_check(enic); vnic_intr_return_all_credits(&enic->intr[intr]); return IRQ_HANDLED; } static int enic_queue_wq_skb_cont(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, unsigned int len_left, int loopback) { const skb_frag_t *frag; dma_addr_t dma_addr; /* Queue additional data fragments */ for (frag = skb_shinfo(skb)->frags; len_left; frag++) { len_left -= skb_frag_size(frag); dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; enic_queue_wq_desc_cont(wq, skb, dma_addr, skb_frag_size(frag), (len_left == 0), /* EOP? */ loopback); } return 0; } static int enic_queue_wq_skb_vlan(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, int vlan_tag_insert, unsigned int vlan_tag, int loopback) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; int eop = (len_left == 0); dma_addr_t dma_addr; int err = 0; dma_addr = pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; /* Queue the main skb fragment. The fragments are no larger * than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less * than WQ_ENET_MAX_DESC_LEN length. So only one descriptor * per fragment is queued. */ enic_queue_wq_desc(wq, skb, dma_addr, head_len, vlan_tag_insert, vlan_tag, eop, loopback); if (!eop) err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); return err; } static int enic_queue_wq_skb_csum_l4(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, int vlan_tag_insert, unsigned int vlan_tag, int loopback) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; unsigned int hdr_len = skb_checksum_start_offset(skb); unsigned int csum_offset = hdr_len + skb->csum_offset; int eop = (len_left == 0); dma_addr_t dma_addr; int err = 0; dma_addr = pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; /* Queue the main skb fragment. The fragments are no larger * than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less * than WQ_ENET_MAX_DESC_LEN length. So only one descriptor * per fragment is queued. */ enic_queue_wq_desc_csum_l4(wq, skb, dma_addr, head_len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, eop, loopback); if (!eop) err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); return err; } static void enic_preload_tcp_csum_encap(struct sk_buff *skb) { if (skb->protocol == cpu_to_be16(ETH_P_IP)) { inner_ip_hdr(skb)->check = 0; inner_tcp_hdr(skb)->check = ~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr, inner_ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } } static void enic_preload_tcp_csum(struct sk_buff *skb) { /* Preload TCP csum field with IP pseudo hdr calculated * with IP length set to zero. HW will later add in length * to each TCP segment resulting from the TSO. */ if (skb->protocol == cpu_to_be16(ETH_P_IP)) { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) { tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } } static int enic_queue_wq_skb_tso(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, unsigned int mss, int vlan_tag_insert, unsigned int vlan_tag, int loopback) { unsigned int frag_len_left = skb_headlen(skb); unsigned int len_left = skb->len - frag_len_left; int eop = (len_left == 0); unsigned int offset = 0; unsigned int hdr_len; dma_addr_t dma_addr; unsigned int len; skb_frag_t *frag; if (skb->encapsulation) { hdr_len = skb_inner_transport_header(skb) - skb->data; hdr_len += inner_tcp_hdrlen(skb); enic_preload_tcp_csum_encap(skb); } else { hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); enic_preload_tcp_csum(skb); } /* Queue WQ_ENET_MAX_DESC_LEN length descriptors * for the main skb fragment */ while (frag_len_left) { len = min(frag_len_left, (unsigned int)WQ_ENET_MAX_DESC_LEN); dma_addr = pci_map_single(enic->pdev, skb->data + offset, len, PCI_DMA_TODEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; enic_queue_wq_desc_tso(wq, skb, dma_addr, len, mss, hdr_len, vlan_tag_insert, vlan_tag, eop && (len == frag_len_left), loopback); frag_len_left -= len; offset += len; } if (eop) return 0; /* Queue WQ_ENET_MAX_DESC_LEN length descriptors * for additional data fragments */ for (frag = skb_shinfo(skb)->frags; len_left; frag++) { len_left -= skb_frag_size(frag); frag_len_left = skb_frag_size(frag); offset = 0; while (frag_len_left) { len = min(frag_len_left, (unsigned int)WQ_ENET_MAX_DESC_LEN); dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag, offset, len, DMA_TO_DEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; enic_queue_wq_desc_cont(wq, skb, dma_addr, len, (len_left == 0) && (len == frag_len_left),/*EOP*/ loopback); frag_len_left -= len; offset += len; } } return 0; } static inline int enic_queue_wq_skb_encap(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, int vlan_tag_insert, unsigned int vlan_tag, int loopback) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; /* Hardware will overwrite the checksum fields, calculating from * scratch and ignoring the value placed by software. * Offload mode = 00 * mss[2], mss[1], mss[0] bits are set */ unsigned int mss_or_csum = 7; int eop = (len_left == 0); dma_addr_t dma_addr; int err = 0; dma_addr = pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) return -ENOMEM; enic_queue_wq_desc_ex(wq, skb, dma_addr, head_len, mss_or_csum, 0, vlan_tag_insert, vlan_tag, WQ_ENET_OFFLOAD_MODE_CSUM, eop, 1 /* SOP */, eop, loopback); if (!eop) err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); return err; } static inline void enic_queue_wq_skb(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb) { unsigned int mss = skb_shinfo(skb)->gso_size; unsigned int vlan_tag = 0; int vlan_tag_insert = 0; int loopback = 0; int err; if (skb_vlan_tag_present(skb)) { /* VLAN tag from trunking driver */ vlan_tag_insert = 1; vlan_tag = skb_vlan_tag_get(skb); } else if (enic->loop_enable) { vlan_tag = enic->loop_tag; loopback = 1; } if (mss) err = enic_queue_wq_skb_tso(enic, wq, skb, mss, vlan_tag_insert, vlan_tag, loopback); else if (skb->encapsulation) err = enic_queue_wq_skb_encap(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); else if (skb->ip_summed == CHECKSUM_PARTIAL) err = enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); else err = enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); if (unlikely(err)) { struct vnic_wq_buf *buf; buf = wq->to_use->prev; /* while not EOP of previous pkt && queue not empty. * For all non EOP bufs, os_buf is NULL. */ while (!buf->os_buf && (buf->next != wq->to_clean)) { enic_free_wq_buf(wq, buf); wq->ring.desc_avail++; buf = buf->prev; } wq->to_use = buf->next; dev_kfree_skb(skb); } } /* netif_tx_lock held, process context with BHs disabled, or BH */ static netdev_tx_t enic_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct vnic_wq *wq; unsigned int txq_map; struct netdev_queue *txq; if (skb->len <= 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } txq_map = skb_get_queue_mapping(skb) % enic->wq_count; wq = &enic->wq[txq_map]; txq = netdev_get_tx_queue(netdev, txq_map); /* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs, * which is very likely. In the off chance it's going to take * more than * ENIC_NON_TSO_MAX_DESC, linearize the skb. */ if (skb_shinfo(skb)->gso_size == 0 && skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC && skb_linearize(skb)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } spin_lock(&enic->wq_lock[txq_map]); if (vnic_wq_desc_avail(wq) < skb_shinfo(skb)->nr_frags + ENIC_DESC_MAX_SPLITS) { netif_tx_stop_queue(txq); /* This is a hard error, log it */ netdev_err(netdev, "BUG! Tx ring full when queue awake!\n"); spin_unlock(&enic->wq_lock[txq_map]); return NETDEV_TX_BUSY; } enic_queue_wq_skb(enic, wq, skb); if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS) netif_tx_stop_queue(txq); if (!skb->xmit_more || netif_xmit_stopped(txq)) vnic_wq_doorbell(wq); spin_unlock(&enic->wq_lock[txq_map]); return NETDEV_TX_OK; } /* dev_base_lock rwlock held, nominally process context */ static void enic_get_stats(struct net_device *netdev, struct rtnl_link_stats64 *net_stats) { struct enic *enic = netdev_priv(netdev); struct vnic_stats *stats; int err; err = enic_dev_stats_dump(enic, &stats); /* return only when pci_zalloc_consistent fails in vnic_dev_stats_dump * For other failures, like devcmd failure, we return previously * recorded stats. */ if (err == -ENOMEM) return; net_stats->tx_packets = stats->tx.tx_frames_ok; net_stats->tx_bytes = stats->tx.tx_bytes_ok; net_stats->tx_errors = stats->tx.tx_errors; net_stats->tx_dropped = stats->tx.tx_drops; net_stats->rx_packets = stats->rx.rx_frames_ok; net_stats->rx_bytes = stats->rx.rx_bytes_ok; net_stats->rx_errors = stats->rx.rx_errors; net_stats->multicast = stats->rx.rx_multicast_frames_ok; net_stats->rx_over_errors = enic->rq_truncated_pkts; net_stats->rx_crc_errors = enic->rq_bad_fcs; net_stats->rx_dropped = stats->rx.rx_no_bufs + stats->rx.rx_drop; } static int enic_mc_sync(struct net_device *netdev, const u8 *mc_addr) { struct enic *enic = netdev_priv(netdev); if (enic->mc_count == ENIC_MULTICAST_PERFECT_FILTERS) { unsigned int mc_count = netdev_mc_count(netdev); netdev_warn(netdev, "Registering only %d out of %d multicast addresses\n", ENIC_MULTICAST_PERFECT_FILTERS, mc_count); return -ENOSPC; } enic_dev_add_addr(enic, mc_addr); enic->mc_count++; return 0; } static int enic_mc_unsync(struct net_device *netdev, const u8 *mc_addr) { struct enic *enic = netdev_priv(netdev); enic_dev_del_addr(enic, mc_addr); enic->mc_count--; return 0; } static int enic_uc_sync(struct net_device *netdev, const u8 *uc_addr) { struct enic *enic = netdev_priv(netdev); if (enic->uc_count == ENIC_UNICAST_PERFECT_FILTERS) { unsigned int uc_count = netdev_uc_count(netdev); netdev_warn(netdev, "Registering only %d out of %d unicast addresses\n", ENIC_UNICAST_PERFECT_FILTERS, uc_count); return -ENOSPC; } enic_dev_add_addr(enic, uc_addr); enic->uc_count++; return 0; } static int enic_uc_unsync(struct net_device *netdev, const u8 *uc_addr) { struct enic *enic = netdev_priv(netdev); enic_dev_del_addr(enic, uc_addr); enic->uc_count--; return 0; } void enic_reset_addr_lists(struct enic *enic) { struct net_device *netdev = enic->netdev; __dev_uc_unsync(netdev, NULL); __dev_mc_unsync(netdev, NULL); enic->mc_count = 0; enic->uc_count = 0; enic->flags = 0; } static int enic_set_mac_addr(struct net_device *netdev, char *addr) { struct enic *enic = netdev_priv(netdev); if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) { if (!is_valid_ether_addr(addr) && !is_zero_ether_addr(addr)) return -EADDRNOTAVAIL; } else { if (!is_valid_ether_addr(addr)) return -EADDRNOTAVAIL; } memcpy(netdev->dev_addr, addr, netdev->addr_len); return 0; } static int enic_set_mac_address_dynamic(struct net_device *netdev, void *p) { struct enic *enic = netdev_priv(netdev); struct sockaddr *saddr = p; char *addr = saddr->sa_data; int err; if (netif_running(enic->netdev)) { err = enic_dev_del_station_addr(enic); if (err) return err; } err = enic_set_mac_addr(netdev, addr); if (err) return err; if (netif_running(enic->netdev)) { err = enic_dev_add_station_addr(enic); if (err) return err; } return err; } static int enic_set_mac_address(struct net_device *netdev, void *p) { struct sockaddr *saddr = p; char *addr = saddr->sa_data; struct enic *enic = netdev_priv(netdev); int err; err = enic_dev_del_station_addr(enic); if (err) return err; err = enic_set_mac_addr(netdev, addr); if (err) return err; return enic_dev_add_station_addr(enic); } /* netif_tx_lock held, BHs disabled */ static void enic_set_rx_mode(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); int directed = 1; int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0; int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0; int promisc = (netdev->flags & IFF_PROMISC) || netdev_uc_count(netdev) > ENIC_UNICAST_PERFECT_FILTERS; int allmulti = (netdev->flags & IFF_ALLMULTI) || netdev_mc_count(netdev) > ENIC_MULTICAST_PERFECT_FILTERS; unsigned int flags = netdev->flags | (allmulti ? IFF_ALLMULTI : 0) | (promisc ? IFF_PROMISC : 0); if (enic->flags != flags) { enic->flags = flags; enic_dev_packet_filter(enic, directed, multicast, broadcast, promisc, allmulti); } if (!promisc) { __dev_uc_sync(netdev, enic_uc_sync, enic_uc_unsync); if (!allmulti) __dev_mc_sync(netdev, enic_mc_sync, enic_mc_unsync); } } /* netif_tx_lock held, BHs disabled */ static void enic_tx_timeout(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); schedule_work(&enic->tx_hang_reset); } static int enic_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) { struct enic *enic = netdev_priv(netdev); struct enic_port_profile *pp; int err; ENIC_PP_BY_INDEX(enic, vf, pp, &err); if (err) return err; if (is_valid_ether_addr(mac) || is_zero_ether_addr(mac)) { if (vf == PORT_SELF_VF) { memcpy(pp->vf_mac, mac, ETH_ALEN); return 0; } else { /* * For sriov vf's set the mac in hw */ ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic, vnic_dev_set_mac_addr, mac); return enic_dev_status_to_errno(err); } } else return -EINVAL; } static int enic_set_vf_port(struct net_device *netdev, int vf, struct nlattr *port[]) { struct enic *enic = netdev_priv(netdev); struct enic_port_profile prev_pp; struct enic_port_profile *pp; int err = 0, restore_pp = 1; ENIC_PP_BY_INDEX(enic, vf, pp, &err); if (err) return err; if (!port[IFLA_PORT_REQUEST]) return -EOPNOTSUPP; memcpy(&prev_pp, pp, sizeof(*enic->pp)); memset(pp, 0, sizeof(*enic->pp)); pp->set |= ENIC_SET_REQUEST; pp->request = nla_get_u8(port[IFLA_PORT_REQUEST]); if (port[IFLA_PORT_PROFILE]) { pp->set |= ENIC_SET_NAME; memcpy(pp->name, nla_data(port[IFLA_PORT_PROFILE]), PORT_PROFILE_MAX); } if (port[IFLA_PORT_INSTANCE_UUID]) { pp->set |= ENIC_SET_INSTANCE; memcpy(pp->instance_uuid, nla_data(port[IFLA_PORT_INSTANCE_UUID]), PORT_UUID_MAX); } if (port[IFLA_PORT_HOST_UUID]) { pp->set |= ENIC_SET_HOST; memcpy(pp->host_uuid, nla_data(port[IFLA_PORT_HOST_UUID]), PORT_UUID_MAX); } if (vf == PORT_SELF_VF) { /* Special case handling: mac came from IFLA_VF_MAC */ if (!is_zero_ether_addr(prev_pp.vf_mac)) memcpy(pp->mac_addr, prev_pp.vf_mac, ETH_ALEN); if (is_zero_ether_addr(netdev->dev_addr)) eth_hw_addr_random(netdev); } else { /* SR-IOV VF: get mac from adapter */ ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic, vnic_dev_get_mac_addr, pp->mac_addr); if (err) { netdev_err(netdev, "Error getting mac for vf %d\n", vf); memcpy(pp, &prev_pp, sizeof(*pp)); return enic_dev_status_to_errno(err); } } err = enic_process_set_pp_request(enic, vf, &prev_pp, &restore_pp); if (err) { if (restore_pp) { /* Things are still the way they were: Implicit * DISASSOCIATE failed */ memcpy(pp, &prev_pp, sizeof(*pp)); } else { memset(pp, 0, sizeof(*pp)); if (vf == PORT_SELF_VF) eth_zero_addr(netdev->dev_addr); } } else { /* Set flag to indicate that the port assoc/disassoc * request has been sent out to fw */ pp->set |= ENIC_PORT_REQUEST_APPLIED; /* If DISASSOCIATE, clean up all assigned/saved macaddresses */ if (pp->request == PORT_REQUEST_DISASSOCIATE) { eth_zero_addr(pp->mac_addr); if (vf == PORT_SELF_VF) eth_zero_addr(netdev->dev_addr); } } if (vf == PORT_SELF_VF) eth_zero_addr(pp->vf_mac); return err; } static int enic_get_vf_port(struct net_device *netdev, int vf, struct sk_buff *skb) { struct enic *enic = netdev_priv(netdev); u16 response = PORT_PROFILE_RESPONSE_SUCCESS; struct enic_port_profile *pp; int err; ENIC_PP_BY_INDEX(enic, vf, pp, &err); if (err) return err; if (!(pp->set & ENIC_PORT_REQUEST_APPLIED)) return -ENODATA; err = enic_process_get_pp_request(enic, vf, pp->request, &response); if (err) return err; if (nla_put_u16(skb, IFLA_PORT_REQUEST, pp->request) || nla_put_u16(skb, IFLA_PORT_RESPONSE, response) || ((pp->set & ENIC_SET_NAME) && nla_put(skb, IFLA_PORT_PROFILE, PORT_PROFILE_MAX, pp->name)) || ((pp->set & ENIC_SET_INSTANCE) && nla_put(skb, IFLA_PORT_INSTANCE_UUID, PORT_UUID_MAX, pp->instance_uuid)) || ((pp->set & ENIC_SET_HOST) && nla_put(skb, IFLA_PORT_HOST_UUID, PORT_UUID_MAX, pp->host_uuid))) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf) { struct enic *enic = vnic_dev_priv(rq->vdev); if (!buf->os_buf) return; pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(buf->os_buf); buf->os_buf = NULL; } static int enic_rq_alloc_buf(struct vnic_rq *rq) { struct enic *enic = vnic_dev_priv(rq->vdev); struct net_device *netdev = enic->netdev; struct sk_buff *skb; unsigned int len = netdev->mtu + VLAN_ETH_HLEN; unsigned int os_buf_index = 0; dma_addr_t dma_addr; struct vnic_rq_buf *buf = rq->to_use; if (buf->os_buf) { enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr, buf->len); return 0; } skb = netdev_alloc_skb_ip_align(netdev, len); if (!skb) return -ENOMEM; dma_addr = pci_map_single(enic->pdev, skb->data, len, PCI_DMA_FROMDEVICE); if (unlikely(enic_dma_map_check(enic, dma_addr))) { dev_kfree_skb(skb); return -ENOMEM; } enic_queue_rq_desc(rq, skb, os_buf_index, dma_addr, len); return 0; } static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size, u32 pkt_len) { if (ENIC_LARGE_PKT_THRESHOLD <= pkt_len) pkt_size->large_pkt_bytes_cnt += pkt_len; else pkt_size->small_pkt_bytes_cnt += pkt_len; } static bool enic_rxcopybreak(struct net_device *netdev, struct sk_buff **skb, struct vnic_rq_buf *buf, u16 len) { struct enic *enic = netdev_priv(netdev); struct sk_buff *new_skb; if (len > enic->rx_copybreak) return false; new_skb = netdev_alloc_skb_ip_align(netdev, len); if (!new_skb) return false; pci_dma_sync_single_for_cpu(enic->pdev, buf->dma_addr, len, DMA_FROM_DEVICE); memcpy(new_skb->data, (*skb)->data, len); *skb = new_skb; return true; } static void enic_rq_indicate_buf(struct vnic_rq *rq, struct cq_desc *cq_desc, struct vnic_rq_buf *buf, int skipped, void *opaque) { struct enic *enic = vnic_dev_priv(rq->vdev); struct net_device *netdev = enic->netdev; struct sk_buff *skb; struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)]; u8 type, color, eop, sop, ingress_port, vlan_stripped; u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof; u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok; u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc; u8 packet_error; u16 q_number, completed_index, bytes_written, vlan_tci, checksum; u32 rss_hash; bool outer_csum_ok = true, encap = false; if (skipped) return; skb = buf->os_buf; cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, &type, &color, &q_number, &completed_index, &ingress_port, &fcoe, &eop, &sop, &rss_type, &csum_not_calc, &rss_hash, &bytes_written, &packet_error, &vlan_stripped, &vlan_tci, &checksum, &fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment, &fcs_ok); if (packet_error) { if (!fcs_ok) { if (bytes_written > 0) enic->rq_bad_fcs++; else if (bytes_written == 0) enic->rq_truncated_pkts++; } pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); buf->os_buf = NULL; return; } if (eop && bytes_written > 0) { /* Good receive */ if (!enic_rxcopybreak(netdev, &skb, buf, bytes_written)) { buf->os_buf = NULL; pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); } prefetch(skb->data - NET_IP_ALIGN); skb_put(skb, bytes_written); skb->protocol = eth_type_trans(skb, netdev); skb_record_rx_queue(skb, q_number); if ((netdev->features & NETIF_F_RXHASH) && rss_hash && (type == 3)) { switch (rss_type) { case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4: case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6: case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX: skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L4); break; case CQ_ENET_RQ_DESC_RSS_TYPE_IPv4: case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6: case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX: skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L3); break; } } if (enic->vxlan.vxlan_udp_port_number) { switch (enic->vxlan.patch_level) { case 0: if (fcoe) { encap = true; outer_csum_ok = fcoe_fc_crc_ok; } break; case 2: if ((type == 7) && (rss_hash & BIT(0))) { encap = true; outer_csum_ok = (rss_hash & BIT(1)) && (rss_hash & BIT(2)); } break; } } /* Hardware does not provide whole packet checksum. It only * provides pseudo checksum. Since hw validates the packet * checksum but not provide us the checksum value. use * CHECSUM_UNNECESSARY. * * In case of encap pkt tcp_udp_csum_ok/tcp_udp_csum_ok is * inner csum_ok. outer_csum_ok is set by hw when outer udp * csum is correct or is zero. */ if ((netdev->features & NETIF_F_RXCSUM) && !csum_not_calc && tcp_udp_csum_ok && ipv4_csum_ok && outer_csum_ok) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = encap; } if (vlan_stripped) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); skb_mark_napi_id(skb, &enic->napi[rq->index]); if (!(netdev->features & NETIF_F_GRO)) netif_receive_skb(skb); else napi_gro_receive(&enic->napi[q_number], skb); if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) enic_intr_update_pkt_size(&cq->pkt_size_counter, bytes_written); } else { /* Buffer overflow */ pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); buf->os_buf = NULL; } } static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc, u8 type, u16 q_number, u16 completed_index, void *opaque) { struct enic *enic = vnic_dev_priv(vdev); vnic_rq_service(&enic->rq[q_number], cq_desc, completed_index, VNIC_RQ_RETURN_DESC, enic_rq_indicate_buf, opaque); return 0; } static void enic_set_int_moderation(struct enic *enic, struct vnic_rq *rq) { unsigned int intr = enic_msix_rq_intr(enic, rq->index); struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)]; u32 timer = cq->tobe_rx_coal_timeval; if (cq->tobe_rx_coal_timeval != cq->cur_rx_coal_timeval) { vnic_intr_coalescing_timer_set(&enic->intr[intr], timer); cq->cur_rx_coal_timeval = cq->tobe_rx_coal_timeval; } } static void enic_calc_int_moderation(struct enic *enic, struct vnic_rq *rq) { struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting; struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)]; struct vnic_rx_bytes_counter *pkt_size_counter = &cq->pkt_size_counter; int index; u32 timer; u32 range_start; u32 traffic; u64 delta; ktime_t now = ktime_get(); delta = ktime_us_delta(now, cq->prev_ts); if (delta < ENIC_AIC_TS_BREAK) return; cq->prev_ts = now; traffic = pkt_size_counter->large_pkt_bytes_cnt + pkt_size_counter->small_pkt_bytes_cnt; /* The table takes Mbps * traffic *= 8 => bits * traffic *= (10^6 / delta) => bps * traffic /= 10^6 => Mbps * * Combining, traffic *= (8 / delta) */ traffic <<= 3; traffic = delta > UINT_MAX ? 0 : traffic / (u32)delta; for (index = 0; index < ENIC_MAX_COALESCE_TIMERS; index++) if (traffic < mod_table[index].rx_rate) break; range_start = (pkt_size_counter->small_pkt_bytes_cnt > pkt_size_counter->large_pkt_bytes_cnt << 1) ? rx_coal->small_pkt_range_start : rx_coal->large_pkt_range_start; timer = range_start + ((rx_coal->range_end - range_start) * mod_table[index].range_percent / 100); /* Damping */ cq->tobe_rx_coal_timeval = (timer + cq->tobe_rx_coal_timeval) >> 1; pkt_size_counter->large_pkt_bytes_cnt = 0; pkt_size_counter->small_pkt_bytes_cnt = 0; } static int enic_poll(struct napi_struct *napi, int budget) { struct net_device *netdev = napi->dev; struct enic *enic = netdev_priv(netdev); unsigned int cq_rq = enic_cq_rq(enic, 0); unsigned int cq_wq = enic_cq_wq(enic, 0); unsigned int intr = enic_legacy_io_intr(); unsigned int rq_work_to_do = budget; unsigned int wq_work_to_do = -1; /* no limit */ unsigned int work_done, rq_work_done = 0, wq_work_done; int err; wq_work_done = vnic_cq_service(&enic->cq[cq_wq], wq_work_to_do, enic_wq_service, NULL); if (budget > 0) rq_work_done = vnic_cq_service(&enic->cq[cq_rq], rq_work_to_do, enic_rq_service, NULL); /* Accumulate intr event credits for this polling * cycle. An intr event is the completion of a * a WQ or RQ packet. */ work_done = rq_work_done + wq_work_done; if (work_done > 0) vnic_intr_return_credits(&enic->intr[intr], work_done, 0 /* don't unmask intr */, 0 /* don't reset intr timer */); err = vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf); /* Buffer allocation failed. Stay in polling * mode so we can try to fill the ring again. */ if (err) rq_work_done = rq_work_to_do; if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) /* Call the function which refreshes the intr coalescing timer * value based on the traffic. */ enic_calc_int_moderation(enic, &enic->rq[0]); if ((rq_work_done < budget) && napi_complete_done(napi, rq_work_done)) { /* Some work done, but not enough to stay in polling, * exit polling */ if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) enic_set_int_moderation(enic, &enic->rq[0]); vnic_intr_unmask(&enic->intr[intr]); } return rq_work_done; } #ifdef CONFIG_RFS_ACCEL static void enic_free_rx_cpu_rmap(struct enic *enic) { free_irq_cpu_rmap(enic->netdev->rx_cpu_rmap); enic->netdev->rx_cpu_rmap = NULL; } static void enic_set_rx_cpu_rmap(struct enic *enic) { int i, res; if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) { enic->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(enic->rq_count); if (unlikely(!enic->netdev->rx_cpu_rmap)) return; for (i = 0; i < enic->rq_count; i++) { res = irq_cpu_rmap_add(enic->netdev->rx_cpu_rmap, enic->msix_entry[i].vector); if (unlikely(res)) { enic_free_rx_cpu_rmap(enic); return; } } } } #else static void enic_free_rx_cpu_rmap(struct enic *enic) { } static void enic_set_rx_cpu_rmap(struct enic *enic) { } #endif /* CONFIG_RFS_ACCEL */ static int enic_poll_msix_wq(struct napi_struct *napi, int budget) { struct net_device *netdev = napi->dev; struct enic *enic = netdev_priv(netdev); unsigned int wq_index = (napi - &enic->napi[0]) - enic->rq_count; struct vnic_wq *wq = &enic->wq[wq_index]; unsigned int cq; unsigned int intr; unsigned int wq_work_to_do = -1; /* clean all desc possible */ unsigned int wq_work_done; unsigned int wq_irq; wq_irq = wq->index; cq = enic_cq_wq(enic, wq_irq); intr = enic_msix_wq_intr(enic, wq_irq); wq_work_done = vnic_cq_service(&enic->cq[cq], wq_work_to_do, enic_wq_service, NULL); vnic_intr_return_credits(&enic->intr[intr], wq_work_done, 0 /* don't unmask intr */, 1 /* reset intr timer */); if (!wq_work_done) { napi_complete(napi); vnic_intr_unmask(&enic->intr[intr]); return 0; } return budget; } static int enic_poll_msix_rq(struct napi_struct *napi, int budget) { struct net_device *netdev = napi->dev; struct enic *enic = netdev_priv(netdev); unsigned int rq = (napi - &enic->napi[0]); unsigned int cq = enic_cq_rq(enic, rq); unsigned int intr = enic_msix_rq_intr(enic, rq); unsigned int work_to_do = budget; unsigned int work_done = 0; int err; /* Service RQ */ if (budget > 0) work_done = vnic_cq_service(&enic->cq[cq], work_to_do, enic_rq_service, NULL); /* Return intr event credits for this polling * cycle. An intr event is the completion of a * RQ packet. */ if (work_done > 0) vnic_intr_return_credits(&enic->intr[intr], work_done, 0 /* don't unmask intr */, 0 /* don't reset intr timer */); err = vnic_rq_fill(&enic->rq[rq], enic_rq_alloc_buf); /* Buffer allocation failed. Stay in polling mode * so we can try to fill the ring again. */ if (err) work_done = work_to_do; if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) /* Call the function which refreshes the intr coalescing timer * value based on the traffic. */ enic_calc_int_moderation(enic, &enic->rq[rq]); if ((work_done < budget) && napi_complete_done(napi, work_done)) { /* Some work done, but not enough to stay in polling, * exit polling */ if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) enic_set_int_moderation(enic, &enic->rq[rq]); vnic_intr_unmask(&enic->intr[intr]); } return work_done; } static void enic_notify_timer(unsigned long data) { struct enic *enic = (struct enic *)data; enic_notify_check(enic); mod_timer(&enic->notify_timer, round_jiffies(jiffies + ENIC_NOTIFY_TIMER_PERIOD)); } static void enic_free_intr(struct enic *enic) { struct net_device *netdev = enic->netdev; unsigned int i; enic_free_rx_cpu_rmap(enic); switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: free_irq(enic->pdev->irq, netdev); break; case VNIC_DEV_INTR_MODE_MSI: free_irq(enic->pdev->irq, enic); break; case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < ARRAY_SIZE(enic->msix); i++) if (enic->msix[i].requested) free_irq(enic->msix_entry[i].vector, enic->msix[i].devid); break; default: break; } } static int enic_request_intr(struct enic *enic) { struct net_device *netdev = enic->netdev; unsigned int i, intr; int err = 0; enic_set_rx_cpu_rmap(enic); switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: err = request_irq(enic->pdev->irq, enic_isr_legacy, IRQF_SHARED, netdev->name, netdev); break; case VNIC_DEV_INTR_MODE_MSI: err = request_irq(enic->pdev->irq, enic_isr_msi, 0, netdev->name, enic); break; case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < enic->rq_count; i++) { intr = enic_msix_rq_intr(enic, i); snprintf(enic->msix[intr].devname, sizeof(enic->msix[intr].devname), "%.11s-rx-%u", netdev->name, i); enic->msix[intr].isr = enic_isr_msix; enic->msix[intr].devid = &enic->napi[i]; } for (i = 0; i < enic->wq_count; i++) { int wq = enic_cq_wq(enic, i); intr = enic_msix_wq_intr(enic, i); snprintf(enic->msix[intr].devname, sizeof(enic->msix[intr].devname), "%.11s-tx-%u", netdev->name, i); enic->msix[intr].isr = enic_isr_msix; enic->msix[intr].devid = &enic->napi[wq]; } intr = enic_msix_err_intr(enic); snprintf(enic->msix[intr].devname, sizeof(enic->msix[intr].devname), "%.11s-err", netdev->name); enic->msix[intr].isr = enic_isr_msix_err; enic->msix[intr].devid = enic; intr = enic_msix_notify_intr(enic); snprintf(enic->msix[intr].devname, sizeof(enic->msix[intr].devname), "%.11s-notify", netdev->name); enic->msix[intr].isr = enic_isr_msix_notify; enic->msix[intr].devid = enic; for (i = 0; i < ARRAY_SIZE(enic->msix); i++) enic->msix[i].requested = 0; for (i = 0; i < enic->intr_count; i++) { err = request_irq(enic->msix_entry[i].vector, enic->msix[i].isr, 0, enic->msix[i].devname, enic->msix[i].devid); if (err) { enic_free_intr(enic); break; } enic->msix[i].requested = 1; } break; default: break; } return err; } static void enic_synchronize_irqs(struct enic *enic) { unsigned int i; switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: case VNIC_DEV_INTR_MODE_MSI: synchronize_irq(enic->pdev->irq); break; case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < enic->intr_count; i++) synchronize_irq(enic->msix_entry[i].vector); break; default: break; } } static void enic_set_rx_coal_setting(struct enic *enic) { unsigned int speed; int index = -1; struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting; /* 1. Read the link speed from fw * 2. Pick the default range for the speed * 3. Update it in enic->rx_coalesce_setting */ speed = vnic_dev_port_speed(enic->vdev); if (ENIC_LINK_SPEED_10G < speed) index = ENIC_LINK_40G_INDEX; else if (ENIC_LINK_SPEED_4G < speed) index = ENIC_LINK_10G_INDEX; else index = ENIC_LINK_4G_INDEX; rx_coal->small_pkt_range_start = mod_range[index].small_pkt_range_start; rx_coal->large_pkt_range_start = mod_range[index].large_pkt_range_start; rx_coal->range_end = ENIC_RX_COALESCE_RANGE_END; /* Start with the value provided by UCSM */ for (index = 0; index < enic->rq_count; index++) enic->cq[index].cur_rx_coal_timeval = enic->config.intr_timer_usec; rx_coal->use_adaptive_rx_coalesce = 1; } static int enic_dev_notify_set(struct enic *enic) { int err; spin_lock_bh(&enic->devcmd_lock); switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: err = vnic_dev_notify_set(enic->vdev, enic_legacy_notify_intr()); break; case VNIC_DEV_INTR_MODE_MSIX: err = vnic_dev_notify_set(enic->vdev, enic_msix_notify_intr(enic)); break; default: err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */); break; } spin_unlock_bh(&enic->devcmd_lock); return err; } static void enic_notify_timer_start(struct enic *enic) { switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_MSI: mod_timer(&enic->notify_timer, jiffies); break; default: /* Using intr for notification for INTx/MSI-X */ break; } } /* rtnl lock is held, process context */ static int enic_open(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); unsigned int i; int err; err = enic_request_intr(enic); if (err) { netdev_err(netdev, "Unable to request irq.\n"); return err; } enic_init_affinity_hint(enic); enic_set_affinity_hint(enic); err = enic_dev_notify_set(enic); if (err) { netdev_err(netdev, "Failed to alloc notify buffer, aborting.\n"); goto err_out_free_intr; } for (i = 0; i < enic->rq_count; i++) { vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf); /* Need at least one buffer on ring to get going */ if (vnic_rq_desc_used(&enic->rq[i]) == 0) { netdev_err(netdev, "Unable to alloc receive buffers\n"); err = -ENOMEM; goto err_out_free_rq; } } for (i = 0; i < enic->wq_count; i++) vnic_wq_enable(&enic->wq[i]); for (i = 0; i < enic->rq_count; i++) vnic_rq_enable(&enic->rq[i]); if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic)) enic_dev_add_station_addr(enic); enic_set_rx_mode(netdev); netif_tx_wake_all_queues(netdev); for (i = 0; i < enic->rq_count; i++) napi_enable(&enic->napi[i]); if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) for (i = 0; i < enic->wq_count; i++) napi_enable(&enic->napi[enic_cq_wq(enic, i)]); enic_dev_enable(enic); for (i = 0; i < enic->intr_count; i++) vnic_intr_unmask(&enic->intr[i]); enic_notify_timer_start(enic); enic_rfs_flw_tbl_init(enic); return 0; err_out_free_rq: for (i = 0; i < enic->rq_count; i++) vnic_rq_clean(&enic->rq[i], enic_free_rq_buf); enic_dev_notify_unset(enic); err_out_free_intr: enic_unset_affinity_hint(enic); enic_free_intr(enic); return err; } /* rtnl lock is held, process context */ static int enic_stop(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); unsigned int i; int err; for (i = 0; i < enic->intr_count; i++) { vnic_intr_mask(&enic->intr[i]); (void)vnic_intr_masked(&enic->intr[i]); /* flush write */ } enic_synchronize_irqs(enic); del_timer_sync(&enic->notify_timer); enic_rfs_flw_tbl_free(enic); enic_dev_disable(enic); for (i = 0; i < enic->rq_count; i++) napi_disable(&enic->napi[i]); netif_carrier_off(netdev); netif_tx_disable(netdev); if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) for (i = 0; i < enic->wq_count; i++) napi_disable(&enic->napi[enic_cq_wq(enic, i)]); if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic)) enic_dev_del_station_addr(enic); for (i = 0; i < enic->wq_count; i++) { err = vnic_wq_disable(&enic->wq[i]); if (err) return err; } for (i = 0; i < enic->rq_count; i++) { err = vnic_rq_disable(&enic->rq[i]); if (err) return err; } enic_dev_notify_unset(enic); enic_unset_affinity_hint(enic); enic_free_intr(enic); for (i = 0; i < enic->wq_count; i++) vnic_wq_clean(&enic->wq[i], enic_free_wq_buf); for (i = 0; i < enic->rq_count; i++) vnic_rq_clean(&enic->rq[i], enic_free_rq_buf); for (i = 0; i < enic->cq_count; i++) vnic_cq_clean(&enic->cq[i]); for (i = 0; i < enic->intr_count; i++) vnic_intr_clean(&enic->intr[i]); return 0; } static int enic_change_mtu(struct net_device *netdev, int new_mtu) { struct enic *enic = netdev_priv(netdev); int running = netif_running(netdev); if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) return -EOPNOTSUPP; if (running) enic_stop(netdev); netdev->mtu = new_mtu; if (netdev->mtu > enic->port_mtu) netdev_warn(netdev, "interface MTU (%d) set higher than port MTU (%d)\n", netdev->mtu, enic->port_mtu); if (running) enic_open(netdev); return 0; } static void enic_change_mtu_work(struct work_struct *work) { struct enic *enic = container_of(work, struct enic, change_mtu_work); struct net_device *netdev = enic->netdev; int new_mtu = vnic_dev_mtu(enic->vdev); int err; unsigned int i; new_mtu = max_t(int, ENIC_MIN_MTU, min_t(int, ENIC_MAX_MTU, new_mtu)); rtnl_lock(); /* Stop RQ */ del_timer_sync(&enic->notify_timer); for (i = 0; i < enic->rq_count; i++) napi_disable(&enic->napi[i]); vnic_intr_mask(&enic->intr[0]); enic_synchronize_irqs(enic); err = vnic_rq_disable(&enic->rq[0]); if (err) { rtnl_unlock(); netdev_err(netdev, "Unable to disable RQ.\n"); return; } vnic_rq_clean(&enic->rq[0], enic_free_rq_buf); vnic_cq_clean(&enic->cq[0]); vnic_intr_clean(&enic->intr[0]); /* Fill RQ with new_mtu-sized buffers */ netdev->mtu = new_mtu; vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf); /* Need at least one buffer on ring to get going */ if (vnic_rq_desc_used(&enic->rq[0]) == 0) { rtnl_unlock(); netdev_err(netdev, "Unable to alloc receive buffers.\n"); return; } /* Start RQ */ vnic_rq_enable(&enic->rq[0]); napi_enable(&enic->napi[0]); vnic_intr_unmask(&enic->intr[0]); enic_notify_timer_start(enic); rtnl_unlock(); netdev_info(netdev, "interface MTU set as %d\n", netdev->mtu); } #ifdef CONFIG_NET_POLL_CONTROLLER static void enic_poll_controller(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct vnic_dev *vdev = enic->vdev; unsigned int i, intr; switch (vnic_dev_get_intr_mode(vdev)) { case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < enic->rq_count; i++) { intr = enic_msix_rq_intr(enic, i); enic_isr_msix(enic->msix_entry[intr].vector, &enic->napi[i]); } for (i = 0; i < enic->wq_count; i++) { intr = enic_msix_wq_intr(enic, i); enic_isr_msix(enic->msix_entry[intr].vector, &enic->napi[enic_cq_wq(enic, i)]); } break; case VNIC_DEV_INTR_MODE_MSI: enic_isr_msi(enic->pdev->irq, enic); break; case VNIC_DEV_INTR_MODE_INTX: enic_isr_legacy(enic->pdev->irq, netdev); break; default: break; } } #endif static int enic_dev_wait(struct vnic_dev *vdev, int (*start)(struct vnic_dev *, int), int (*finished)(struct vnic_dev *, int *), int arg) { unsigned long time; int done; int err; BUG_ON(in_interrupt()); err = start(vdev, arg); if (err) return err; /* Wait for func to complete...2 seconds max */ time = jiffies + (HZ * 2); do { err = finished(vdev, &done); if (err) return err; if (done) return 0; schedule_timeout_uninterruptible(HZ / 10); } while (time_after(time, jiffies)); return -ETIMEDOUT; } static int enic_dev_open(struct enic *enic) { int err; err = enic_dev_wait(enic->vdev, vnic_dev_open, vnic_dev_open_done, 0); if (err) dev_err(enic_get_dev(enic), "vNIC device open failed, err %d\n", err); return err; } static int enic_dev_soft_reset(struct enic *enic) { int err; err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset, vnic_dev_soft_reset_done, 0); if (err) netdev_err(enic->netdev, "vNIC soft reset failed, err %d\n", err); return err; } static int enic_dev_hang_reset(struct enic *enic) { int err; err = enic_dev_wait(enic->vdev, vnic_dev_hang_reset, vnic_dev_hang_reset_done, 0); if (err) netdev_err(enic->netdev, "vNIC hang reset failed, err %d\n", err); return err; } int __enic_set_rsskey(struct enic *enic) { union vnic_rss_key *rss_key_buf_va; dma_addr_t rss_key_buf_pa; int i, kidx, bidx, err; rss_key_buf_va = pci_zalloc_consistent(enic->pdev, sizeof(union vnic_rss_key), &rss_key_buf_pa); if (!rss_key_buf_va) return -ENOMEM; for (i = 0; i < ENIC_RSS_LEN; i++) { kidx = i / ENIC_RSS_BYTES_PER_KEY; bidx = i % ENIC_RSS_BYTES_PER_KEY; rss_key_buf_va->key[kidx].b[bidx] = enic->rss_key[i]; } spin_lock_bh(&enic->devcmd_lock); err = enic_set_rss_key(enic, rss_key_buf_pa, sizeof(union vnic_rss_key)); spin_unlock_bh(&enic->devcmd_lock); pci_free_consistent(enic->pdev, sizeof(union vnic_rss_key), rss_key_buf_va, rss_key_buf_pa); return err; } static int enic_set_rsskey(struct enic *enic) { netdev_rss_key_fill(enic->rss_key, ENIC_RSS_LEN); return __enic_set_rsskey(enic); } static int enic_set_rsscpu(struct enic *enic, u8 rss_hash_bits) { dma_addr_t rss_cpu_buf_pa; union vnic_rss_cpu *rss_cpu_buf_va = NULL; unsigned int i; int err; rss_cpu_buf_va = pci_alloc_consistent(enic->pdev, sizeof(union vnic_rss_cpu), &rss_cpu_buf_pa); if (!rss_cpu_buf_va) return -ENOMEM; for (i = 0; i < (1 << rss_hash_bits); i++) (*rss_cpu_buf_va).cpu[i/4].b[i%4] = i % enic->rq_count; spin_lock_bh(&enic->devcmd_lock); err = enic_set_rss_cpu(enic, rss_cpu_buf_pa, sizeof(union vnic_rss_cpu)); spin_unlock_bh(&enic->devcmd_lock); pci_free_consistent(enic->pdev, sizeof(union vnic_rss_cpu), rss_cpu_buf_va, rss_cpu_buf_pa); return err; } static int enic_set_niccfg(struct enic *enic, u8 rss_default_cpu, u8 rss_hash_type, u8 rss_hash_bits, u8 rss_base_cpu, u8 rss_enable) { const u8 tso_ipid_split_en = 0; const u8 ig_vlan_strip_en = 1; int err; /* Enable VLAN tag stripping. */ spin_lock_bh(&enic->devcmd_lock); err = enic_set_nic_cfg(enic, rss_default_cpu, rss_hash_type, rss_hash_bits, rss_base_cpu, rss_enable, tso_ipid_split_en, ig_vlan_strip_en); spin_unlock_bh(&enic->devcmd_lock); return err; } static int enic_set_rss_nic_cfg(struct enic *enic) { struct device *dev = enic_get_dev(enic); const u8 rss_default_cpu = 0; const u8 rss_hash_type = NIC_CFG_RSS_HASH_TYPE_IPV4 | NIC_CFG_RSS_HASH_TYPE_TCP_IPV4 | NIC_CFG_RSS_HASH_TYPE_IPV6 | NIC_CFG_RSS_HASH_TYPE_TCP_IPV6; const u8 rss_hash_bits = 7; const u8 rss_base_cpu = 0; u8 rss_enable = ENIC_SETTING(enic, RSS) && (enic->rq_count > 1); if (rss_enable) { if (!enic_set_rsskey(enic)) { if (enic_set_rsscpu(enic, rss_hash_bits)) { rss_enable = 0; dev_warn(dev, "RSS disabled, " "Failed to set RSS cpu indirection table."); } } else { rss_enable = 0; dev_warn(dev, "RSS disabled, Failed to set RSS key.\n"); } } return enic_set_niccfg(enic, rss_default_cpu, rss_hash_type, rss_hash_bits, rss_base_cpu, rss_enable); } static void enic_reset(struct work_struct *work) { struct enic *enic = container_of(work, struct enic, reset); if (!netif_running(enic->netdev)) return; rtnl_lock(); spin_lock(&enic->enic_api_lock); enic_stop(enic->netdev); enic_dev_soft_reset(enic); enic_reset_addr_lists(enic); enic_init_vnic_resources(enic); enic_set_rss_nic_cfg(enic); enic_dev_set_ig_vlan_rewrite_mode(enic); enic_open(enic->netdev); spin_unlock(&enic->enic_api_lock); call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev); rtnl_unlock(); } static void enic_tx_hang_reset(struct work_struct *work) { struct enic *enic = container_of(work, struct enic, tx_hang_reset); rtnl_lock(); spin_lock(&enic->enic_api_lock); enic_dev_hang_notify(enic); enic_stop(enic->netdev); enic_dev_hang_reset(enic); enic_reset_addr_lists(enic); enic_init_vnic_resources(enic); enic_set_rss_nic_cfg(enic); enic_dev_set_ig_vlan_rewrite_mode(enic); enic_open(enic->netdev); spin_unlock(&enic->enic_api_lock); call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev); rtnl_unlock(); } static int enic_set_intr_mode(struct enic *enic) { unsigned int n = min_t(unsigned int, enic->rq_count, ENIC_RQ_MAX); unsigned int m = min_t(unsigned int, enic->wq_count, ENIC_WQ_MAX); unsigned int i; /* Set interrupt mode (INTx, MSI, MSI-X) depending * on system capabilities. * * Try MSI-X first * * We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs * (the second to last INTR is used for WQ/RQ errors) * (the last INTR is used for notifications) */ BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2); for (i = 0; i < n + m + 2; i++) enic->msix_entry[i].entry = i; /* Use multiple RQs if RSS is enabled */ if (ENIC_SETTING(enic, RSS) && enic->config.intr_mode < 1 && enic->rq_count >= n && enic->wq_count >= m && enic->cq_count >= n + m && enic->intr_count >= n + m + 2) { if (pci_enable_msix_range(enic->pdev, enic->msix_entry, n + m + 2, n + m + 2) > 0) { enic->rq_count = n; enic->wq_count = m; enic->cq_count = n + m; enic->intr_count = n + m + 2; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSIX); return 0; } } if (enic->config.intr_mode < 1 && enic->rq_count >= 1 && enic->wq_count >= m && enic->cq_count >= 1 + m && enic->intr_count >= 1 + m + 2) { if (pci_enable_msix_range(enic->pdev, enic->msix_entry, 1 + m + 2, 1 + m + 2) > 0) { enic->rq_count = 1; enic->wq_count = m; enic->cq_count = 1 + m; enic->intr_count = 1 + m + 2; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSIX); return 0; } } /* Next try MSI * * We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR */ if (enic->config.intr_mode < 2 && enic->rq_count >= 1 && enic->wq_count >= 1 && enic->cq_count >= 2 && enic->intr_count >= 1 && !pci_enable_msi(enic->pdev)) { enic->rq_count = 1; enic->wq_count = 1; enic->cq_count = 2; enic->intr_count = 1; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI); return 0; } /* Next try INTx * * We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs * (the first INTR is used for WQ/RQ) * (the second INTR is used for WQ/RQ errors) * (the last INTR is used for notifications) */ if (enic->config.intr_mode < 3 && enic->rq_count >= 1 && enic->wq_count >= 1 && enic->cq_count >= 2 && enic->intr_count >= 3) { enic->rq_count = 1; enic->wq_count = 1; enic->cq_count = 2; enic->intr_count = 3; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX); return 0; } vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN); return -EINVAL; } static void enic_clear_intr_mode(struct enic *enic) { switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_MSIX: pci_disable_msix(enic->pdev); break; case VNIC_DEV_INTR_MODE_MSI: pci_disable_msi(enic->pdev); break; default: break; } vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN); } static const struct net_device_ops enic_netdev_dynamic_ops = { .ndo_open = enic_open, .ndo_stop = enic_stop, .ndo_start_xmit = enic_hard_start_xmit, .ndo_get_stats64 = enic_get_stats, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = enic_set_rx_mode, .ndo_set_mac_address = enic_set_mac_address_dynamic, .ndo_change_mtu = enic_change_mtu, .ndo_vlan_rx_add_vid = enic_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = enic_vlan_rx_kill_vid, .ndo_tx_timeout = enic_tx_timeout, .ndo_set_vf_port = enic_set_vf_port, .ndo_get_vf_port = enic_get_vf_port, .ndo_set_vf_mac = enic_set_vf_mac, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = enic_poll_controller, #endif #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = enic_rx_flow_steer, #endif .ndo_udp_tunnel_add = enic_udp_tunnel_add, .ndo_udp_tunnel_del = enic_udp_tunnel_del, .ndo_features_check = enic_features_check, }; static const struct net_device_ops enic_netdev_ops = { .ndo_open = enic_open, .ndo_stop = enic_stop, .ndo_start_xmit = enic_hard_start_xmit, .ndo_get_stats64 = enic_get_stats, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = enic_set_mac_address, .ndo_set_rx_mode = enic_set_rx_mode, .ndo_change_mtu = enic_change_mtu, .ndo_vlan_rx_add_vid = enic_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = enic_vlan_rx_kill_vid, .ndo_tx_timeout = enic_tx_timeout, .ndo_set_vf_port = enic_set_vf_port, .ndo_get_vf_port = enic_get_vf_port, .ndo_set_vf_mac = enic_set_vf_mac, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = enic_poll_controller, #endif #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = enic_rx_flow_steer, #endif .ndo_udp_tunnel_add = enic_udp_tunnel_add, .ndo_udp_tunnel_del = enic_udp_tunnel_del, .ndo_features_check = enic_features_check, }; static void enic_dev_deinit(struct enic *enic) { unsigned int i; for (i = 0; i < enic->rq_count; i++) { napi_hash_del(&enic->napi[i]); netif_napi_del(&enic->napi[i]); } if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) for (i = 0; i < enic->wq_count; i++) netif_napi_del(&enic->napi[enic_cq_wq(enic, i)]); enic_free_vnic_resources(enic); enic_clear_intr_mode(enic); enic_free_affinity_hint(enic); } static void enic_kdump_kernel_config(struct enic *enic) { if (is_kdump_kernel()) { dev_info(enic_get_dev(enic), "Running from within kdump kernel. Using minimal resources\n"); enic->rq_count = 1; enic->wq_count = 1; enic->config.rq_desc_count = ENIC_MIN_RQ_DESCS; enic->config.wq_desc_count = ENIC_MIN_WQ_DESCS; enic->config.mtu = min_t(u16, 1500, enic->config.mtu); } } static int enic_dev_init(struct enic *enic) { struct device *dev = enic_get_dev(enic); struct net_device *netdev = enic->netdev; unsigned int i; int err; /* Get interrupt coalesce timer info */ err = enic_dev_intr_coal_timer_info(enic); if (err) { dev_warn(dev, "Using default conversion factor for " "interrupt coalesce timer\n"); vnic_dev_intr_coal_timer_info_default(enic->vdev); } /* Get vNIC configuration */ err = enic_get_vnic_config(enic); if (err) { dev_err(dev, "Get vNIC configuration failed, aborting\n"); return err; } /* Get available resource counts */ enic_get_res_counts(enic); /* modify resource count if we are in kdump_kernel */ enic_kdump_kernel_config(enic); /* Set interrupt mode based on resource counts and system * capabilities */ err = enic_set_intr_mode(enic); if (err) { dev_err(dev, "Failed to set intr mode based on resource " "counts and system capabilities, aborting\n"); return err; } /* Allocate and configure vNIC resources */ err = enic_alloc_vnic_resources(enic); if (err) { dev_err(dev, "Failed to alloc vNIC resources, aborting\n"); goto err_out_free_vnic_resources; } enic_init_vnic_resources(enic); err = enic_set_rss_nic_cfg(enic); if (err) { dev_err(dev, "Failed to config nic, aborting\n"); goto err_out_free_vnic_resources; } switch (vnic_dev_get_intr_mode(enic->vdev)) { default: netif_napi_add(netdev, &enic->napi[0], enic_poll, 64); break; case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < enic->rq_count; i++) { netif_napi_add(netdev, &enic->napi[i], enic_poll_msix_rq, NAPI_POLL_WEIGHT); } for (i = 0; i < enic->wq_count; i++) netif_napi_add(netdev, &enic->napi[enic_cq_wq(enic, i)], enic_poll_msix_wq, NAPI_POLL_WEIGHT); break; } return 0; err_out_free_vnic_resources: enic_free_affinity_hint(enic); enic_clear_intr_mode(enic); enic_free_vnic_resources(enic); return err; } static void enic_iounmap(struct enic *enic) { unsigned int i; for (i = 0; i < ARRAY_SIZE(enic->bar); i++) if (enic->bar[i].vaddr) iounmap(enic->bar[i].vaddr); } static int enic_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct net_device *netdev; struct enic *enic; int using_dac = 0; unsigned int i; int err; #ifdef CONFIG_PCI_IOV int pos = 0; #endif int num_pps = 1; /* Allocate net device structure and initialize. Private * instance data is initialized to zero. */ netdev = alloc_etherdev_mqs(sizeof(struct enic), ENIC_RQ_MAX, ENIC_WQ_MAX); if (!netdev) return -ENOMEM; pci_set_drvdata(pdev, netdev); SET_NETDEV_DEV(netdev, &pdev->dev); enic = netdev_priv(netdev); enic->netdev = netdev; enic->pdev = pdev; /* Setup PCI resources */ err = pci_enable_device_mem(pdev); if (err) { dev_err(dev, "Cannot enable PCI device, aborting\n"); goto err_out_free_netdev; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "Cannot request PCI regions, aborting\n"); goto err_out_disable_device; } pci_set_master(pdev); /* Query PCI controller on system for DMA addressing * limitation for the device. Try 64-bit first, and * fail to 32-bit. */ err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(dev, "No usable DMA configuration, aborting\n"); goto err_out_release_regions; } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(dev, "Unable to obtain %u-bit DMA " "for consistent allocations, aborting\n", 32); goto err_out_release_regions; } } else { err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_err(dev, "Unable to obtain %u-bit DMA " "for consistent allocations, aborting\n", 64); goto err_out_release_regions; } using_dac = 1; } /* Map vNIC resources from BAR0-5 */ for (i = 0; i < ARRAY_SIZE(enic->bar); i++) { if (!(pci_resource_flags(pdev, i) & IORESOURCE_MEM)) continue; enic->bar[i].len = pci_resource_len(pdev, i); enic->bar[i].vaddr = pci_iomap(pdev, i, enic->bar[i].len); if (!enic->bar[i].vaddr) { dev_err(dev, "Cannot memory-map BAR %d, aborting\n", i); err = -ENODEV; goto err_out_iounmap; } enic->bar[i].bus_addr = pci_resource_start(pdev, i); } /* Register vNIC device */ enic->vdev = vnic_dev_register(NULL, enic, pdev, enic->bar, ARRAY_SIZE(enic->bar)); if (!enic->vdev) { dev_err(dev, "vNIC registration failed, aborting\n"); err = -ENODEV; goto err_out_iounmap; } err = vnic_devcmd_init(enic->vdev); if (err) goto err_out_vnic_unregister; #ifdef CONFIG_PCI_IOV /* Get number of subvnics */ pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (pos) { pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &enic->num_vfs); if (enic->num_vfs) { err = pci_enable_sriov(pdev, enic->num_vfs); if (err) { dev_err(dev, "SRIOV enable failed, aborting." " pci_enable_sriov() returned %d\n", err); goto err_out_vnic_unregister; } enic->priv_flags |= ENIC_SRIOV_ENABLED; num_pps = enic->num_vfs; } } #endif /* Allocate structure for port profiles */ enic->pp = kcalloc(num_pps, sizeof(*enic->pp), GFP_KERNEL); if (!enic->pp) { err = -ENOMEM; goto err_out_disable_sriov_pp; } /* Issue device open to get device in known state */ err = enic_dev_open(enic); if (err) { dev_err(dev, "vNIC dev open failed, aborting\n"); goto err_out_disable_sriov; } /* Setup devcmd lock */ spin_lock_init(&enic->devcmd_lock); spin_lock_init(&enic->enic_api_lock); /* * Set ingress vlan rewrite mode before vnic initialization */ err = enic_dev_set_ig_vlan_rewrite_mode(enic); if (err) { dev_err(dev, "Failed to set ingress vlan rewrite mode, aborting.\n"); goto err_out_dev_close; } /* Issue device init to initialize the vnic-to-switch link. * We'll start with carrier off and wait for link UP * notification later to turn on carrier. We don't need * to wait here for the vnic-to-switch link initialization * to complete; link UP notification is the indication that * the process is complete. */ netif_carrier_off(netdev); /* Do not call dev_init for a dynamic vnic. * For a dynamic vnic, init_prov_info will be * called later by an upper layer. */ if (!enic_is_dynamic(enic)) { err = vnic_dev_init(enic->vdev, 0); if (err) { dev_err(dev, "vNIC dev init failed, aborting\n"); goto err_out_dev_close; } } err = enic_dev_init(enic); if (err) { dev_err(dev, "Device initialization failed, aborting\n"); goto err_out_dev_close; } netif_set_real_num_tx_queues(netdev, enic->wq_count); netif_set_real_num_rx_queues(netdev, enic->rq_count); /* Setup notification timer, HW reset task, and wq locks */ init_timer(&enic->notify_timer); enic->notify_timer.function = enic_notify_timer; enic->notify_timer.data = (unsigned long)enic; enic_set_rx_coal_setting(enic); INIT_WORK(&enic->reset, enic_reset); INIT_WORK(&enic->tx_hang_reset, enic_tx_hang_reset); INIT_WORK(&enic->change_mtu_work, enic_change_mtu_work); for (i = 0; i < enic->wq_count; i++) spin_lock_init(&enic->wq_lock[i]); /* Register net device */ enic->port_mtu = enic->config.mtu; (void)enic_change_mtu(netdev, enic->port_mtu); err = enic_set_mac_addr(netdev, enic->mac_addr); if (err) { dev_err(dev, "Invalid MAC address, aborting\n"); goto err_out_dev_deinit; } enic->tx_coalesce_usecs = enic->config.intr_timer_usec; /* rx coalesce time already got initialized. This gets used * if adaptive coal is turned off */ enic->rx_coalesce_usecs = enic->tx_coalesce_usecs; if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) netdev->netdev_ops = &enic_netdev_dynamic_ops; else netdev->netdev_ops = &enic_netdev_ops; netdev->watchdog_timeo = 2 * HZ; enic_set_ethtool_ops(netdev); netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; if (ENIC_SETTING(enic, LOOP)) { netdev->features &= ~NETIF_F_HW_VLAN_CTAG_TX; enic->loop_enable = 1; enic->loop_tag = enic->config.loop_tag; dev_info(dev, "loopback tag=0x%04x\n", enic->loop_tag); } if (ENIC_SETTING(enic, TXCSUM)) netdev->hw_features |= NETIF_F_SG | NETIF_F_HW_CSUM; if (ENIC_SETTING(enic, TSO)) netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN; if (ENIC_SETTING(enic, RSS)) netdev->hw_features |= NETIF_F_RXHASH; if (ENIC_SETTING(enic, RXCSUM)) netdev->hw_features |= NETIF_F_RXCSUM; if (ENIC_SETTING(enic, VXLAN)) { u64 patch_level; netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_HW_CSUM | NETIF_F_GSO_UDP_TUNNEL_CSUM; netdev->hw_features |= netdev->hw_enc_features; /* get bit mask from hw about supported offload bit level * BIT(0) = fw supports patch_level 0 * fcoe bit = encap * fcoe_fc_crc_ok = outer csum ok * BIT(1) = always set by fw * BIT(2) = fw supports patch_level 2 * BIT(0) in rss_hash = encap * BIT(1,2) in rss_hash = outer_ip_csum_ok/ * outer_tcp_csum_ok * used in enic_rq_indicate_buf */ err = vnic_dev_get_supported_feature_ver(enic->vdev, VIC_FEATURE_VXLAN, &patch_level); if (err) patch_level = 0; /* mask bits that are supported by driver */ patch_level &= BIT_ULL(0) | BIT_ULL(2); patch_level = fls(patch_level); patch_level = patch_level ? patch_level - 1 : 0; enic->vxlan.patch_level = patch_level; } netdev->features |= netdev->hw_features; netdev->vlan_features |= netdev->features; #ifdef CONFIG_RFS_ACCEL netdev->hw_features |= NETIF_F_NTUPLE; #endif if (using_dac) netdev->features |= NETIF_F_HIGHDMA; netdev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 68 - 9000 */ netdev->min_mtu = ENIC_MIN_MTU; netdev->max_mtu = ENIC_MAX_MTU; err = register_netdev(netdev); if (err) { dev_err(dev, "Cannot register net device, aborting\n"); goto err_out_dev_deinit; } enic->rx_copybreak = RX_COPYBREAK_DEFAULT; return 0; err_out_dev_deinit: enic_dev_deinit(enic); err_out_dev_close: vnic_dev_close(enic->vdev); err_out_disable_sriov: kfree(enic->pp); err_out_disable_sriov_pp: #ifdef CONFIG_PCI_IOV if (enic_sriov_enabled(enic)) { pci_disable_sriov(pdev); enic->priv_flags &= ~ENIC_SRIOV_ENABLED; } #endif err_out_vnic_unregister: vnic_dev_unregister(enic->vdev); err_out_iounmap: enic_iounmap(enic); err_out_release_regions: pci_release_regions(pdev); err_out_disable_device: pci_disable_device(pdev); err_out_free_netdev: free_netdev(netdev); return err; } static void enic_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); if (netdev) { struct enic *enic = netdev_priv(netdev); cancel_work_sync(&enic->reset); cancel_work_sync(&enic->change_mtu_work); unregister_netdev(netdev); enic_dev_deinit(enic); vnic_dev_close(enic->vdev); #ifdef CONFIG_PCI_IOV if (enic_sriov_enabled(enic)) { pci_disable_sriov(pdev); enic->priv_flags &= ~ENIC_SRIOV_ENABLED; } #endif kfree(enic->pp); vnic_dev_unregister(enic->vdev); enic_iounmap(enic); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(netdev); } } static struct pci_driver enic_driver = { .name = DRV_NAME, .id_table = enic_id_table, .probe = enic_probe, .remove = enic_remove, }; static int __init enic_init_module(void) { pr_info("%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION); return pci_register_driver(&enic_driver); } static void __exit enic_cleanup_module(void) { pci_unregister_driver(&enic_driver); } module_init(enic_init_module); module_exit(enic_cleanup_module);