/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_trans_priv.h" #include "xfs_buf_item.h" #include "xfs_log.h" #include <linux/iversion.h> kmem_zone_t *xfs_ili_zone; /* inode log item zone */ static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_inode_log_item, ili_item); } STATIC void xfs_inode_item_data_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_d.di_nextents > 0 && ip->i_df.if_bytes > 0) { /* worst case, doesn't subtract delalloc extents */ *nbytes += XFS_IFORK_DSIZE(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { *nbytes += ip->i_df.if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { *nbytes += roundup(ip->i_df.if_bytes, 4); *nvecs += 1; } break; case XFS_DINODE_FMT_DEV: break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_attr_fork_size( struct xfs_inode_log_item *iip, int *nvecs, int *nbytes) { struct xfs_inode *ip = iip->ili_inode; switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_d.di_anextents > 0 && ip->i_afp->if_bytes > 0) { /* worst case, doesn't subtract unused space */ *nbytes += XFS_IFORK_ASIZE(ip); *nvecs += 1; } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_afp->if_broot_bytes > 0) { *nbytes += ip->i_afp->if_broot_bytes; *nvecs += 1; } break; case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_afp->if_bytes > 0) { *nbytes += roundup(ip->i_afp->if_bytes, 4); *nvecs += 1; } break; default: ASSERT(0); break; } } /* * This returns the number of iovecs needed to log the given inode item. * * We need one iovec for the inode log format structure, one for the * inode core, and possibly one for the inode data/extents/b-tree root * and one for the inode attribute data/extents/b-tree root. */ STATIC void xfs_inode_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; *nvecs += 2; *nbytes += sizeof(struct xfs_inode_log_format) + xfs_log_dinode_size(ip->i_d.di_version); xfs_inode_item_data_fork_size(iip, nvecs, nbytes); if (XFS_IFORK_Q(ip)) xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); } STATIC void xfs_inode_item_format_data_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DEXT) && ip->i_d.di_nextents > 0 && ip->i_df.if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(&ip->i_df) > 0); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ASSERT(data_bytes <= ip->i_df.if_bytes); ilf->ilf_dsize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DBROOT) && ip->i_df.if_broot_bytes > 0) { ASSERT(ip->i_df.if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, ip->i_df.if_broot, ip->i_df.if_broot_bytes); ilf->ilf_dsize = ip->i_df.if_broot_bytes; ilf->ilf_size++; } else { ASSERT(!(iip->ili_fields & XFS_ILOG_DBROOT)); iip->ili_fields &= ~XFS_ILOG_DBROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); if ((iip->ili_fields & XFS_ILOG_DDATA) && ip->i_df.if_bytes > 0) { /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_df.if_bytes, 4); ASSERT(ip->i_df.if_real_bytes == 0 || ip->i_df.if_real_bytes >= data_bytes); ASSERT(ip->i_df.if_u1.if_data != NULL); ASSERT(ip->i_d.di_size > 0); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, ip->i_df.if_u1.if_data, data_bytes); ilf->ilf_dsize = (unsigned)data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_DDATA; } break; case XFS_DINODE_FMT_DEV: iip->ili_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); if (iip->ili_fields & XFS_ILOG_DEV) ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); break; default: ASSERT(0); break; } } STATIC void xfs_inode_item_format_attr_fork( struct xfs_inode_log_item *iip, struct xfs_inode_log_format *ilf, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_inode *ip = iip->ili_inode; size_t data_bytes; switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_AEXT) && ip->i_d.di_anextents > 0 && ip->i_afp->if_bytes > 0) { struct xfs_bmbt_rec *p; ASSERT(xfs_iext_count(ip->i_afp) == ip->i_d.di_anextents); p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); xlog_finish_iovec(lv, *vecp, data_bytes); ilf->ilf_asize = data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_AEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); if ((iip->ili_fields & XFS_ILOG_ABROOT) && ip->i_afp->if_broot_bytes > 0) { ASSERT(ip->i_afp->if_broot != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, ip->i_afp->if_broot, ip->i_afp->if_broot_bytes); ilf->ilf_asize = ip->i_afp->if_broot_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ABROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_fields &= ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); if ((iip->ili_fields & XFS_ILOG_ADATA) && ip->i_afp->if_bytes > 0) { /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_afp->if_bytes, 4); ASSERT(ip->i_afp->if_real_bytes == 0 || ip->i_afp->if_real_bytes >= data_bytes); ASSERT(ip->i_afp->if_u1.if_data != NULL); xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, ip->i_afp->if_u1.if_data, data_bytes); ilf->ilf_asize = (unsigned)data_bytes; ilf->ilf_size++; } else { iip->ili_fields &= ~XFS_ILOG_ADATA; } break; default: ASSERT(0); break; } } static void xfs_inode_to_log_dinode( struct xfs_inode *ip, struct xfs_log_dinode *to, xfs_lsn_t lsn) { struct xfs_icdinode *from = &ip->i_d; struct inode *inode = VFS_I(ip); to->di_magic = XFS_DINODE_MAGIC; to->di_version = from->di_version; to->di_format = from->di_format; to->di_uid = from->di_uid; to->di_gid = from->di_gid; to->di_projid_lo = from->di_projid_lo; to->di_projid_hi = from->di_projid_hi; memset(to->di_pad, 0, sizeof(to->di_pad)); memset(to->di_pad3, 0, sizeof(to->di_pad3)); to->di_atime.t_sec = inode->i_atime.tv_sec; to->di_atime.t_nsec = inode->i_atime.tv_nsec; to->di_mtime.t_sec = inode->i_mtime.tv_sec; to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; to->di_ctime.t_sec = inode->i_ctime.tv_sec; to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; to->di_nlink = inode->i_nlink; to->di_gen = inode->i_generation; to->di_mode = inode->i_mode; to->di_size = from->di_size; to->di_nblocks = from->di_nblocks; to->di_extsize = from->di_extsize; to->di_nextents = from->di_nextents; to->di_anextents = from->di_anextents; to->di_forkoff = from->di_forkoff; to->di_aformat = from->di_aformat; to->di_dmevmask = from->di_dmevmask; to->di_dmstate = from->di_dmstate; to->di_flags = from->di_flags; /* log a dummy value to ensure log structure is fully initialised */ to->di_next_unlinked = NULLAGINO; if (from->di_version == 3) { to->di_changecount = inode_peek_iversion(inode); to->di_crtime.t_sec = from->di_crtime.t_sec; to->di_crtime.t_nsec = from->di_crtime.t_nsec; to->di_flags2 = from->di_flags2; to->di_cowextsize = from->di_cowextsize; to->di_ino = ip->i_ino; to->di_lsn = lsn; memset(to->di_pad2, 0, sizeof(to->di_pad2)); uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); to->di_flushiter = 0; } else { to->di_flushiter = from->di_flushiter; } } /* * Format the inode core. Current timestamp data is only in the VFS inode * fields, so we need to grab them from there. Hence rather than just copying * the XFS inode core structure, format the fields directly into the iovec. */ static void xfs_inode_item_format_core( struct xfs_inode *ip, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp) { struct xfs_log_dinode *dic; dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); } /* * This is called to fill in the vector of log iovecs for the given inode * log item. It fills the first item with an inode log format structure, * the second with the on-disk inode structure, and a possible third and/or * fourth with the inode data/extents/b-tree root and inode attributes * data/extents/b-tree root. * * Note: Always use the 64 bit inode log format structure so we don't * leave an uninitialised hole in the format item on 64 bit systems. Log * recovery on 32 bit systems handles this just fine, so there's no reason * for not using an initialising the properly padded structure all the time. */ STATIC void xfs_inode_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_log_iovec *vecp = NULL; struct xfs_inode_log_format *ilf; ASSERT(ip->i_d.di_version > 1); ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); ilf->ilf_type = XFS_LI_INODE; ilf->ilf_ino = ip->i_ino; ilf->ilf_blkno = ip->i_imap.im_blkno; ilf->ilf_len = ip->i_imap.im_len; ilf->ilf_boffset = ip->i_imap.im_boffset; ilf->ilf_fields = XFS_ILOG_CORE; ilf->ilf_size = 2; /* format + core */ /* * make sure we don't leak uninitialised data into the log in the case * when we don't log every field in the inode. */ ilf->ilf_dsize = 0; ilf->ilf_asize = 0; ilf->ilf_pad = 0; memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); xlog_finish_iovec(lv, vecp, sizeof(*ilf)); xfs_inode_item_format_core(ip, lv, &vecp); xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); if (XFS_IFORK_Q(ip)) { xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); } else { iip->ili_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); } /* update the format with the exact fields we actually logged */ ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); } /* * This is called to pin the inode associated with the inode log * item in memory so it cannot be written out. */ STATIC void xfs_inode_item_pin( struct xfs_log_item *lip) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); trace_xfs_inode_pin(ip, _RET_IP_); atomic_inc(&ip->i_pincount); } /* * This is called to unpin the inode associated with the inode log * item which was previously pinned with a call to xfs_inode_item_pin(). * * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. */ STATIC void xfs_inode_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; trace_xfs_inode_unpin(ip, _RET_IP_); ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); } /* * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer * have been failed during writeback * * This informs the AIL that the inode is already flush locked on the next push, * and acquires a hold on the buffer to ensure that it isn't reclaimed before * dirty data makes it to disk. */ STATIC void xfs_inode_item_error( struct xfs_log_item *lip, struct xfs_buf *bp) { ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); xfs_set_li_failed(lip, bp); } STATIC uint xfs_inode_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) __releases(&lip->li_ailp->ail_lock) __acquires(&lip->li_ailp->ail_lock) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; struct xfs_buf *bp = lip->li_buf; uint rval = XFS_ITEM_SUCCESS; int error; if (xfs_ipincount(ip) > 0) return XFS_ITEM_PINNED; /* * The buffer containing this item failed to be written back * previously. Resubmit the buffer for IO. */ if (test_bit(XFS_LI_FAILED, &lip->li_flags)) { if (!xfs_buf_trylock(bp)) return XFS_ITEM_LOCKED; if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list)) rval = XFS_ITEM_FLUSHING; xfs_buf_unlock(bp); return rval; } if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) return XFS_ITEM_LOCKED; /* * Re-check the pincount now that we stabilized the value by * taking the ilock. */ if (xfs_ipincount(ip) > 0) { rval = XFS_ITEM_PINNED; goto out_unlock; } /* * Stale inode items should force out the iclog. */ if (ip->i_flags & XFS_ISTALE) { rval = XFS_ITEM_PINNED; goto out_unlock; } /* * Someone else is already flushing the inode. Nothing we can do * here but wait for the flush to finish and remove the item from * the AIL. */ if (!xfs_iflock_nowait(ip)) { rval = XFS_ITEM_FLUSHING; goto out_unlock; } ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); spin_unlock(&lip->li_ailp->ail_lock); error = xfs_iflush(ip, &bp); if (!error) { if (!xfs_buf_delwri_queue(bp, buffer_list)) rval = XFS_ITEM_FLUSHING; xfs_buf_relse(bp); } spin_lock(&lip->li_ailp->ail_lock); out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); return rval; } /* * Unlock the inode associated with the inode log item. */ STATIC void xfs_inode_item_unlock( struct xfs_log_item *lip) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; unsigned short lock_flags; ASSERT(ip->i_itemp != NULL); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); lock_flags = iip->ili_lock_flags; iip->ili_lock_flags = 0; if (lock_flags) xfs_iunlock(ip, lock_flags); } /* * This is called to find out where the oldest active copy of the inode log * item in the on disk log resides now that the last log write of it completed * at the given lsn. Since we always re-log all dirty data in an inode, the * latest copy in the on disk log is the only one that matters. Therefore, * simply return the given lsn. * * If the inode has been marked stale because the cluster is being freed, we * don't want to (re-)insert this inode into the AIL. There is a race condition * where the cluster buffer may be unpinned before the inode is inserted into * the AIL during transaction committed processing. If the buffer is unpinned * before the inode item has been committed and inserted, then it is possible * for the buffer to be written and IO completes before the inode is inserted * into the AIL. In that case, we'd be inserting a clean, stale inode into the * AIL which will never get removed. It will, however, get reclaimed which * triggers an assert in xfs_inode_free() complaining about freein an inode * still in the AIL. * * To avoid this, just unpin the inode directly and return a LSN of -1 so the * transaction committed code knows that it does not need to do any further * processing on the item. */ STATIC xfs_lsn_t xfs_inode_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_inode_log_item *iip = INODE_ITEM(lip); struct xfs_inode *ip = iip->ili_inode; if (xfs_iflags_test(ip, XFS_ISTALE)) { xfs_inode_item_unpin(lip, 0); return -1; } return lsn; } STATIC void xfs_inode_item_committing( struct xfs_log_item *lip, xfs_lsn_t lsn) { INODE_ITEM(lip)->ili_last_lsn = lsn; } /* * This is the ops vector shared by all buf log items. */ static const struct xfs_item_ops xfs_inode_item_ops = { .iop_size = xfs_inode_item_size, .iop_format = xfs_inode_item_format, .iop_pin = xfs_inode_item_pin, .iop_unpin = xfs_inode_item_unpin, .iop_unlock = xfs_inode_item_unlock, .iop_committed = xfs_inode_item_committed, .iop_push = xfs_inode_item_push, .iop_committing = xfs_inode_item_committing, .iop_error = xfs_inode_item_error }; /* * Initialize the inode log item for a newly allocated (in-core) inode. */ void xfs_inode_item_init( struct xfs_inode *ip, struct xfs_mount *mp) { struct xfs_inode_log_item *iip; ASSERT(ip->i_itemp == NULL); iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); iip->ili_inode = ip; xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, &xfs_inode_item_ops); } /* * Free the inode log item and any memory hanging off of it. */ void xfs_inode_item_destroy( xfs_inode_t *ip) { kmem_free(ip->i_itemp->ili_item.li_lv_shadow); kmem_zone_free(xfs_ili_zone, ip->i_itemp); } /* * This is the inode flushing I/O completion routine. It is called * from interrupt level when the buffer containing the inode is * flushed to disk. It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. * * To reduce AIL lock traffic as much as possible, we scan the buffer log item * list for other inodes that will run this function. We remove them from the * buffer list so we can process all the inode IO completions in one AIL lock * traversal. */ void xfs_iflush_done( struct xfs_buf *bp, struct xfs_log_item *lip) { struct xfs_inode_log_item *iip; struct xfs_log_item *blip, *n; struct xfs_ail *ailp = lip->li_ailp; int need_ail = 0; LIST_HEAD(tmp); /* * Scan the buffer IO completions for other inodes being completed and * attach them to the current inode log item. */ list_add_tail(&lip->li_bio_list, &tmp); list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { if (lip->li_cb != xfs_iflush_done) continue; list_move_tail(&blip->li_bio_list, &tmp); /* * while we have the item, do the unlocked check for needing * the AIL lock. */ iip = INODE_ITEM(blip); if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || test_bit(XFS_LI_FAILED, &blip->li_flags)) need_ail++; } /* make sure we capture the state of the initial inode. */ iip = INODE_ITEM(lip); if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || test_bit(XFS_LI_FAILED, &lip->li_flags)) need_ail++; /* * We only want to pull the item from the AIL if it is * actually there and its location in the log has not * changed since we started the flush. Thus, we only bother * if the ili_logged flag is set and the inode's lsn has not * changed. First we check the lsn outside * the lock since it's cheaper, and then we recheck while * holding the lock before removing the inode from the AIL. */ if (need_ail) { bool mlip_changed = false; /* this is an opencoded batch version of xfs_trans_ail_delete */ spin_lock(&ailp->ail_lock); list_for_each_entry(blip, &tmp, li_bio_list) { if (INODE_ITEM(blip)->ili_logged && blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) mlip_changed |= xfs_ail_delete_one(ailp, blip); else { xfs_clear_li_failed(blip); } } if (mlip_changed) { if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) xlog_assign_tail_lsn_locked(ailp->ail_mount); if (list_empty(&ailp->ail_head)) wake_up_all(&ailp->ail_empty); } spin_unlock(&ailp->ail_lock); if (mlip_changed) xfs_log_space_wake(ailp->ail_mount); } /* * clean up and unlock the flush lock now we are done. We can clear the * ili_last_fields bits now that we know that the data corresponding to * them is safely on disk. */ list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { list_del_init(&blip->li_bio_list); iip = INODE_ITEM(blip); iip->ili_logged = 0; iip->ili_last_fields = 0; xfs_ifunlock(iip->ili_inode); } list_del(&tmp); } /* * This is the inode flushing abort routine. It is called from xfs_iflush when * the filesystem is shutting down to clean up the inode state. It is * responsible for removing the inode item from the AIL if it has not been * re-logged, and unlocking the inode's flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip, bool stale) { xfs_inode_log_item_t *iip = ip->i_itemp; if (iip) { if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) { xfs_trans_ail_remove(&iip->ili_item, stale ? SHUTDOWN_LOG_IO_ERROR : SHUTDOWN_CORRUPT_INCORE); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_fields = 0; iip->ili_fsync_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); } void xfs_istale_done( struct xfs_buf *bp, struct xfs_log_item *lip) { xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); } /* * convert an xfs_inode_log_format struct from the old 32 bit version * (which can have different field alignments) to the native 64 bit version */ int xfs_inode_item_format_convert( struct xfs_log_iovec *buf, struct xfs_inode_log_format *in_f) { struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; if (buf->i_len != sizeof(*in_f32)) return -EFSCORRUPTED; in_f->ilf_type = in_f32->ilf_type; in_f->ilf_size = in_f32->ilf_size; in_f->ilf_fields = in_f32->ilf_fields; in_f->ilf_asize = in_f32->ilf_asize; in_f->ilf_dsize = in_f32->ilf_dsize; in_f->ilf_ino = in_f32->ilf_ino; memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); in_f->ilf_blkno = in_f32->ilf_blkno; in_f->ilf_len = in_f32->ilf_len; in_f->ilf_boffset = in_f32->ilf_boffset; return 0; }