/* * Register map access API * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #define CREATE_TRACE_POINTS #include #include "internal.h" bool regmap_writeable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->writeable_reg) return map->writeable_reg(map->dev, reg); return true; } bool regmap_readable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->readable_reg) return map->readable_reg(map->dev, reg); return true; } bool regmap_volatile(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->volatile_reg) return map->volatile_reg(map->dev, reg); return true; } bool regmap_precious(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->precious_reg) return map->precious_reg(map->dev, reg); return false; } static bool regmap_volatile_range(struct regmap *map, unsigned int reg, unsigned int num) { unsigned int i; for (i = 0; i < num; i++) if (!regmap_volatile(map, reg + i)) return false; return true; } static void regmap_format_4_12_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 12) | val); } static void regmap_format_7_9_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 9) | val); } static void regmap_format_10_14_write(struct regmap *map, unsigned int reg, unsigned int val) { u8 *out = map->work_buf; out[2] = val; out[1] = (val >> 8) | (reg << 6); out[0] = reg >> 2; } static void regmap_format_8(void *buf, unsigned int val) { u8 *b = buf; b[0] = val; } static void regmap_format_16(void *buf, unsigned int val) { __be16 *b = buf; b[0] = cpu_to_be16(val); } static unsigned int regmap_parse_8(void *buf) { u8 *b = buf; return b[0]; } static unsigned int regmap_parse_16(void *buf) { __be16 *b = buf; b[0] = be16_to_cpu(b[0]); return b[0]; } /** * regmap_init(): Initialise register map * * @dev: Device that will be interacted with * @bus: Bus-specific callbacks to use with device * @config: Configuration for register map * * The return value will be an ERR_PTR() on error or a valid pointer to * a struct regmap. This function should generally not be called * directly, it should be called by bus-specific init functions. */ struct regmap *regmap_init(struct device *dev, const struct regmap_bus *bus, const struct regmap_config *config) { struct regmap *map; int ret = -EINVAL; if (!bus || !config) goto err; map = kzalloc(sizeof(*map), GFP_KERNEL); if (map == NULL) { ret = -ENOMEM; goto err; } mutex_init(&map->lock); map->format.buf_size = (config->reg_bits + config->val_bits) / 8; map->format.reg_bytes = config->reg_bits / 8; map->format.val_bytes = config->val_bits / 8; map->dev = dev; map->bus = bus; map->max_register = config->max_register; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; if (config->read_flag_mask || config->write_flag_mask) { map->read_flag_mask = config->read_flag_mask; map->write_flag_mask = config->write_flag_mask; } else { map->read_flag_mask = bus->read_flag_mask; } switch (config->reg_bits) { case 4: switch (config->val_bits) { case 12: map->format.format_write = regmap_format_4_12_write; break; default: goto err_map; } break; case 7: switch (config->val_bits) { case 9: map->format.format_write = regmap_format_7_9_write; break; default: goto err_map; } break; case 10: switch (config->val_bits) { case 14: map->format.format_write = regmap_format_10_14_write; break; default: goto err_map; } break; case 8: map->format.format_reg = regmap_format_8; break; case 16: map->format.format_reg = regmap_format_16; break; default: goto err_map; } switch (config->val_bits) { case 8: map->format.format_val = regmap_format_8; map->format.parse_val = regmap_parse_8; break; case 16: map->format.format_val = regmap_format_16; map->format.parse_val = regmap_parse_16; break; } if (!map->format.format_write && !(map->format.format_reg && map->format.format_val)) goto err_map; map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL); if (map->work_buf == NULL) { ret = -ENOMEM; goto err_map; } regmap_debugfs_init(map); ret = regcache_init(map, config); if (ret < 0) goto err_free_workbuf; return map; err_free_workbuf: kfree(map->work_buf); err_map: kfree(map); err: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(regmap_init); /** * regmap_reinit_cache(): Reinitialise the current register cache * * @map: Register map to operate on. * @config: New configuration. Only the cache data will be used. * * Discard any existing register cache for the map and initialize a * new cache. This can be used to restore the cache to defaults or to * update the cache configuration to reflect runtime discovery of the * hardware. */ int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) { int ret; mutex_lock(&map->lock); regcache_exit(map); map->max_register = config->max_register; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; ret = regcache_init(map, config); mutex_unlock(&map->lock); return ret; } /** * regmap_exit(): Free a previously allocated register map */ void regmap_exit(struct regmap *map) { regcache_exit(map); regmap_debugfs_exit(map); kfree(map->work_buf); kfree(map); } EXPORT_SYMBOL_GPL(regmap_exit); static int _regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { u8 *u8 = map->work_buf; void *buf; int ret = -ENOTSUPP; size_t len; int i; /* Check for unwritable registers before we start */ if (map->writeable_reg) for (i = 0; i < val_len / map->format.val_bytes; i++) if (!map->writeable_reg(map->dev, reg + i)) return -EINVAL; map->format.format_reg(map->work_buf, reg); u8[0] |= map->write_flag_mask; trace_regmap_hw_write_start(map->dev, reg, val_len / map->format.val_bytes); /* If we're doing a single register write we can probably just * send the work_buf directly, otherwise try to do a gather * write. */ if (val == map->work_buf + map->format.reg_bytes) ret = map->bus->write(map->dev, map->work_buf, map->format.reg_bytes + val_len); else if (map->bus->gather_write) ret = map->bus->gather_write(map->dev, map->work_buf, map->format.reg_bytes, val, val_len); /* If that didn't work fall back on linearising by hand. */ if (ret == -ENOTSUPP) { len = map->format.reg_bytes + val_len; buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, map->work_buf, map->format.reg_bytes); memcpy(buf + map->format.reg_bytes, val, val_len); ret = map->bus->write(map->dev, buf, len); kfree(buf); } trace_regmap_hw_write_done(map->dev, reg, val_len / map->format.val_bytes); return ret; } int _regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; BUG_ON(!map->format.format_write && !map->format.format_val); if (!map->cache_bypass) { ret = regcache_write(map, reg, val); if (ret != 0) return ret; if (map->cache_only) { map->cache_dirty = true; return 0; } } trace_regmap_reg_write(map->dev, reg, val); if (map->format.format_write) { map->format.format_write(map, reg, val); trace_regmap_hw_write_start(map->dev, reg, 1); ret = map->bus->write(map->dev, map->work_buf, map->format.buf_size); trace_regmap_hw_write_done(map->dev, reg, 1); return ret; } else { map->format.format_val(map->work_buf + map->format.reg_bytes, val); return _regmap_raw_write(map, reg, map->work_buf + map->format.reg_bytes, map->format.val_bytes); } } /** * regmap_write(): Write a value to a single register * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; mutex_lock(&map->lock); ret = _regmap_write(map, reg, val); mutex_unlock(&map->lock); return ret; } EXPORT_SYMBOL_GPL(regmap_write); /** * regmap_raw_write(): Write raw values to one or more registers * * @map: Register map to write to * @reg: Initial register to write to * @val: Block of data to be written, laid out for direct transmission to the * device * @val_len: Length of data pointed to by val. * * This function is intended to be used for things like firmware * download where a large block of data needs to be transferred to the * device. No formatting will be done on the data provided. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { size_t val_count = val_len / map->format.val_bytes; int ret; WARN_ON(!regmap_volatile_range(map, reg, val_count) && map->cache_type != REGCACHE_NONE); mutex_lock(&map->lock); ret = _regmap_raw_write(map, reg, val, val_len); mutex_unlock(&map->lock); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_write); static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, unsigned int val_len) { u8 *u8 = map->work_buf; int ret; map->format.format_reg(map->work_buf, reg); /* * Some buses or devices flag reads by setting the high bits in the * register addresss; since it's always the high bits for all * current formats we can do this here rather than in * formatting. This may break if we get interesting formats. */ u8[0] |= map->read_flag_mask; trace_regmap_hw_read_start(map->dev, reg, val_len / map->format.val_bytes); ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes, val, val_len); trace_regmap_hw_read_done(map->dev, reg, val_len / map->format.val_bytes); return ret; } static int _regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; if (!map->cache_bypass) { ret = regcache_read(map, reg, val); if (ret == 0) return 0; } if (!map->format.parse_val) return -EINVAL; if (map->cache_only) return -EBUSY; ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); if (ret == 0) { *val = map->format.parse_val(map->work_buf); trace_regmap_reg_read(map->dev, reg, *val); } return ret; } /** * regmap_read(): Read a value from a single register * * @map: Register map to write to * @reg: Register to be read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; mutex_lock(&map->lock); ret = _regmap_read(map, reg, val); mutex_unlock(&map->lock); return ret; } EXPORT_SYMBOL_GPL(regmap_read); /** * regmap_raw_read(): Read raw data from the device * * @map: Register map to write to * @reg: First register to be read from * @val: Pointer to store read value * @val_len: Size of data to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, size_t val_len) { size_t val_count = val_len / map->format.val_bytes; int ret; WARN_ON(!regmap_volatile_range(map, reg, val_count) && map->cache_type != REGCACHE_NONE); mutex_lock(&map->lock); ret = _regmap_raw_read(map, reg, val, val_len); mutex_unlock(&map->lock); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_read); /** * regmap_bulk_read(): Read multiple registers from the device * * @map: Register map to write to * @reg: First register to be read from * @val: Pointer to store read value, in native register size for device * @val_count: Number of registers to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, size_t val_count) { int ret, i; size_t val_bytes = map->format.val_bytes; bool vol = regmap_volatile_range(map, reg, val_count); if (!map->format.parse_val) return -EINVAL; if (vol || map->cache_type == REGCACHE_NONE) { ret = regmap_raw_read(map, reg, val, val_bytes * val_count); if (ret != 0) return ret; for (i = 0; i < val_count * val_bytes; i += val_bytes) map->format.parse_val(val + i); } else { for (i = 0; i < val_count; i++) { ret = regmap_read(map, reg + i, val + (i * val_bytes)); if (ret != 0) return ret; } } return 0; } EXPORT_SYMBOL_GPL(regmap_bulk_read); static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { int ret; unsigned int tmp, orig; mutex_lock(&map->lock); ret = _regmap_read(map, reg, &orig); if (ret != 0) goto out; tmp = orig & ~mask; tmp |= val & mask; if (tmp != orig) { ret = _regmap_write(map, reg, tmp); *change = true; } else { *change = false; } out: mutex_unlock(&map->lock); return ret; } /** * regmap_update_bits: Perform a read/modify/write cycle on the register map * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * * Returns zero for success, a negative number on error. */ int regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { bool change; return _regmap_update_bits(map, reg, mask, val, &change); } EXPORT_SYMBOL_GPL(regmap_update_bits); /** * regmap_update_bits_check: Perform a read/modify/write cycle on the * register map and report if updated * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * * Returns zero for success, a negative number on error. */ int regmap_update_bits_check(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { return _regmap_update_bits(map, reg, mask, val, change); } EXPORT_SYMBOL_GPL(regmap_update_bits_check); /** * regmap_register_patch: Register and apply register updates to be applied * on device initialistion * * @map: Register map to apply updates to. * @regs: Values to update. * @num_regs: Number of entries in regs. * * Register a set of register updates to be applied to the device * whenever the device registers are synchronised with the cache and * apply them immediately. Typically this is used to apply * corrections to be applied to the device defaults on startup, such * as the updates some vendors provide to undocumented registers. */ int regmap_register_patch(struct regmap *map, const struct reg_default *regs, int num_regs) { int i, ret; bool bypass; /* If needed the implementation can be extended to support this */ if (map->patch) return -EBUSY; mutex_lock(&map->lock); bypass = map->cache_bypass; map->cache_bypass = true; /* Write out first; it's useful to apply even if we fail later. */ for (i = 0; i < num_regs; i++) { ret = _regmap_write(map, regs[i].reg, regs[i].def); if (ret != 0) { dev_err(map->dev, "Failed to write %x = %x: %d\n", regs[i].reg, regs[i].def, ret); goto out; } } map->patch = kcalloc(sizeof(struct reg_default), num_regs, GFP_KERNEL); if (map->patch != NULL) { memcpy(map->patch, regs, num_regs * sizeof(struct reg_default)); map->patch_regs = num_regs; } else { ret = -ENOMEM; } out: map->cache_bypass = bypass; mutex_unlock(&map->lock); return ret; } EXPORT_SYMBOL_GPL(regmap_register_patch); static int __init regmap_initcall(void) { regmap_debugfs_initcall(); return 0; } postcore_initcall(regmap_initcall);