/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "capabilities.h" #include "cpuid.h" #include "evmcs.h" #include "irq.h" #include "kvm_cache_regs.h" #include "lapic.h" #include "mmu.h" #include "nested.h" #include "ops.h" #include "pmu.h" #include "trace.h" #include "vmcs.h" #include "vmcs12.h" #include "vmx.h" #include "x86.h" MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static const struct x86_cpu_id vmx_cpu_id[] = { X86_FEATURE_MATCH(X86_FEATURE_VMX), {} }; MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly enable_vnmi = 1; module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); bool __read_mostly flexpriority_enabled = 1; module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); bool __read_mostly enable_ept = 1; module_param_named(ept, enable_ept, bool, S_IRUGO); bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, enable_unrestricted_guest, bool, S_IRUGO); bool __read_mostly enable_ept_ad_bits = 1; module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); static bool __read_mostly emulate_invalid_guest_state = true; module_param(emulate_invalid_guest_state, bool, S_IRUGO); static bool __read_mostly fasteoi = 1; module_param(fasteoi, bool, S_IRUGO); static bool __read_mostly enable_apicv = 1; module_param(enable_apicv, bool, S_IRUGO); /* * If nested=1, nested virtualization is supported, i.e., guests may use * VMX and be a hypervisor for its own guests. If nested=0, guests may not * use VMX instructions. */ static bool __read_mostly nested = 1; module_param(nested, bool, S_IRUGO); static u64 __read_mostly host_xss; bool __read_mostly enable_pml = 1; module_param_named(pml, enable_pml, bool, S_IRUGO); #define MSR_BITMAP_MODE_X2APIC 1 #define MSR_BITMAP_MODE_X2APIC_APICV 2 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ static int __read_mostly cpu_preemption_timer_multi; static bool __read_mostly enable_preemption_timer = 1; #ifdef CONFIG_X86_64 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); #endif #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE #define KVM_VM_CR0_ALWAYS_ON \ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) #define KVM_CR4_GUEST_OWNED_BITS \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * ple_gap: upper bound on the amount of time between two successive * executions of PAUSE in a loop. Also indicate if ple enabled. * According to test, this time is usually smaller than 128 cycles. * ple_window: upper bound on the amount of time a guest is allowed to execute * in a PAUSE loop. Tests indicate that most spinlocks are held for * less than 2^12 cycles * Time is measured based on a counter that runs at the same rate as the TSC, * refer SDM volume 3b section 21.6.13 & 22.1.3. */ static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; module_param(ple_gap, uint, 0444); static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; module_param(ple_window, uint, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(ple_window_grow, uint, 0444); /* Default resets per-vcpu window every exit to ple_window. */ static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(ple_window_shrink, uint, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; module_param(ple_window_max, uint, 0444); /* Default is SYSTEM mode, 1 for host-guest mode */ int __read_mostly pt_mode = PT_MODE_SYSTEM; module_param(pt_mode, int, S_IRUGO); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); static DEFINE_MUTEX(vmx_l1d_flush_mutex); /* Storage for pre module init parameter parsing */ static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; static const struct { const char *option; bool for_parse; } vmentry_l1d_param[] = { [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, [VMENTER_L1D_FLUSH_COND] = {"cond", true}, [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, }; #define L1D_CACHE_ORDER 4 static void *vmx_l1d_flush_pages; static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) { struct page *page; unsigned int i; if (!enable_ept) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; return 0; } if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { u64 msr; rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; return 0; } } /* If set to auto use the default l1tf mitigation method */ if (l1tf == VMENTER_L1D_FLUSH_AUTO) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: l1tf = VMENTER_L1D_FLUSH_NEVER; break; case L1TF_MITIGATION_FLUSH_NOWARN: case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: l1tf = VMENTER_L1D_FLUSH_COND; break; case L1TF_MITIGATION_FULL: case L1TF_MITIGATION_FULL_FORCE: l1tf = VMENTER_L1D_FLUSH_ALWAYS; break; } } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { l1tf = VMENTER_L1D_FLUSH_ALWAYS; } if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); if (!page) return -ENOMEM; vmx_l1d_flush_pages = page_address(page); /* * Initialize each page with a different pattern in * order to protect against KSM in the nested * virtualization case. */ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, PAGE_SIZE); } } l1tf_vmx_mitigation = l1tf; if (l1tf != VMENTER_L1D_FLUSH_NEVER) static_branch_enable(&vmx_l1d_should_flush); else static_branch_disable(&vmx_l1d_should_flush); if (l1tf == VMENTER_L1D_FLUSH_COND) static_branch_enable(&vmx_l1d_flush_cond); else static_branch_disable(&vmx_l1d_flush_cond); return 0; } static int vmentry_l1d_flush_parse(const char *s) { unsigned int i; if (s) { for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { if (vmentry_l1d_param[i].for_parse && sysfs_streq(s, vmentry_l1d_param[i].option)) return i; } } return -EINVAL; } static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) { int l1tf, ret; l1tf = vmentry_l1d_flush_parse(s); if (l1tf < 0) return l1tf; if (!boot_cpu_has(X86_BUG_L1TF)) return 0; /* * Has vmx_init() run already? If not then this is the pre init * parameter parsing. In that case just store the value and let * vmx_init() do the proper setup after enable_ept has been * established. */ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { vmentry_l1d_flush_param = l1tf; return 0; } mutex_lock(&vmx_l1d_flush_mutex); ret = vmx_setup_l1d_flush(l1tf); mutex_unlock(&vmx_l1d_flush_mutex); return ret; } static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) { if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) return sprintf(s, "???\n"); return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); } static const struct kernel_param_ops vmentry_l1d_flush_ops = { .set = vmentry_l1d_flush_set, .get = vmentry_l1d_flush_get, }; module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); static bool guest_state_valid(struct kvm_vcpu *vcpu); static u32 vmx_segment_access_rights(struct kvm_segment *var); static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type); static DEFINE_PER_CPU(struct vmcs *, vmxarea); DEFINE_PER_CPU(struct vmcs *, current_vmcs); /* * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. */ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); /* * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we * can find which vCPU should be waken up. */ static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); static DEFINE_SPINLOCK(vmx_vpid_lock); struct vmcs_config vmcs_config; struct vmx_capability vmx_capability; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static const struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; u64 host_efer; /* * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm * will emulate SYSCALL in legacy mode if the vendor string in guest * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To * support this emulation, IA32_STAR must always be included in * vmx_msr_index[], even in i386 builds. */ const u32 vmx_msr_index[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, #endif MSR_EFER, MSR_TSC_AUX, MSR_STAR, }; #if IS_ENABLED(CONFIG_HYPERV) static bool __read_mostly enlightened_vmcs = true; module_param(enlightened_vmcs, bool, 0444); /* check_ept_pointer() should be under protection of ept_pointer_lock. */ static void check_ept_pointer_match(struct kvm *kvm) { struct kvm_vcpu *vcpu; u64 tmp_eptp = INVALID_PAGE; int i; kvm_for_each_vcpu(i, vcpu, kvm) { if (!VALID_PAGE(tmp_eptp)) { tmp_eptp = to_vmx(vcpu)->ept_pointer; } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MISMATCH; return; } } to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; } static int vmx_hv_remote_flush_tlb(struct kvm *kvm) { struct kvm_vcpu *vcpu; int ret = -ENOTSUPP, i; spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) check_ept_pointer_match(kvm); /* * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the * base of EPT PML4 table, strip off EPT configuration information. * If ept_pointer is invalid pointer, bypass the flush request. */ if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { kvm_for_each_vcpu(i, vcpu, kvm) { u64 ept_pointer = to_vmx(vcpu)->ept_pointer; if (!VALID_PAGE(ept_pointer)) continue; ret |= hyperv_flush_guest_mapping( ept_pointer & PAGE_MASK); } } else { ret = hyperv_flush_guest_mapping( to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK); } spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); return ret; } #endif /* IS_ENABLED(CONFIG_HYPERV) */ /* * Comment's format: document - errata name - stepping - processor name. * Refer from * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp */ static u32 vmx_preemption_cpu_tfms[] = { /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 0x000206E6, /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020652, /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020655, /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ /* * 320767.pdf - AAP86 - B1 - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile */ 0x000106E5, /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 0x000106A0, /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 0x000106A1, /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 0x000106A4, /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 0x000106A5, /* Xeon E3-1220 V2 */ 0x000306A8, }; static inline bool cpu_has_broken_vmx_preemption_timer(void) { u32 eax = cpuid_eax(0x00000001), i; /* Clear the reserved bits */ eax &= ~(0x3U << 14 | 0xfU << 28); for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) if (eax == vmx_preemption_cpu_tfms[i]) return true; return false; } static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) { return flexpriority_enabled && lapic_in_kernel(vcpu); } static inline bool report_flexpriority(void) { return flexpriority_enabled; } static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) { int i; for (i = 0; i < vmx->nmsrs; ++i) if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) return i; return -1; } struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) { int i; i = __find_msr_index(vmx, msr); if (i >= 0) return &vmx->guest_msrs[i]; return NULL; } void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) { vmcs_clear(loaded_vmcs->vmcs); if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) vmcs_clear(loaded_vmcs->shadow_vmcs); loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; } #ifdef CONFIG_KEXEC_CORE /* * This bitmap is used to indicate whether the vmclear * operation is enabled on all cpus. All disabled by * default. */ static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; static inline void crash_enable_local_vmclear(int cpu) { cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline void crash_disable_local_vmclear(int cpu) { cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline int crash_local_vmclear_enabled(int cpu) { return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); } static void crash_vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v; if (!crash_local_vmclear_enabled(cpu)) return; list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) vmcs_clear(v->vmcs); } #else static inline void crash_enable_local_vmclear(int cpu) { } static inline void crash_disable_local_vmclear(int cpu) { } #endif /* CONFIG_KEXEC_CORE */ static void __loaded_vmcs_clear(void *arg) { struct loaded_vmcs *loaded_vmcs = arg; int cpu = raw_smp_processor_id(); if (loaded_vmcs->cpu != cpu) return; /* vcpu migration can race with cpu offline */ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) per_cpu(current_vmcs, cpu) = NULL; crash_disable_local_vmclear(cpu); list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); /* * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link * is before setting loaded_vmcs->vcpu to -1 which is done in * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist * then adds the vmcs into percpu list before it is deleted. */ smp_wmb(); loaded_vmcs_init(loaded_vmcs); crash_enable_local_vmclear(cpu); } void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) { int cpu = loaded_vmcs->cpu; if (cpu != -1) smp_call_function_single(cpu, __loaded_vmcs_clear, loaded_vmcs, 1); } static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, unsigned field) { bool ret; u32 mask = 1 << (seg * SEG_FIELD_NR + field); if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); vmx->segment_cache.bitmask = 0; } ret = vmx->segment_cache.bitmask & mask; vmx->segment_cache.bitmask |= mask; return ret; } static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) { u16 *p = &vmx->segment_cache.seg[seg].selector; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); return *p; } static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) { ulong *p = &vmx->segment_cache.seg[seg].base; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); return *p; } static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].limit; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); return *p; } static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].ar; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); return *p; } void update_exception_bitmap(struct kvm_vcpu *vcpu) { u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) eb |= (1u << GP_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) eb |= 1u << BP_VECTOR; if (to_vmx(vcpu)->rmode.vm86_active) eb = ~0; if (enable_ept) eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass * them to L1. When running L2, we will only handle the exceptions * specified above if L1 did not want them. */ if (is_guest_mode(vcpu)) eb |= get_vmcs12(vcpu)->exception_bitmap; vmcs_write32(EXCEPTION_BITMAP, eb); } /* * Check if MSR is intercepted for currently loaded MSR bitmap. */ static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) { unsigned long *msr_bitmap; int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return true; msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; if (msr <= 0x1fff) { return !!test_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; return !!test_bit(msr, msr_bitmap + 0xc00 / f); } return true; } static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit) { vm_entry_controls_clearbit(vmx, entry); vm_exit_controls_clearbit(vmx, exit); } static int find_msr(struct vmx_msrs *m, unsigned int msr) { unsigned int i; for (i = 0; i < m->nr; ++i) { if (m->val[i].index == msr) return i; } return -ENOENT; } static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) { int i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); return; } break; } i = find_msr(&m->guest, msr); if (i < 0) goto skip_guest; --m->guest.nr; m->guest.val[i] = m->guest.val[m->guest.nr]; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); skip_guest: i = find_msr(&m->host, msr); if (i < 0) return; --m->host.nr; m->host.val[i] = m->host.val[m->host.nr]; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit, unsigned long guest_val_vmcs, unsigned long host_val_vmcs, u64 guest_val, u64 host_val) { vmcs_write64(guest_val_vmcs, guest_val); if (host_val_vmcs != HOST_IA32_EFER) vmcs_write64(host_val_vmcs, host_val); vm_entry_controls_setbit(vmx, entry); vm_exit_controls_setbit(vmx, exit); } static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, u64 guest_val, u64 host_val, bool entry_only) { int i, j = 0; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER, GUEST_IA32_EFER, HOST_IA32_EFER, guest_val, host_val); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl()) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, GUEST_IA32_PERF_GLOBAL_CTRL, HOST_IA32_PERF_GLOBAL_CTRL, guest_val, host_val); return; } break; case MSR_IA32_PEBS_ENABLE: /* PEBS needs a quiescent period after being disabled (to write * a record). Disabling PEBS through VMX MSR swapping doesn't * provide that period, so a CPU could write host's record into * guest's memory. */ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } i = find_msr(&m->guest, msr); if (!entry_only) j = find_msr(&m->host, msr); if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) { printk_once(KERN_WARNING "Not enough msr switch entries. " "Can't add msr %x\n", msr); return; } if (i < 0) { i = m->guest.nr++; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); } m->guest.val[i].index = msr; m->guest.val[i].value = guest_val; if (entry_only) return; if (j < 0) { j = m->host.nr++; vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); } m->host.val[j].index = msr; m->host.val[j].value = host_val; } static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) { u64 guest_efer = vmx->vcpu.arch.efer; u64 ignore_bits = 0; if (!enable_ept) { /* * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing * host CPUID is more efficient than testing guest CPUID * or CR4. Host SMEP is anyway a requirement for guest SMEP. */ if (boot_cpu_has(X86_FEATURE_SMEP)) guest_efer |= EFER_NX; else if (!(guest_efer & EFER_NX)) ignore_bits |= EFER_NX; } /* * LMA and LME handled by hardware; SCE meaningless outside long mode. */ ignore_bits |= EFER_SCE; #ifdef CONFIG_X86_64 ignore_bits |= EFER_LMA | EFER_LME; /* SCE is meaningful only in long mode on Intel */ if (guest_efer & EFER_LMA) ignore_bits &= ~(u64)EFER_SCE; #endif /* * On EPT, we can't emulate NX, so we must switch EFER atomically. * On CPUs that support "load IA32_EFER", always switch EFER * atomically, since it's faster than switching it manually. */ if (cpu_has_load_ia32_efer() || (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { if (!(guest_efer & EFER_LMA)) guest_efer &= ~EFER_LME; if (guest_efer != host_efer) add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer, false); else clear_atomic_switch_msr(vmx, MSR_EFER); return false; } else { clear_atomic_switch_msr(vmx, MSR_EFER); guest_efer &= ~ignore_bits; guest_efer |= host_efer & ignore_bits; vmx->guest_msrs[efer_offset].data = guest_efer; vmx->guest_msrs[efer_offset].mask = ~ignore_bits; return true; } } #ifdef CONFIG_X86_32 /* * On 32-bit kernels, VM exits still load the FS and GS bases from the * VMCS rather than the segment table. KVM uses this helper to figure * out the current bases to poke them into the VMCS before entry. */ static unsigned long segment_base(u16 selector) { struct desc_struct *table; unsigned long v; if (!(selector & ~SEGMENT_RPL_MASK)) return 0; table = get_current_gdt_ro(); if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { u16 ldt_selector = kvm_read_ldt(); if (!(ldt_selector & ~SEGMENT_RPL_MASK)) return 0; table = (struct desc_struct *)segment_base(ldt_selector); } v = get_desc_base(&table[selector >> 3]); return v; } #endif void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs_host_state *host_state; #ifdef CONFIG_X86_64 int cpu = raw_smp_processor_id(); #endif unsigned long fs_base, gs_base; u16 fs_sel, gs_sel; int i; vmx->req_immediate_exit = false; /* * Note that guest MSRs to be saved/restored can also be changed * when guest state is loaded. This happens when guest transitions * to/from long-mode by setting MSR_EFER.LMA. */ if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { vmx->guest_msrs_dirty = false; for (i = 0; i < vmx->save_nmsrs; ++i) kvm_set_shared_msr(vmx->guest_msrs[i].index, vmx->guest_msrs[i].data, vmx->guest_msrs[i].mask); } if (vmx->loaded_cpu_state) return; vmx->loaded_cpu_state = vmx->loaded_vmcs; host_state = &vmx->loaded_cpu_state->host_state; /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ host_state->ldt_sel = kvm_read_ldt(); #ifdef CONFIG_X86_64 savesegment(ds, host_state->ds_sel); savesegment(es, host_state->es_sel); gs_base = cpu_kernelmode_gs_base(cpu); if (likely(is_64bit_mm(current->mm))) { save_fsgs_for_kvm(); fs_sel = current->thread.fsindex; gs_sel = current->thread.gsindex; fs_base = current->thread.fsbase; vmx->msr_host_kernel_gs_base = current->thread.gsbase; } else { savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = read_msr(MSR_FS_BASE); vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); } wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #else savesegment(fs, fs_sel); savesegment(gs, gs_sel); fs_base = segment_base(fs_sel); gs_base = segment_base(gs_sel); #endif if (unlikely(fs_sel != host_state->fs_sel)) { if (!(fs_sel & 7)) vmcs_write16(HOST_FS_SELECTOR, fs_sel); else vmcs_write16(HOST_FS_SELECTOR, 0); host_state->fs_sel = fs_sel; } if (unlikely(gs_sel != host_state->gs_sel)) { if (!(gs_sel & 7)) vmcs_write16(HOST_GS_SELECTOR, gs_sel); else vmcs_write16(HOST_GS_SELECTOR, 0); host_state->gs_sel = gs_sel; } if (unlikely(fs_base != host_state->fs_base)) { vmcs_writel(HOST_FS_BASE, fs_base); host_state->fs_base = fs_base; } if (unlikely(gs_base != host_state->gs_base)) { vmcs_writel(HOST_GS_BASE, gs_base); host_state->gs_base = gs_base; } } static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) { struct vmcs_host_state *host_state; if (!vmx->loaded_cpu_state) return; WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); host_state = &vmx->loaded_cpu_state->host_state; ++vmx->vcpu.stat.host_state_reload; vmx->loaded_cpu_state = NULL; #ifdef CONFIG_X86_64 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (host_state->ldt_sel || (host_state->gs_sel & 7)) { kvm_load_ldt(host_state->ldt_sel); #ifdef CONFIG_X86_64 load_gs_index(host_state->gs_sel); #else loadsegment(gs, host_state->gs_sel); #endif } if (host_state->fs_sel & 7) loadsegment(fs, host_state->fs_sel); #ifdef CONFIG_X86_64 if (unlikely(host_state->ds_sel | host_state->es_sel)) { loadsegment(ds, host_state->ds_sel); loadsegment(es, host_state->es_sel); } #endif invalidate_tss_limit(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif load_fixmap_gdt(raw_smp_processor_id()); } #ifdef CONFIG_X86_64 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) { preempt_disable(); if (vmx->loaded_cpu_state) rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); preempt_enable(); return vmx->msr_guest_kernel_gs_base; } static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) { preempt_disable(); if (vmx->loaded_cpu_state) wrmsrl(MSR_KERNEL_GS_BASE, data); preempt_enable(); vmx->msr_guest_kernel_gs_base = data; } #endif static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; /* * In case of hot-plug or hot-unplug, we may have to undo * vmx_vcpu_pi_put even if there is no assigned device. And we * always keep PI.NDST up to date for simplicity: it makes the * code easier, and CPU migration is not a fast path. */ if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) return; /* * First handle the simple case where no cmpxchg is necessary; just * allow posting non-urgent interrupts. * * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change * PI.NDST: pi_post_block will do it for us and the wakeup_handler * expects the VCPU to be on the blocked_vcpu_list that matches * PI.NDST. */ if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) { pi_clear_sn(pi_desc); return; } /* The full case. */ do { old.control = new.control = pi_desc->control; dest = cpu_physical_id(cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; new.sn = 0; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool already_loaded = vmx->loaded_vmcs->cpu == cpu; if (!already_loaded) { loaded_vmcs_clear(vmx->loaded_vmcs); local_irq_disable(); crash_disable_local_vmclear(cpu); /* * Read loaded_vmcs->cpu should be before fetching * loaded_vmcs->loaded_vmcss_on_cpu_link. * See the comments in __loaded_vmcs_clear(). */ smp_rmb(); list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, &per_cpu(loaded_vmcss_on_cpu, cpu)); crash_enable_local_vmclear(cpu); local_irq_enable(); } if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; vmcs_load(vmx->loaded_vmcs->vmcs); indirect_branch_prediction_barrier(); } if (!already_loaded) { void *gdt = get_current_gdt_ro(); unsigned long sysenter_esp; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. See 22.2.4. */ vmcs_writel(HOST_TR_BASE, (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ /* * VM exits change the host TR limit to 0x67 after a VM * exit. This is okay, since 0x67 covers everything except * the IO bitmap and have have code to handle the IO bitmap * being lost after a VM exit. */ BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ vmx->loaded_vmcs->cpu = cpu; } /* Setup TSC multiplier */ if (kvm_has_tsc_control && vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) decache_tsc_multiplier(vmx); vmx_vcpu_pi_load(vcpu, cpu); vmx->host_pkru = read_pkru(); vmx->host_debugctlmsr = get_debugctlmsr(); } static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(vcpu)) return; /* Set SN when the vCPU is preempted */ if (vcpu->preempted) pi_set_sn(pi_desc); } void vmx_vcpu_put(struct kvm_vcpu *vcpu) { vmx_vcpu_pi_put(vcpu); vmx_prepare_switch_to_host(to_vmx(vcpu)); } static bool emulation_required(struct kvm_vcpu *vcpu) { return emulate_invalid_guest_state && !guest_state_valid(vcpu); } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags, save_rflags; if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); rflags = vmcs_readl(GUEST_RFLAGS); if (to_vmx(vcpu)->rmode.vm86_active) { rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; save_rflags = to_vmx(vcpu)->rmode.save_rflags; rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; } to_vmx(vcpu)->rflags = rflags; } return to_vmx(vcpu)->rflags; } void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { unsigned long old_rflags = vmx_get_rflags(vcpu); __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); to_vmx(vcpu)->rflags = rflags; if (to_vmx(vcpu)->rmode.vm86_active) { to_vmx(vcpu)->rmode.save_rflags = rflags; rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; } vmcs_writel(GUEST_RFLAGS, rflags); if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) to_vmx(vcpu)->emulation_required = emulation_required(vcpu); } u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) { u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); int ret = 0; if (interruptibility & GUEST_INTR_STATE_STI) ret |= KVM_X86_SHADOW_INT_STI; if (interruptibility & GUEST_INTR_STATE_MOV_SS) ret |= KVM_X86_SHADOW_INT_MOV_SS; return ret; } void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); u32 interruptibility = interruptibility_old; interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); if (mask & KVM_X86_SHADOW_INT_MOV_SS) interruptibility |= GUEST_INTR_STATE_MOV_SS; else if (mask & KVM_X86_SHADOW_INT_STI) interruptibility |= GUEST_INTR_STATE_STI; if ((interruptibility != interruptibility_old)) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { unsigned long rip; rip = kvm_rip_read(vcpu); rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_rip_write(vcpu, rip); /* skipping an emulated instruction also counts */ vmx_set_interrupt_shadow(vcpu, 0); } static void vmx_clear_hlt(struct kvm_vcpu *vcpu) { /* * Ensure that we clear the HLT state in the VMCS. We don't need to * explicitly skip the instruction because if the HLT state is set, * then the instruction is already executing and RIP has already been * advanced. */ if (kvm_hlt_in_guest(vcpu->kvm) && vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); } static void vmx_queue_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned nr = vcpu->arch.exception.nr; bool has_error_code = vcpu->arch.exception.has_error_code; u32 error_code = vcpu->arch.exception.error_code; u32 intr_info = nr | INTR_INFO_VALID_MASK; kvm_deliver_exception_payload(vcpu); if (has_error_code) { vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (vmx->rmode.vm86_active) { int inc_eip = 0; if (kvm_exception_is_soft(nr)) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } WARN_ON_ONCE(vmx->emulation_required); if (kvm_exception_is_soft(nr)) { vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); intr_info |= INTR_TYPE_SOFT_EXCEPTION; } else intr_info |= INTR_TYPE_HARD_EXCEPTION; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); vmx_clear_hlt(vcpu); } static bool vmx_rdtscp_supported(void) { return cpu_has_vmx_rdtscp(); } static bool vmx_invpcid_supported(void) { return cpu_has_vmx_invpcid(); } /* * Swap MSR entry in host/guest MSR entry array. */ static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) { struct shared_msr_entry tmp; tmp = vmx->guest_msrs[to]; vmx->guest_msrs[to] = vmx->guest_msrs[from]; vmx->guest_msrs[from] = tmp; } /* * Set up the vmcs to automatically save and restore system * msrs. Don't touch the 64-bit msrs if the guest is in legacy * mode, as fiddling with msrs is very expensive. */ static void setup_msrs(struct vcpu_vmx *vmx) { int save_nmsrs, index; save_nmsrs = 0; #ifdef CONFIG_X86_64 /* * The SYSCALL MSRs are only needed on long mode guests, and only * when EFER.SCE is set. */ if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { index = __find_msr_index(vmx, MSR_STAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_LSTAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_SYSCALL_MASK); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); } #endif index = __find_msr_index(vmx, MSR_EFER); if (index >= 0 && update_transition_efer(vmx, index)) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_TSC_AUX); if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) move_msr_up(vmx, index, save_nmsrs++); vmx->save_nmsrs = save_nmsrs; vmx->guest_msrs_dirty = true; if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(&vmx->vcpu); } static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (is_guest_mode(vcpu) && (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) return vcpu->arch.tsc_offset - vmcs12->tsc_offset; return vcpu->arch.tsc_offset; } static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); u64 g_tsc_offset = 0; /* * We're here if L1 chose not to trap WRMSR to TSC. According * to the spec, this should set L1's TSC; The offset that L1 * set for L2 remains unchanged, and still needs to be added * to the newly set TSC to get L2's TSC. */ if (is_guest_mode(vcpu) && (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) g_tsc_offset = vmcs12->tsc_offset; trace_kvm_write_tsc_offset(vcpu->vcpu_id, vcpu->arch.tsc_offset - g_tsc_offset, offset); vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); return offset + g_tsc_offset; } /* * nested_vmx_allowed() checks whether a guest should be allowed to use VMX * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for * all guests if the "nested" module option is off, and can also be disabled * for a single guest by disabling its VMX cpuid bit. */ bool nested_vmx_allowed(struct kvm_vcpu *vcpu) { return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); } static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, uint64_t val) { uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; return !(val & ~valid_bits); } static int vmx_get_msr_feature(struct kvm_msr_entry *msr) { switch (msr->index) { case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!nested) return 1; return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); default: return 1; } return 0; } /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr; switch (msr_info->index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: msr_info->data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: msr_info->data = vmcs_readl(GUEST_GS_BASE); break; case MSR_KERNEL_GS_BASE: msr_info->data = vmx_read_guest_kernel_gs_base(vmx); break; #endif case MSR_EFER: return kvm_get_msr_common(vcpu, msr_info); case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; msr_info->data = to_vmx(vcpu)->spec_ctrl; break; case MSR_IA32_ARCH_CAPABILITIES: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) return 1; msr_info->data = to_vmx(vcpu)->arch_capabilities; break; case MSR_IA32_SYSENTER_CS: msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; msr_info->data = vmcs_read64(GUEST_BNDCFGS); break; case MSR_IA32_MCG_EXT_CTL: if (!msr_info->host_initiated && !(vmx->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) return 1; msr_info->data = vcpu->arch.mcg_ext_ctl; break; case MSR_IA32_FEATURE_CONTROL: msr_info->data = vmx->msr_ia32_feature_control; break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!nested_vmx_allowed(vcpu)) return 1; return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, &msr_info->data); case MSR_IA32_XSS: if (!vmx_xsaves_supported()) return 1; msr_info->data = vcpu->arch.ia32_xss; break; case MSR_TSC_AUX: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(vmx, msr_info->index); if (msr) { msr_info->data = msr->data; break; } return kvm_get_msr_common(vcpu, msr_info); } return 0; } /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr; int ret = 0; u32 msr_index = msr_info->index; u64 data = msr_info->data; switch (msr_index) { case MSR_EFER: ret = kvm_set_msr_common(vcpu, msr_info); break; #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_GS_BASE, data); break; case MSR_KERNEL_GS_BASE: vmx_write_guest_kernel_gs_base(vmx, data); break; #endif case MSR_IA32_SYSENTER_CS: vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: vmcs_writel(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: vmcs_writel(GUEST_SYSENTER_ESP, data); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported() || (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) return 1; if (is_noncanonical_address(data & PAGE_MASK, vcpu) || (data & MSR_IA32_BNDCFGS_RSVD)) return 1; vmcs_write64(GUEST_BNDCFGS, data); break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; /* The STIBP bit doesn't fault even if it's not advertised */ if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) return 1; vmx->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_merge_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. We update the vmcs01 here for L1 as well * since it will end up touching the MSR anyway now. */ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); break; case MSR_IA32_PRED_CMD: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) return 1; if (data & ~PRED_CMD_IBPB) return 1; if (!data) break; wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_vmx_merge_msr_bitmap. We should not touch the * vmcs02.msr_bitmap here since it gets completely overwritten * in the merging. */ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, MSR_TYPE_W); break; case MSR_IA32_ARCH_CAPABILITIES: if (!msr_info->host_initiated) return 1; vmx->arch_capabilities = data; break; case MSR_IA32_CR_PAT: if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) return 1; vmcs_write64(GUEST_IA32_PAT, data); vcpu->arch.pat = data; break; } ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_TSC_ADJUST: ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_MCG_EXT_CTL: if ((!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) || (data & ~MCG_EXT_CTL_LMCE_EN)) return 1; vcpu->arch.mcg_ext_ctl = data; break; case MSR_IA32_FEATURE_CONTROL: if (!vmx_feature_control_msr_valid(vcpu, data) || (to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) return 1; vmx->msr_ia32_feature_control = data; if (msr_info->host_initiated && data == 0) vmx_leave_nested(vcpu); break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!msr_info->host_initiated) return 1; /* they are read-only */ if (!nested_vmx_allowed(vcpu)) return 1; return vmx_set_vmx_msr(vcpu, msr_index, data); case MSR_IA32_XSS: if (!vmx_xsaves_supported()) return 1; /* * The only supported bit as of Skylake is bit 8, but * it is not supported on KVM. */ if (data != 0) return 1; vcpu->arch.ia32_xss = data; if (vcpu->arch.ia32_xss != host_xss) add_atomic_switch_msr(vmx, MSR_IA32_XSS, vcpu->arch.ia32_xss, host_xss, false); else clear_atomic_switch_msr(vmx, MSR_IA32_XSS); break; case MSR_TSC_AUX: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) return 1; /* Check reserved bit, higher 32 bits should be zero */ if ((data >> 32) != 0) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(vmx, msr_index); if (msr) { u64 old_msr_data = msr->data; msr->data = data; if (msr - vmx->guest_msrs < vmx->save_nmsrs) { preempt_disable(); ret = kvm_set_shared_msr(msr->index, msr->data, msr->mask); preempt_enable(); if (ret) msr->data = old_msr_data; } break; } ret = kvm_set_msr_common(vcpu, msr_info); } return ret; } static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); switch (reg) { case VCPU_REGS_RSP: vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); break; case VCPU_REGS_RIP: vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); break; case VCPU_EXREG_PDPTR: if (enable_ept) ept_save_pdptrs(vcpu); break; default: break; } } static __init int cpu_has_kvm_support(void) { return cpu_has_vmx(); } static __init int vmx_disabled_by_bios(void) { u64 msr; rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); if (msr & FEATURE_CONTROL_LOCKED) { /* launched w/ TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && tboot_enabled()) return 1; /* launched w/o TXT and VMX only enabled w/ TXT */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && !tboot_enabled()) { printk(KERN_WARNING "kvm: disable TXT in the BIOS or " "activate TXT before enabling KVM\n"); return 1; } /* launched w/o TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && !tboot_enabled()) return 1; } return 0; } static void kvm_cpu_vmxon(u64 addr) { cr4_set_bits(X86_CR4_VMXE); intel_pt_handle_vmx(1); asm volatile ("vmxon %0" : : "m"(addr)); } static int hardware_enable(void) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); u64 old, test_bits; if (cr4_read_shadow() & X86_CR4_VMXE) return -EBUSY; /* * This can happen if we hot-added a CPU but failed to allocate * VP assist page for it. */ if (static_branch_unlikely(&enable_evmcs) && !hv_get_vp_assist_page(cpu)) return -EFAULT; INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); /* * Now we can enable the vmclear operation in kdump * since the loaded_vmcss_on_cpu list on this cpu * has been initialized. * * Though the cpu is not in VMX operation now, there * is no problem to enable the vmclear operation * for the loaded_vmcss_on_cpu list is empty! */ crash_enable_local_vmclear(cpu); rdmsrl(MSR_IA32_FEATURE_CONTROL, old); test_bits = FEATURE_CONTROL_LOCKED; test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (tboot_enabled()) test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; if ((old & test_bits) != test_bits) { /* enable and lock */ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); } kvm_cpu_vmxon(phys_addr); if (enable_ept) ept_sync_global(); return 0; } static void vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v, *n; list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) __loaded_vmcs_clear(v); } /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() * tricks. */ static void kvm_cpu_vmxoff(void) { asm volatile (__ex("vmxoff")); intel_pt_handle_vmx(0); cr4_clear_bits(X86_CR4_VMXE); } static void hardware_disable(void) { vmclear_local_loaded_vmcss(); kvm_cpu_vmxoff(); } static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) { u32 vmx_msr_low, vmx_msr_high; u32 ctl = ctl_min | ctl_opt; rdmsr(msr, vmx_msr_low, vmx_msr_high); ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ /* Ensure minimum (required) set of control bits are supported. */ if (ctl_min & ~ctl) return -EIO; *result = ctl; return 0; } static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, struct vmx_capability *vmx_cap) { u32 vmx_msr_low, vmx_msr_high; u32 min, opt, min2, opt2; u32 _pin_based_exec_control = 0; u32 _cpu_based_exec_control = 0; u32 _cpu_based_2nd_exec_control = 0; u32 _vmexit_control = 0; u32 _vmentry_control = 0; memset(vmcs_conf, 0, sizeof(*vmcs_conf)); min = CPU_BASED_HLT_EXITING | #ifdef CONFIG_X86_64 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | #endif CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_UNCOND_IO_EXITING | CPU_BASED_MOV_DR_EXITING | CPU_BASED_USE_TSC_OFFSETING | CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_RDPMC_EXITING; opt = CPU_BASED_TPR_SHADOW | CPU_BASED_USE_MSR_BITMAPS | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, &_cpu_based_exec_control) < 0) return -EIO; #ifdef CONFIG_X86_64 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & ~CPU_BASED_CR8_STORE_EXITING; #endif if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { min2 = 0; opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_WBINVD_EXITING | SECONDARY_EXEC_ENABLE_VPID | SECONDARY_EXEC_ENABLE_EPT | SECONDARY_EXEC_UNRESTRICTED_GUEST | SECONDARY_EXEC_PAUSE_LOOP_EXITING | SECONDARY_EXEC_DESC | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_ENABLE_INVPCID | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_XSAVES | SECONDARY_EXEC_RDSEED_EXITING | SECONDARY_EXEC_RDRAND_EXITING | SECONDARY_EXEC_ENABLE_PML | SECONDARY_EXEC_TSC_SCALING | SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX | SECONDARY_EXEC_ENABLE_VMFUNC | SECONDARY_EXEC_ENCLS_EXITING; if (adjust_vmx_controls(min2, opt2, MSR_IA32_VMX_PROCBASED_CTLS2, &_cpu_based_2nd_exec_control) < 0) return -EIO; } #ifndef CONFIG_X86_64 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; #endif if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_2nd_exec_control &= ~( SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, &vmx_cap->ept, &vmx_cap->vpid); if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { /* CR3 accesses and invlpg don't need to cause VM Exits when EPT enabled */ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_INVLPG_EXITING); } else if (vmx_cap->ept) { vmx_cap->ept = 0; pr_warn_once("EPT CAP should not exist if not support " "1-setting enable EPT VM-execution control\n"); } if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && vmx_cap->vpid) { vmx_cap->vpid = 0; pr_warn_once("VPID CAP should not exist if not support " "1-setting enable VPID VM-execution control\n"); } min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; #ifdef CONFIG_X86_64 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; #endif opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER | VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, &_vmexit_control) < 0) return -EIO; min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, &_pin_based_exec_control) < 0) return -EIO; if (cpu_has_broken_vmx_preemption_timer()) _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; min = VM_ENTRY_LOAD_DEBUG_CONTROLS; opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER | VM_ENTRY_LOAD_BNDCFGS | VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, &_vmentry_control) < 0) return -EIO; /* * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they * can't be used due to an errata where VM Exit may incorrectly clear * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. */ if (boot_cpu_data.x86 == 0x6) { switch (boot_cpu_data.x86_model) { case 26: /* AAK155 */ case 30: /* AAP115 */ case 37: /* AAT100 */ case 44: /* BC86,AAY89,BD102 */ case 46: /* BA97 */ _vmexit_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " "does not work properly. Using workaround\n"); break; default: break; } } rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) return -EIO; #ifdef CONFIG_X86_64 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ if (vmx_msr_high & (1u<<16)) return -EIO; #endif /* Require Write-Back (WB) memory type for VMCS accesses. */ if (((vmx_msr_high >> 18) & 15) != 6) return -EIO; vmcs_conf->size = vmx_msr_high & 0x1fff; vmcs_conf->order = get_order(vmcs_conf->size); vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; vmcs_conf->revision_id = vmx_msr_low; vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; vmcs_conf->vmexit_ctrl = _vmexit_control; vmcs_conf->vmentry_ctrl = _vmentry_control; if (static_branch_unlikely(&enable_evmcs)) evmcs_sanitize_exec_ctrls(vmcs_conf); return 0; } struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmcs_config.size); /* KVM supports Enlightened VMCS v1 only */ if (static_branch_unlikely(&enable_evmcs)) vmcs->hdr.revision_id = KVM_EVMCS_VERSION; else vmcs->hdr.revision_id = vmcs_config.revision_id; if (shadow) vmcs->hdr.shadow_vmcs = 1; return vmcs; } void free_vmcs(struct vmcs *vmcs) { free_pages((unsigned long)vmcs, vmcs_config.order); } /* * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded */ void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { if (!loaded_vmcs->vmcs) return; loaded_vmcs_clear(loaded_vmcs); free_vmcs(loaded_vmcs->vmcs); loaded_vmcs->vmcs = NULL; if (loaded_vmcs->msr_bitmap) free_page((unsigned long)loaded_vmcs->msr_bitmap); WARN_ON(loaded_vmcs->shadow_vmcs != NULL); } int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { loaded_vmcs->vmcs = alloc_vmcs(false); if (!loaded_vmcs->vmcs) return -ENOMEM; loaded_vmcs->shadow_vmcs = NULL; loaded_vmcs_init(loaded_vmcs); if (cpu_has_vmx_msr_bitmap()) { loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); if (!loaded_vmcs->msr_bitmap) goto out_vmcs; memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { struct hv_enlightened_vmcs *evmcs = (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; evmcs->hv_enlightenments_control.msr_bitmap = 1; } } memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); return 0; out_vmcs: free_loaded_vmcs(loaded_vmcs); return -ENOMEM; } static void free_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { free_vmcs(per_cpu(vmxarea, cpu)); per_cpu(vmxarea, cpu) = NULL; } } static __init int alloc_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(false, cpu); if (!vmcs) { free_kvm_area(); return -ENOMEM; } /* * When eVMCS is enabled, alloc_vmcs_cpu() sets * vmcs->revision_id to KVM_EVMCS_VERSION instead of * revision_id reported by MSR_IA32_VMX_BASIC. * * However, even though not explictly documented by * TLFS, VMXArea passed as VMXON argument should * still be marked with revision_id reported by * physical CPU. */ if (static_branch_unlikely(&enable_evmcs)) vmcs->hdr.revision_id = vmcs_config.revision_id; per_cpu(vmxarea, cpu) = vmcs; } return 0; } static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save) { if (!emulate_invalid_guest_state) { /* * CS and SS RPL should be equal during guest entry according * to VMX spec, but in reality it is not always so. Since vcpu * is in the middle of the transition from real mode to * protected mode it is safe to assume that RPL 0 is a good * default value. */ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) save->selector &= ~SEGMENT_RPL_MASK; save->dpl = save->selector & SEGMENT_RPL_MASK; save->s = 1; } vmx_set_segment(vcpu, save, seg); } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Update real mode segment cache. It may be not up-to-date if sement * register was written while vcpu was in a guest mode. */ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 0; vmx_segment_cache_clear(vmx); vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); flags = vmcs_readl(GUEST_RFLAGS); flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); update_exception_bitmap(vcpu); fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); } static void fix_rmode_seg(int seg, struct kvm_segment *save) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; struct kvm_segment var = *save; var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; if (!emulate_invalid_guest_state) { var.selector = var.base >> 4; var.base = var.base & 0xffff0; var.limit = 0xffff; var.g = 0; var.db = 0; var.present = 1; var.s = 1; var.l = 0; var.unusable = 0; var.type = 0x3; var.avl = 0; if (save->base & 0xf) printk_once(KERN_WARNING "kvm: segment base is not " "paragraph aligned when entering " "protected mode (seg=%d)", seg); } vmcs_write16(sf->selector, var.selector); vmcs_writel(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 1; /* * Very old userspace does not call KVM_SET_TSS_ADDR before entering * vcpu. Warn the user that an update is overdue. */ if (!kvm_vmx->tss_addr) printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " "called before entering vcpu\n"); vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vmx->rmode.save_rflags = flags; flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); update_exception_bitmap(vcpu); fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); kvm_mmu_reset_context(vcpu); } void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); if (!msr) return; vcpu->arch.efer = efer; if (efer & EFER_LMA) { vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer; } else { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer & ~EFER_LME; } setup_msrs(vmx); } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; vmx_segment_cache_clear(to_vmx(vcpu)); guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { pr_debug_ratelimited("%s: tss fixup for long mode. \n", __func__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~VMX_AR_TYPE_MASK) | VMX_AR_TYPE_BUSY_64_TSS); } vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); } static void exit_lmode(struct kvm_vcpu *vcpu) { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); } #endif static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) { int vpid = to_vmx(vcpu)->vpid; if (!vpid_sync_vcpu_addr(vpid, addr)) vpid_sync_context(vpid); /* * If VPIDs are not supported or enabled, then the above is a no-op. * But we don't really need a TLB flush in that case anyway, because * each VM entry/exit includes an implicit flush when VPID is 0. */ } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) { ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; vcpu->arch.cr0 &= ~cr0_guest_owned_bits; vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; } static void vmx_decache_cr3(struct kvm_vcpu *vcpu) { if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); } static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; vcpu->arch.cr4 &= ~cr4_guest_owned_bits; vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; } static void ept_load_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty)) return; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); } } void ept_save_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); } __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); } static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, unsigned long cr0, struct kvm_vcpu *vcpu) { if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) vmx_decache_cr3(vcpu); if (!(cr0 & X86_CR0_PG)) { /* From paging/starting to nonpaging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | (CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } else if (!is_paging(vcpu)) { /* From nonpaging to paging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } if (!(cr0 & X86_CR0_WP)) *hw_cr0 &= ~X86_CR0_WP; } void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr0; hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); if (enable_unrestricted_guest) hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; else { hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) enter_pmode(vcpu); if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) enter_rmode(vcpu); } #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) enter_lmode(vcpu); if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) exit_lmode(vcpu); } #endif if (enable_ept && !enable_unrestricted_guest) ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; /* depends on vcpu->arch.cr0 to be set to a new value */ vmx->emulation_required = emulation_required(vcpu); } static int get_ept_level(struct kvm_vcpu *vcpu) { if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) return 5; return 4; } u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) { u64 eptp = VMX_EPTP_MT_WB; eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; if (enable_ept_ad_bits && (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) eptp |= VMX_EPTP_AD_ENABLE_BIT; eptp |= (root_hpa & PAGE_MASK); return eptp; } void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { struct kvm *kvm = vcpu->kvm; unsigned long guest_cr3; u64 eptp; guest_cr3 = cr3; if (enable_ept) { eptp = construct_eptp(vcpu, cr3); vmcs_write64(EPT_POINTER, eptp); if (kvm_x86_ops->tlb_remote_flush) { spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); to_vmx(vcpu)->ept_pointer = eptp; to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_CHECK; spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); } if (enable_unrestricted_guest || is_paging(vcpu) || is_guest_mode(vcpu)) guest_cr3 = kvm_read_cr3(vcpu); else guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; ept_load_pdptrs(vcpu); } vmcs_writel(GUEST_CR3, guest_cr3); } int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { /* * Pass through host's Machine Check Enable value to hw_cr4, which * is in force while we are in guest mode. Do not let guests control * this bit, even if host CR4.MCE == 0. */ unsigned long hw_cr4; hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); if (enable_unrestricted_guest) hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; else if (to_vmx(vcpu)->rmode.vm86_active) hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; else hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { if (cr4 & X86_CR4_UMIP) { vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_DESC); hw_cr4 &= ~X86_CR4_UMIP; } else if (!is_guest_mode(vcpu) || !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_DESC); } if (cr4 & X86_CR4_VMXE) { /* * To use VMXON (and later other VMX instructions), a guest * must first be able to turn on cr4.VMXE (see handle_vmon()). * So basically the check on whether to allow nested VMX * is here. We operate under the default treatment of SMM, * so VMX cannot be enabled under SMM. */ if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) return 1; } if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) return 1; vcpu->arch.cr4 = cr4; if (!enable_unrestricted_guest) { if (enable_ept) { if (!is_paging(vcpu)) { hw_cr4 &= ~X86_CR4_PAE; hw_cr4 |= X86_CR4_PSE; } else if (!(cr4 & X86_CR4_PAE)) { hw_cr4 &= ~X86_CR4_PAE; } } /* * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in * hardware. To emulate this behavior, SMEP/SMAP/PKU needs * to be manually disabled when guest switches to non-paging * mode. * * If !enable_unrestricted_guest, the CPU is always running * with CR0.PG=1 and CR4 needs to be modified. * If enable_unrestricted_guest, the CPU automatically * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. */ if (!is_paging(vcpu)) hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); } vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, hw_cr4); return 0; } void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 ar; if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { *var = vmx->rmode.segs[seg]; if (seg == VCPU_SREG_TR || var->selector == vmx_read_guest_seg_selector(vmx, seg)) return; var->base = vmx_read_guest_seg_base(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); return; } var->base = vmx_read_guest_seg_base(vmx, seg); var->limit = vmx_read_guest_seg_limit(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); ar = vmx_read_guest_seg_ar(vmx, seg); var->unusable = (ar >> 16) & 1; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; /* * Some userspaces do not preserve unusable property. Since usable * segment has to be present according to VMX spec we can use present * property to amend userspace bug by making unusable segment always * nonpresent. vmx_segment_access_rights() already marks nonpresent * segment as unusable. */ var->present = !var->unusable; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; } static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment s; if (to_vmx(vcpu)->rmode.vm86_active) { vmx_get_segment(vcpu, &s, seg); return s.base; } return vmx_read_guest_seg_base(to_vmx(vcpu), seg); } int vmx_get_cpl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (unlikely(vmx->rmode.vm86_active)) return 0; else { int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); return VMX_AR_DPL(ar); } } static u32 vmx_segment_access_rights(struct kvm_segment *var) { u32 ar; if (var->unusable || !var->present) ar = 1 << 16; else { ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; } return ar; } void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmx_segment_cache_clear(vmx); if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { vmx->rmode.segs[seg] = *var; if (seg == VCPU_SREG_TR) vmcs_write16(sf->selector, var->selector); else if (var->s) fix_rmode_seg(seg, &vmx->rmode.segs[seg]); goto out; } vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); /* * Fix the "Accessed" bit in AR field of segment registers for older * qemu binaries. * IA32 arch specifies that at the time of processor reset the * "Accessed" bit in the AR field of segment registers is 1. And qemu * is setting it to 0 in the userland code. This causes invalid guest * state vmexit when "unrestricted guest" mode is turned on. * Fix for this setup issue in cpu_reset is being pushed in the qemu * tree. Newer qemu binaries with that qemu fix would not need this * kvm hack. */ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) var->type |= 0x1; /* Accessed */ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); out: vmx->emulation_required = emulation_required(vcpu); } static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_IDTR_LIMIT); dt->address = vmcs_readl(GUEST_IDTR_BASE); } static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->size); vmcs_writel(GUEST_IDTR_BASE, dt->address); } static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_GDTR_LIMIT); dt->address = vmcs_readl(GUEST_GDTR_BASE); } static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->size); vmcs_writel(GUEST_GDTR_BASE, dt->address); } static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; u32 ar; vmx_get_segment(vcpu, &var, seg); var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; ar = vmx_segment_access_rights(&var); if (var.base != (var.selector << 4)) return false; if (var.limit != 0xffff) return false; if (ar != 0xf3) return false; return true; } static bool code_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment cs; unsigned int cs_rpl; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); cs_rpl = cs.selector & SEGMENT_RPL_MASK; if (cs.unusable) return false; if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) return false; if (!cs.s) return false; if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { if (cs.dpl > cs_rpl) return false; } else { if (cs.dpl != cs_rpl) return false; } if (!cs.present) return false; /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ return true; } static bool stack_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ss; unsigned int ss_rpl; vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ss_rpl = ss.selector & SEGMENT_RPL_MASK; if (ss.unusable) return true; if (ss.type != 3 && ss.type != 7) return false; if (!ss.s) return false; if (ss.dpl != ss_rpl) /* DPL != RPL */ return false; if (!ss.present) return false; return true; } static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; unsigned int rpl; vmx_get_segment(vcpu, &var, seg); rpl = var.selector & SEGMENT_RPL_MASK; if (var.unusable) return true; if (!var.s) return false; if (!var.present) return false; if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { if (var.dpl < rpl) /* DPL < RPL */ return false; } /* TODO: Add other members to kvm_segment_field to allow checking for other access * rights flags */ return true; } static bool tr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment tr; vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); if (tr.unusable) return false; if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ return false; if (!tr.present) return false; return true; } static bool ldtr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ldtr; vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); if (ldtr.unusable) return true; if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (ldtr.type != 2) return false; if (!ldtr.present) return false; return true; } static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ss; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); return ((cs.selector & SEGMENT_RPL_MASK) == (ss.selector & SEGMENT_RPL_MASK)); } /* * Check if guest state is valid. Returns true if valid, false if * not. * We assume that registers are always usable */ static bool guest_state_valid(struct kvm_vcpu *vcpu) { if (enable_unrestricted_guest) return true; /* real mode guest state checks */ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) return false; } else { /* protected mode guest state checks */ if (!cs_ss_rpl_check(vcpu)) return false; if (!code_segment_valid(vcpu)) return false; if (!stack_segment_valid(vcpu)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_GS)) return false; if (!tr_valid(vcpu)) return false; if (!ldtr_valid(vcpu)) return false; } /* TODO: * - Add checks on RIP * - Add checks on RFLAGS */ return true; } static int init_rmode_tss(struct kvm *kvm) { gfn_t fn; u16 data = 0; int idx, r; idx = srcu_read_lock(&kvm->srcu); fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; r = kvm_write_guest_page(kvm, fn++, &data, TSS_IOPB_BASE_OFFSET, sizeof(u16)); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = ~0; r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, sizeof(u8)); out: srcu_read_unlock(&kvm->srcu, idx); return r; } static int init_rmode_identity_map(struct kvm *kvm) { struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); int i, idx, r = 0; kvm_pfn_t identity_map_pfn; u32 tmp; /* Protect kvm_vmx->ept_identity_pagetable_done. */ mutex_lock(&kvm->slots_lock); if (likely(kvm_vmx->ept_identity_pagetable_done)) goto out2; if (!kvm_vmx->ept_identity_map_addr) kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, kvm_vmx->ept_identity_map_addr, PAGE_SIZE); if (r < 0) goto out2; idx = srcu_read_lock(&kvm->srcu); r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); if (r < 0) goto out; /* Set up identity-mapping pagetable for EPT in real mode */ for (i = 0; i < PT32_ENT_PER_PAGE; i++) { tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); r = kvm_write_guest_page(kvm, identity_map_pfn, &tmp, i * sizeof(tmp), sizeof(tmp)); if (r < 0) goto out; } kvm_vmx->ept_identity_pagetable_done = true; out: srcu_read_unlock(&kvm->srcu, idx); out2: mutex_unlock(&kvm->slots_lock); return r; } static void seg_setup(int seg) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; unsigned int ar; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); ar = 0x93; if (seg == VCPU_SREG_CS) ar |= 0x08; /* code segment */ vmcs_write32(sf->ar_bytes, ar); } static int alloc_apic_access_page(struct kvm *kvm) { struct page *page; int r = 0; mutex_lock(&kvm->slots_lock); if (kvm->arch.apic_access_page_done) goto out; r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); if (r) goto out; page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); if (is_error_page(page)) { r = -EFAULT; goto out; } /* * Do not pin the page in memory, so that memory hot-unplug * is able to migrate it. */ put_page(page); kvm->arch.apic_access_page_done = true; out: mutex_unlock(&kvm->slots_lock); return r; } int allocate_vpid(void) { int vpid; if (!enable_vpid) return 0; spin_lock(&vmx_vpid_lock); vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); if (vpid < VMX_NR_VPIDS) __set_bit(vpid, vmx_vpid_bitmap); else vpid = 0; spin_unlock(&vmx_vpid_lock); return vpid; } void free_vpid(int vpid) { if (!enable_vpid || vpid == 0) return; spin_lock(&vmx_vpid_lock); __clear_bit(vpid, vmx_vpid_bitmap); spin_unlock(&vmx_vpid_lock); } static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; if (static_branch_unlikely(&enable_evmcs)) evmcs_touch_msr_bitmap(); /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __clear_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __clear_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __clear_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __clear_bit(msr, msr_bitmap + 0xc00 / f); } } static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; if (static_branch_unlikely(&enable_evmcs)) evmcs_touch_msr_bitmap(); /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __set_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __set_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __set_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __set_bit(msr, msr_bitmap + 0xc00 / f); } } static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type, bool value) { if (value) vmx_enable_intercept_for_msr(msr_bitmap, msr, type); else vmx_disable_intercept_for_msr(msr_bitmap, msr, type); } static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) { u8 mode = 0; if (cpu_has_secondary_exec_ctrls() && (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { mode |= MSR_BITMAP_MODE_X2APIC; if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) mode |= MSR_BITMAP_MODE_X2APIC_APICV; } return mode; } static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, u8 mode) { int msr; for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { unsigned word = msr / BITS_PER_LONG; msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; msr_bitmap[word + (0x800 / sizeof(long))] = ~0; } if (mode & MSR_BITMAP_MODE_X2APIC) { /* * TPR reads and writes can be virtualized even if virtual interrupt * delivery is not in use. */ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); } } } void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; u8 mode = vmx_msr_bitmap_mode(vcpu); u8 changed = mode ^ vmx->msr_bitmap_mode; if (!changed) return; if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); vmx->msr_bitmap_mode = mode; } static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) { return enable_apicv; } static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); void *vapic_page; u32 vppr; int rvi; if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || !nested_cpu_has_vid(get_vmcs12(vcpu)) || WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) return false; rvi = vmx_get_rvi(); vapic_page = kmap(vmx->nested.virtual_apic_page); vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); kunmap(vmx->nested.virtual_apic_page); return ((rvi & 0xf0) > (vppr & 0xf0)); } static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, bool nested) { #ifdef CONFIG_SMP int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; if (vcpu->mode == IN_GUEST_MODE) { /* * The vector of interrupt to be delivered to vcpu had * been set in PIR before this function. * * Following cases will be reached in this block, and * we always send a notification event in all cases as * explained below. * * Case 1: vcpu keeps in non-root mode. Sending a * notification event posts the interrupt to vcpu. * * Case 2: vcpu exits to root mode and is still * runnable. PIR will be synced to vIRR before the * next vcpu entry. Sending a notification event in * this case has no effect, as vcpu is not in root * mode. * * Case 3: vcpu exits to root mode and is blocked. * vcpu_block() has already synced PIR to vIRR and * never blocks vcpu if vIRR is not cleared. Therefore, * a blocked vcpu here does not wait for any requested * interrupts in PIR, and sending a notification event * which has no effect is safe here. */ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); return true; } #endif return false; } static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu) && vector == vmx->nested.posted_intr_nv) { /* * If a posted intr is not recognized by hardware, * we will accomplish it in the next vmentry. */ vmx->nested.pi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); /* the PIR and ON have been set by L1. */ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) kvm_vcpu_kick(vcpu); return 0; } return -1; } /* * Send interrupt to vcpu via posted interrupt way. * 1. If target vcpu is running(non-root mode), send posted interrupt * notification to vcpu and hardware will sync PIR to vIRR atomically. * 2. If target vcpu isn't running(root mode), kick it to pick up the * interrupt from PIR in next vmentry. */ static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = vmx_deliver_nested_posted_interrupt(vcpu, vector); if (!r) return; if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return; /* If a previous notification has sent the IPI, nothing to do. */ if (pi_test_and_set_on(&vmx->pi_desc)) return; if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) kvm_vcpu_kick(vcpu); } /* * Set up the vmcs's constant host-state fields, i.e., host-state fields that * will not change in the lifetime of the guest. * Note that host-state that does change is set elsewhere. E.g., host-state * that is set differently for each CPU is set in vmx_vcpu_load(), not here. */ void vmx_set_constant_host_state(struct vcpu_vmx *vmx) { u32 low32, high32; unsigned long tmpl; struct desc_ptr dt; unsigned long cr0, cr3, cr4; cr0 = read_cr0(); WARN_ON(cr0 & X86_CR0_TS); vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ /* * Save the most likely value for this task's CR3 in the VMCS. * We can't use __get_current_cr3_fast() because we're not atomic. */ cr3 = __read_cr3(); vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ vmx->loaded_vmcs->host_state.cr3 = cr3; /* Save the most likely value for this task's CR4 in the VMCS. */ cr4 = cr4_read_shadow(); vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ vmx->loaded_vmcs->host_state.cr4 = cr4; vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ #ifdef CONFIG_X86_64 /* * Load null selectors, so we can avoid reloading them in * vmx_prepare_switch_to_host(), in case userspace uses * the null selectors too (the expected case). */ vmcs_write16(HOST_DS_SELECTOR, 0); vmcs_write16(HOST_ES_SELECTOR, 0); #else vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #endif vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ store_idt(&dt); vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ vmx->host_idt_base = dt.address; vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); vmcs_write32(HOST_IA32_SYSENTER_CS, low32); rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { rdmsr(MSR_IA32_CR_PAT, low32, high32); vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); } if (cpu_has_load_ia32_efer()) vmcs_write64(HOST_IA32_EFER, host_efer); } void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) { vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; if (enable_ept) vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; if (is_guest_mode(&vmx->vcpu)) vmx->vcpu.arch.cr4_guest_owned_bits &= ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); } static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) { u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; if (!enable_vnmi) pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; /* Enable the preemption timer dynamically */ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; return pin_based_exec_ctrl; } static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); if (cpu_has_secondary_exec_ctrls()) { if (kvm_vcpu_apicv_active(vcpu)) vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); else vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); } if (cpu_has_vmx_msr_bitmap()) vmx_update_msr_bitmap(vcpu); } u32 vmx_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_exec_ctrl; if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) exec_control &= ~CPU_BASED_MOV_DR_EXITING; if (!cpu_need_tpr_shadow(&vmx->vcpu)) { exec_control &= ~CPU_BASED_TPR_SHADOW; #ifdef CONFIG_X86_64 exec_control |= CPU_BASED_CR8_STORE_EXITING | CPU_BASED_CR8_LOAD_EXITING; #endif } if (!enable_ept) exec_control |= CPU_BASED_CR3_STORE_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_INVLPG_EXITING; if (kvm_mwait_in_guest(vmx->vcpu.kvm)) exec_control &= ~(CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING); if (kvm_hlt_in_guest(vmx->vcpu.kvm)) exec_control &= ~CPU_BASED_HLT_EXITING; return exec_control; } static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) { struct kvm_vcpu *vcpu = &vmx->vcpu; u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; if (pt_mode == PT_MODE_SYSTEM) exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); if (!cpu_need_virtualize_apic_accesses(vcpu)) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; if (vmx->vpid == 0) exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; if (!enable_ept) { exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; enable_unrestricted_guest = 0; } if (!enable_unrestricted_guest) exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (kvm_pause_in_guest(vmx->vcpu.kvm)) exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; if (!kvm_vcpu_apicv_active(vcpu)) exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, * in vmx_set_cr4. */ exec_control &= ~SECONDARY_EXEC_DESC; /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD (handle_vmptrld). We can NOT enable shadow_vmcs here because we don't have yet a current VMCS12 */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; if (!enable_pml) exec_control &= ~SECONDARY_EXEC_ENABLE_PML; if (vmx_xsaves_supported()) { /* Exposing XSAVES only when XSAVE is exposed */ bool xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); if (!xsaves_enabled) exec_control &= ~SECONDARY_EXEC_XSAVES; if (nested) { if (xsaves_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_XSAVES; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_XSAVES; } } if (vmx_rdtscp_supported()) { bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); if (!rdtscp_enabled) exec_control &= ~SECONDARY_EXEC_RDTSCP; if (nested) { if (rdtscp_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDTSCP; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDTSCP; } } if (vmx_invpcid_supported()) { /* Exposing INVPCID only when PCID is exposed */ bool invpcid_enabled = guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && guest_cpuid_has(vcpu, X86_FEATURE_PCID); if (!invpcid_enabled) { exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); } if (nested) { if (invpcid_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_ENABLE_INVPCID; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_ENABLE_INVPCID; } } if (vmx_rdrand_supported()) { bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); if (rdrand_enabled) exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; if (nested) { if (rdrand_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDRAND_EXITING; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDRAND_EXITING; } } if (vmx_rdseed_supported()) { bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); if (rdseed_enabled) exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; if (nested) { if (rdseed_enabled) vmx->nested.msrs.secondary_ctls_high |= SECONDARY_EXEC_RDSEED_EXITING; else vmx->nested.msrs.secondary_ctls_high &= ~SECONDARY_EXEC_RDSEED_EXITING; } } vmx->secondary_exec_control = exec_control; } static void ept_set_mmio_spte_mask(void) { /* * EPT Misconfigurations can be generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). */ kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, VMX_EPT_MISCONFIG_WX_VALUE); } #define VMX_XSS_EXIT_BITMAP 0 /* * Sets up the vmcs for emulated real mode. */ static void vmx_vcpu_setup(struct vcpu_vmx *vmx) { int i; if (nested) nested_vmx_vcpu_setup(); if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ /* Control */ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); vmx->hv_deadline_tsc = -1; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); if (cpu_has_secondary_exec_ctrls()) { vmx_compute_secondary_exec_control(vmx); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, vmx->secondary_exec_control); } if (kvm_vcpu_apicv_active(&vmx->vcpu)) { vmcs_write64(EOI_EXIT_BITMAP0, 0); vmcs_write64(EOI_EXIT_BITMAP1, 0); vmcs_write64(EOI_EXIT_BITMAP2, 0); vmcs_write64(EOI_EXIT_BITMAP3, 0); vmcs_write16(GUEST_INTR_STATUS, 0); vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); } if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { vmcs_write32(PLE_GAP, ple_gap); vmx->ple_window = ple_window; vmx->ple_window_dirty = true; } vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ vmx_set_constant_host_state(vmx); vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ if (cpu_has_vmx_vmfunc()) vmcs_write64(VM_FUNCTION_CONTROL, 0); vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { u32 index = vmx_msr_index[i]; u32 data_low, data_high; int j = vmx->nmsrs; if (rdmsr_safe(index, &data_low, &data_high) < 0) continue; if (wrmsr_safe(index, data_low, data_high) < 0) continue; vmx->guest_msrs[j].index = i; vmx->guest_msrs[j].data = 0; vmx->guest_msrs[j].mask = -1ull; ++vmx->nmsrs; } vmx->arch_capabilities = kvm_get_arch_capabilities(); vm_exit_controls_init(vmx, vmx_vmexit_ctrl()); /* 22.2.1, 20.8.1 */ vm_entry_controls_init(vmx, vmx_vmentry_ctrl()); vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); set_cr4_guest_host_mask(vmx); if (vmx_xsaves_supported()) vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); if (enable_pml) { vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } if (cpu_has_vmx_encls_vmexit()) vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); } static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct msr_data apic_base_msr; u64 cr0; vmx->rmode.vm86_active = 0; vmx->spec_ctrl = 0; vcpu->arch.microcode_version = 0x100000000ULL; vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); kvm_set_cr8(vcpu, 0); if (!init_event) { apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(vcpu)) apic_base_msr.data |= MSR_IA32_APICBASE_BSP; apic_base_msr.host_initiated = true; kvm_set_apic_base(vcpu, &apic_base_msr); } vmx_segment_cache_clear(vmx); seg_setup(VCPU_SREG_CS); vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); if (!init_event) { vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); } kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); kvm_rip_write(vcpu, 0xfff0); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); if (kvm_mpx_supported()) vmcs_write64(GUEST_BNDCFGS, 0); setup_msrs(vmx); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ if (cpu_has_vmx_tpr_shadow() && !init_event) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); if (cpu_need_tpr_shadow(vcpu)) vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, __pa(vcpu->arch.apic->regs)); vmcs_write32(TPR_THRESHOLD, 0); } kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); if (vmx->vpid != 0) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; vmx->vcpu.arch.cr0 = cr0; vmx_set_cr0(vcpu, cr0); /* enter rmode */ vmx_set_cr4(vcpu, 0); vmx_set_efer(vcpu, 0); update_exception_bitmap(vcpu); vpid_sync_context(vmx->vpid); if (init_event) vmx_clear_hlt(vcpu); } static void enable_irq_window(struct kvm_vcpu *vcpu) { vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_INTR_PENDING); } static void enable_nmi_window(struct kvm_vcpu *vcpu) { if (!enable_vnmi || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { enable_irq_window(vcpu); return; } vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_NMI_PENDING); } static void vmx_inject_irq(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); uint32_t intr; int irq = vcpu->arch.interrupt.nr; trace_kvm_inj_virq(irq); ++vcpu->stat.irq_injections; if (vmx->rmode.vm86_active) { int inc_eip = 0; if (vcpu->arch.interrupt.soft) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } intr = irq | INTR_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { intr |= INTR_TYPE_SOFT_INTR; vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); } else intr |= INTR_TYPE_EXT_INTR; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); vmx_clear_hlt(vcpu); } static void vmx_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { /* * Tracking the NMI-blocked state in software is built upon * finding the next open IRQ window. This, in turn, depends on * well-behaving guests: They have to keep IRQs disabled at * least as long as the NMI handler runs. Otherwise we may * cause NMI nesting, maybe breaking the guest. But as this is * highly unlikely, we can live with the residual risk. */ vmx->loaded_vmcs->soft_vnmi_blocked = 1; vmx->loaded_vmcs->vnmi_blocked_time = 0; } ++vcpu->stat.nmi_injections; vmx->loaded_vmcs->nmi_known_unmasked = false; if (vmx->rmode.vm86_active) { if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); vmx_clear_hlt(vcpu); } bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); bool masked; if (!enable_vnmi) return vmx->loaded_vmcs->soft_vnmi_blocked; if (vmx->loaded_vmcs->nmi_known_unmasked) return false; masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; vmx->loaded_vmcs->nmi_known_unmasked = !masked; return masked; } void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!enable_vnmi) { if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { vmx->loaded_vmcs->soft_vnmi_blocked = masked; vmx->loaded_vmcs->vnmi_blocked_time = 0; } } else { vmx->loaded_vmcs->nmi_known_unmasked = !masked; if (masked) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); } } static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) { if (to_vmx(vcpu)->nested.nested_run_pending) return 0; if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) return 0; return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | GUEST_INTR_STATE_NMI)); } static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) { return (!to_vmx(vcpu)->nested.nested_run_pending && vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); } static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) { int ret; if (enable_unrestricted_guest) return 0; ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, PAGE_SIZE * 3); if (ret) return ret; to_kvm_vmx(kvm)->tss_addr = addr; return init_rmode_tss(kvm); } static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; return 0; } static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) { switch (vec) { case BP_VECTOR: /* * Update instruction length as we may reinject the exception * from user space while in guest debugging mode. */ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; /* fall through */ case DB_VECTOR: if (vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) return false; /* fall through */ case DE_VECTOR: case OF_VECTOR: case BR_VECTOR: case UD_VECTOR: case DF_VECTOR: case SS_VECTOR: case GP_VECTOR: case MF_VECTOR: return true; break; } return false; } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { /* * Instruction with address size override prefix opcode 0x67 * Cause the #SS fault with 0 error code in VM86 mode. */ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_vcpu_halt(vcpu); } return 1; } return 0; } /* * Forward all other exceptions that are valid in real mode. * FIXME: Breaks guest debugging in real mode, needs to be fixed with * the required debugging infrastructure rework. */ kvm_queue_exception(vcpu, vec); return 1; } /* * Trigger machine check on the host. We assume all the MSRs are already set up * by the CPU and that we still run on the same CPU as the MCE occurred on. * We pass a fake environment to the machine check handler because we want * the guest to be always treated like user space, no matter what context * it used internally. */ static void kvm_machine_check(void) { #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) struct pt_regs regs = { .cs = 3, /* Fake ring 3 no matter what the guest ran on */ .flags = X86_EFLAGS_IF, }; do_machine_check(®s, 0); #endif } static int handle_machine_check(struct kvm_vcpu *vcpu) { /* already handled by vcpu_run */ return 1; } static int handle_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 intr_info, ex_no, error_code; unsigned long cr2, rip, dr6; u32 vect_info; enum emulation_result er; vect_info = vmx->idt_vectoring_info; intr_info = vmx->exit_intr_info; if (is_machine_check(intr_info)) return handle_machine_check(vcpu); if (is_nmi(intr_info)) return 1; /* already handled by vmx_vcpu_run() */ if (is_invalid_opcode(intr_info)) return handle_ud(vcpu); error_code = 0; if (intr_info & INTR_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { WARN_ON_ONCE(!enable_vmware_backdoor); er = kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); if (er == EMULATE_USER_EXIT) return 0; else if (er != EMULATE_DONE) kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } /* * The #PF with PFEC.RSVD = 1 indicates the guest is accessing * MMIO, it is better to report an internal error. * See the comments in vmx_handle_exit. */ if ((vect_info & VECTORING_INFO_VALID_MASK) && !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; vcpu->run->internal.ndata = 3; vcpu->run->internal.data[0] = vect_info; vcpu->run->internal.data[1] = intr_info; vcpu->run->internal.data[2] = error_code; return 0; } if (is_page_fault(intr_info)) { cr2 = vmcs_readl(EXIT_QUALIFICATION); /* EPT won't cause page fault directly */ WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); } ex_no = intr_info & INTR_INFO_VECTOR_MASK; if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) return handle_rmode_exception(vcpu, ex_no, error_code); switch (ex_no) { case AC_VECTOR: kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); return 1; case DB_VECTOR: dr6 = vmcs_readl(EXIT_QUALIFICATION); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= dr6 | DR6_RTM; if (is_icebp(intr_info)) skip_emulated_instruction(vcpu); kvm_queue_exception(vcpu, DB_VECTOR); return 1; } kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); /* fall through */ case BP_VECTOR: /* * Update instruction length as we may reinject #BP from * user space while in guest debugging mode. Reading it for * #DB as well causes no harm, it is not used in that case. */ vmx->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_run->exit_reason = KVM_EXIT_DEBUG; rip = kvm_rip_read(vcpu); kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; kvm_run->debug.arch.exception = ex_no; break; default: kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = ex_no; kvm_run->ex.error_code = error_code; break; } return 0; } static int handle_external_interrupt(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int handle_triple_fault(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; vcpu->mmio_needed = 0; return 0; } static int handle_io(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int size, in, string; unsigned port; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); string = (exit_qualification & 16) != 0; ++vcpu->stat.io_exits; if (string) return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; in = (exit_qualification & 8) != 0; return kvm_fast_pio(vcpu, size, port, in); } static void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xc1; } /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* * We get here when L2 changed cr0 in a way that did not change * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), * but did change L0 shadowed bits. So we first calculate the * effective cr0 value that L1 would like to write into the * hardware. It consists of the L2-owned bits from the new * value combined with the L1-owned bits from L1's guest_cr0. */ val = (val & ~vmcs12->cr0_guest_host_mask) | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); if (!nested_guest_cr0_valid(vcpu, val)) return 1; if (kvm_set_cr0(vcpu, val)) return 1; vmcs_writel(CR0_READ_SHADOW, orig_val); return 0; } else { if (to_vmx(vcpu)->nested.vmxon && !nested_host_cr0_valid(vcpu, val)) return 1; return kvm_set_cr0(vcpu, val); } } static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* analogously to handle_set_cr0 */ val = (val & ~vmcs12->cr4_guest_host_mask) | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); if (kvm_set_cr4(vcpu, val)) return 1; vmcs_writel(CR4_READ_SHADOW, orig_val); return 0; } else return kvm_set_cr4(vcpu, val); } static int handle_desc(struct kvm_vcpu *vcpu) { WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; int cr; int reg; int err; int ret; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ val = kvm_register_readl(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: err = handle_set_cr0(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 3: WARN_ON_ONCE(enable_unrestricted_guest); err = kvm_set_cr3(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 4: err = handle_set_cr4(vcpu, val); return kvm_complete_insn_gp(vcpu, err); case 8: { u8 cr8_prev = kvm_get_cr8(vcpu); u8 cr8 = (u8)val; err = kvm_set_cr8(vcpu, cr8); ret = kvm_complete_insn_gp(vcpu, err); if (lapic_in_kernel(vcpu)) return ret; if (cr8_prev <= cr8) return ret; /* * TODO: we might be squashing a * KVM_GUESTDBG_SINGLESTEP-triggered * KVM_EXIT_DEBUG here. */ vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } } break; case 2: /* clts */ WARN_ONCE(1, "Guest should always own CR0.TS"); vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); return kvm_skip_emulated_instruction(vcpu); case 1: /*mov from cr*/ switch (cr) { case 3: WARN_ON_ONCE(enable_unrestricted_guest); val = kvm_read_cr3(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); case 8: val = kvm_get_cr8(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); return kvm_skip_emulated_instruction(vcpu); } break; case 3: /* lmsw */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); kvm_lmsw(vcpu, val); return kvm_skip_emulated_instruction(vcpu); default: break; } vcpu->run->exit_reason = 0; vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int dr, dr7, reg; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); dr = exit_qualification & DEBUG_REG_ACCESS_NUM; /* First, if DR does not exist, trigger UD */ if (!kvm_require_dr(vcpu, dr)) return 1; /* Do not handle if the CPL > 0, will trigger GP on re-entry */ if (!kvm_require_cpl(vcpu, 0)) return 1; dr7 = vmcs_readl(GUEST_DR7); if (dr7 & DR7_GD) { /* * As the vm-exit takes precedence over the debug trap, we * need to emulate the latter, either for the host or the * guest debugging itself. */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; vcpu->run->debug.arch.dr7 = dr7; vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); vcpu->run->debug.arch.exception = DB_VECTOR; vcpu->run->exit_reason = KVM_EXIT_DEBUG; return 0; } else { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= DR6_BD | DR6_RTM; kvm_queue_exception(vcpu, DB_VECTOR); return 1; } } if (vcpu->guest_debug == 0) { vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } reg = DEBUG_REG_ACCESS_REG(exit_qualification); if (exit_qualification & TYPE_MOV_FROM_DR) { unsigned long val; if (kvm_get_dr(vcpu, dr, &val)) return 1; kvm_register_write(vcpu, reg, val); } else if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) return 1; return kvm_skip_emulated_instruction(vcpu); } static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) { return vcpu->arch.dr6; } static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) { } static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); get_debugreg(vcpu->arch.dr6, 6); vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); } static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) { vmcs_writel(GUEST_DR7, val); } static int handle_cpuid(struct kvm_vcpu *vcpu) { return kvm_emulate_cpuid(vcpu); } static int handle_rdmsr(struct kvm_vcpu *vcpu) { u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; struct msr_data msr_info; msr_info.index = ecx; msr_info.host_initiated = false; if (vmx_get_msr(vcpu, &msr_info)) { trace_kvm_msr_read_ex(ecx); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_read(ecx, msr_info.data); /* FIXME: handling of bits 32:63 of rax, rdx */ vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; return kvm_skip_emulated_instruction(vcpu); } static int handle_wrmsr(struct kvm_vcpu *vcpu) { struct msr_data msr; u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); msr.data = data; msr.index = ecx; msr.host_initiated = false; if (kvm_set_msr(vcpu, &msr) != 0) { trace_kvm_msr_write_ex(ecx, data); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_write(ecx, data); return kvm_skip_emulated_instruction(vcpu); } static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { kvm_apic_update_ppr(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_INTR_PENDING); kvm_make_request(KVM_REQ_EVENT, vcpu); ++vcpu->stat.irq_window_exits; return 1; } static int handle_halt(struct kvm_vcpu *vcpu) { return kvm_emulate_halt(vcpu); } static int handle_vmcall(struct kvm_vcpu *vcpu) { return kvm_emulate_hypercall(vcpu); } static int handle_invd(struct kvm_vcpu *vcpu) { return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_invlpg(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); kvm_mmu_invlpg(vcpu, exit_qualification); return kvm_skip_emulated_instruction(vcpu); } static int handle_rdpmc(struct kvm_vcpu *vcpu) { int err; err = kvm_rdpmc(vcpu); return kvm_complete_insn_gp(vcpu, err); } static int handle_wbinvd(struct kvm_vcpu *vcpu) { return kvm_emulate_wbinvd(vcpu); } static int handle_xsetbv(struct kvm_vcpu *vcpu) { u64 new_bv = kvm_read_edx_eax(vcpu); u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); if (kvm_set_xcr(vcpu, index, new_bv) == 0) return kvm_skip_emulated_instruction(vcpu); return 1; } static int handle_xsaves(struct kvm_vcpu *vcpu) { kvm_skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_xrstors(struct kvm_vcpu *vcpu) { kvm_skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_apic_access(struct kvm_vcpu *vcpu) { if (likely(fasteoi)) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int access_type, offset; access_type = exit_qualification & APIC_ACCESS_TYPE; offset = exit_qualification & APIC_ACCESS_OFFSET; /* * Sane guest uses MOV to write EOI, with written value * not cared. So make a short-circuit here by avoiding * heavy instruction emulation. */ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && (offset == APIC_EOI)) { kvm_lapic_set_eoi(vcpu); return kvm_skip_emulated_instruction(vcpu); } } return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int vector = exit_qualification & 0xff; /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ kvm_apic_set_eoi_accelerated(vcpu, vector); return 1; } static int handle_apic_write(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 offset = exit_qualification & 0xfff; /* APIC-write VM exit is trap-like and thus no need to adjust IP */ kvm_apic_write_nodecode(vcpu, offset); return 1; } static int handle_task_switch(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification; bool has_error_code = false; u32 error_code = 0; u16 tss_selector; int reason, type, idt_v, idt_index; idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); reason = (u32)exit_qualification >> 30; if (reason == TASK_SWITCH_GATE && idt_v) { switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = false; vmx_set_nmi_mask(vcpu, true); break; case INTR_TYPE_EXT_INTR: case INTR_TYPE_SOFT_INTR: kvm_clear_interrupt_queue(vcpu); break; case INTR_TYPE_HARD_EXCEPTION: if (vmx->idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { has_error_code = true; error_code = vmcs_read32(IDT_VECTORING_ERROR_CODE); } /* fall through */ case INTR_TYPE_SOFT_EXCEPTION: kvm_clear_exception_queue(vcpu); break; default: break; } } tss_selector = exit_qualification; if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && type != INTR_TYPE_EXT_INTR && type != INTR_TYPE_NMI_INTR)) skip_emulated_instruction(vcpu); if (kvm_task_switch(vcpu, tss_selector, type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, has_error_code, error_code) == EMULATE_FAIL) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } /* * TODO: What about debug traps on tss switch? * Are we supposed to inject them and update dr6? */ return 1; } static int handle_ept_violation(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; gpa_t gpa; u64 error_code; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); /* * EPT violation happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. * There are errata that may cause this bit to not be set: * AAK134, BY25. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(gpa, exit_qualification); /* Is it a read fault? */ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) ? PFERR_USER_MASK : 0; /* Is it a write fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) ? PFERR_WRITE_MASK : 0; /* Is it a fetch fault? */ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) ? PFERR_FETCH_MASK : 0; /* ept page table entry is present? */ error_code |= (exit_qualification & (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | EPT_VIOLATION_EXECUTABLE)) ? PFERR_PRESENT_MASK : 0; error_code |= (exit_qualification & 0x100) != 0 ? PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; vcpu->arch.exit_qualification = exit_qualification; return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); } static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { gpa_t gpa; /* * A nested guest cannot optimize MMIO vmexits, because we have an * nGPA here instead of the required GPA. */ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); if (!is_guest_mode(vcpu) && !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { trace_kvm_fast_mmio(gpa); /* * Doing kvm_skip_emulated_instruction() depends on undefined * behavior: Intel's manual doesn't mandate * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG * occurs and while on real hardware it was observed to be set, * other hypervisors (namely Hyper-V) don't set it, we end up * advancing IP with some random value. Disable fast mmio when * running nested and keep it for real hardware in hope that * VM_EXIT_INSTRUCTION_LEN will always be set correctly. */ if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) return kvm_skip_emulated_instruction(vcpu); else return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == EMULATE_DONE; } return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); } static int handle_nmi_window(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(!enable_vnmi); vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_VIRTUAL_NMI_PENDING); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); enum emulation_result err = EMULATE_DONE; int ret = 1; u32 cpu_exec_ctrl; bool intr_window_requested; unsigned count = 130; /* * We should never reach the point where we are emulating L2 * due to invalid guest state as that means we incorrectly * allowed a nested VMEntry with an invalid vmcs12. */ WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; while (vmx->emulation_required && count-- != 0) { if (intr_window_requested && vmx_interrupt_allowed(vcpu)) return handle_interrupt_window(&vmx->vcpu); if (kvm_test_request(KVM_REQ_EVENT, vcpu)) return 1; err = kvm_emulate_instruction(vcpu, 0); if (err == EMULATE_USER_EXIT) { ++vcpu->stat.mmio_exits; ret = 0; goto out; } if (err != EMULATE_DONE) goto emulation_error; if (vmx->emulation_required && !vmx->rmode.vm86_active && vcpu->arch.exception.pending) goto emulation_error; if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; ret = kvm_vcpu_halt(vcpu); goto out; } if (signal_pending(current)) goto out; if (need_resched()) schedule(); } out: return ret; emulation_error: vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __grow_ple_window(old, ple_window, ple_window_grow, ple_window_max); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __shrink_ple_window(old, ple_window, ple_window_shrink, ple_window); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); } /* * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. */ static void wakeup_handler(void) { struct kvm_vcpu *vcpu; int cpu = smp_processor_id(); spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), blocked_vcpu_list) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (pi_test_on(pi_desc) == 1) kvm_vcpu_kick(vcpu); } spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); } static void vmx_enable_tdp(void) { kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 0ull, VMX_EPT_EXECUTABLE_MASK, cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, VMX_EPT_RWX_MASK, 0ull); ept_set_mmio_spte_mask(); kvm_enable_tdp(); } /* * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE * exiting, so only get here on cpu with PAUSE-Loop-Exiting. */ static int handle_pause(struct kvm_vcpu *vcpu) { if (!kvm_pause_in_guest(vcpu->kvm)) grow_ple_window(vcpu); /* * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" * VM-execution control is ignored if CPL > 0. OTOH, KVM * never set PAUSE_EXITING and just set PLE if supported, * so the vcpu must be CPL=0 if it gets a PAUSE exit. */ kvm_vcpu_on_spin(vcpu, true); return kvm_skip_emulated_instruction(vcpu); } static int handle_nop(struct kvm_vcpu *vcpu) { return kvm_skip_emulated_instruction(vcpu); } static int handle_mwait(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); return handle_nop(vcpu); } static int handle_invalid_op(struct kvm_vcpu *vcpu) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } static int handle_monitor_trap(struct kvm_vcpu *vcpu) { return 1; } static int handle_monitor(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); return handle_nop(vcpu); } static int handle_invpcid(struct kvm_vcpu *vcpu) { u32 vmx_instruction_info; unsigned long type; bool pcid_enabled; gva_t gva; struct x86_exception e; unsigned i; unsigned long roots_to_free = 0; struct { u64 pcid; u64 gla; } operand; if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); if (type > 3) { kvm_inject_gp(vcpu, 0); return 1; } /* According to the Intel instruction reference, the memory operand * is read even if it isn't needed (e.g., for type==all) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } if (operand.pcid >> 12 != 0) { kvm_inject_gp(vcpu, 0); return 1; } pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); switch (type) { case INVPCID_TYPE_INDIV_ADDR: if ((!pcid_enabled && (operand.pcid != 0)) || is_noncanonical_address(operand.gla, vcpu)) { kvm_inject_gp(vcpu, 0); return 1; } kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); return kvm_skip_emulated_instruction(vcpu); case INVPCID_TYPE_SINGLE_CTXT: if (!pcid_enabled && (operand.pcid != 0)) { kvm_inject_gp(vcpu, 0); return 1; } if (kvm_get_active_pcid(vcpu) == operand.pcid) { kvm_mmu_sync_roots(vcpu); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) == operand.pcid) roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); /* * If neither the current cr3 nor any of the prev_roots use the * given PCID, then nothing needs to be done here because a * resync will happen anyway before switching to any other CR3. */ return kvm_skip_emulated_instruction(vcpu); case INVPCID_TYPE_ALL_NON_GLOBAL: /* * Currently, KVM doesn't mark global entries in the shadow * page tables, so a non-global flush just degenerates to a * global flush. If needed, we could optimize this later by * keeping track of global entries in shadow page tables. */ /* fall-through */ case INVPCID_TYPE_ALL_INCL_GLOBAL: kvm_mmu_unload(vcpu); return kvm_skip_emulated_instruction(vcpu); default: BUG(); /* We have already checked above that type <= 3 */ } } static int handle_pml_full(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; trace_kvm_pml_full(vcpu->vcpu_id); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); /* * PML buffer FULL happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && enable_vnmi && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); /* * PML buffer already flushed at beginning of VMEXIT. Nothing to do * here.., and there's no userspace involvement needed for PML. */ return 1; } static int handle_preemption_timer(struct kvm_vcpu *vcpu) { if (!to_vmx(vcpu)->req_immediate_exit) kvm_lapic_expired_hv_timer(vcpu); return 1; } /* * When nested=0, all VMX instruction VM Exits filter here. The handlers * are overwritten by nested_vmx_setup() when nested=1. */ static int handle_vmx_instruction(struct kvm_vcpu *vcpu) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } static int handle_encls(struct kvm_vcpu *vcpu) { /* * SGX virtualization is not yet supported. There is no software * enable bit for SGX, so we have to trap ENCLS and inject a #UD * to prevent the guest from executing ENCLS. */ kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = handle_cpuid, [EXIT_REASON_MSR_READ] = handle_rdmsr, [EXIT_REASON_MSR_WRITE] = handle_wrmsr, [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, [EXIT_REASON_HLT] = handle_halt, [EXIT_REASON_INVD] = handle_invd, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_RDPMC] = handle_rdpmc, [EXIT_REASON_VMCALL] = handle_vmcall, [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, [EXIT_REASON_VMPTRST] = handle_vmx_instruction, [EXIT_REASON_VMREAD] = handle_vmx_instruction, [EXIT_REASON_VMRESUME] = handle_vmx_instruction, [EXIT_REASON_VMWRITE] = handle_vmx_instruction, [EXIT_REASON_VMOFF] = handle_vmx_instruction, [EXIT_REASON_VMON] = handle_vmx_instruction, [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, [EXIT_REASON_APIC_ACCESS] = handle_apic_access, [EXIT_REASON_APIC_WRITE] = handle_apic_write, [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, [EXIT_REASON_WBINVD] = handle_wbinvd, [EXIT_REASON_XSETBV] = handle_xsetbv, [EXIT_REASON_TASK_SWITCH] = handle_task_switch, [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, [EXIT_REASON_GDTR_IDTR] = handle_desc, [EXIT_REASON_LDTR_TR] = handle_desc, [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, [EXIT_REASON_INVEPT] = handle_vmx_instruction, [EXIT_REASON_INVVPID] = handle_vmx_instruction, [EXIT_REASON_RDRAND] = handle_invalid_op, [EXIT_REASON_RDSEED] = handle_invalid_op, [EXIT_REASON_XSAVES] = handle_xsaves, [EXIT_REASON_XRSTORS] = handle_xrstors, [EXIT_REASON_PML_FULL] = handle_pml_full, [EXIT_REASON_INVPCID] = handle_invpcid, [EXIT_REASON_VMFUNC] = handle_vmx_instruction, [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, [EXIT_REASON_ENCLS] = handle_encls, }; static const int kvm_vmx_max_exit_handlers = ARRAY_SIZE(kvm_vmx_exit_handlers); static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) { *info1 = vmcs_readl(EXIT_QUALIFICATION); *info2 = vmcs_read32(VM_EXIT_INTR_INFO); } static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) { if (vmx->pml_pg) { __free_page(vmx->pml_pg); vmx->pml_pg = NULL; } } static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *pml_buf; u16 pml_idx; pml_idx = vmcs_read16(GUEST_PML_INDEX); /* Do nothing if PML buffer is empty */ if (pml_idx == (PML_ENTITY_NUM - 1)) return; /* PML index always points to next available PML buffer entity */ if (pml_idx >= PML_ENTITY_NUM) pml_idx = 0; else pml_idx++; pml_buf = page_address(vmx->pml_pg); for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { u64 gpa; gpa = pml_buf[pml_idx]; WARN_ON(gpa & (PAGE_SIZE - 1)); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } /* reset PML index */ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } /* * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. * Called before reporting dirty_bitmap to userspace. */ static void kvm_flush_pml_buffers(struct kvm *kvm) { int i; struct kvm_vcpu *vcpu; /* * We only need to kick vcpu out of guest mode here, as PML buffer * is flushed at beginning of all VMEXITs, and it's obvious that only * vcpus running in guest are possible to have unflushed GPAs in PML * buffer. */ kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_kick(vcpu); } static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", name, vmcs_read16(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); } static void vmx_dump_dtsel(char *name, uint32_t limit) { pr_err("%s limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(limit), vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); } static void dump_vmcs(void) { u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); u32 secondary_exec_control = 0; unsigned long cr4 = vmcs_readl(GUEST_CR4); u64 efer = vmcs_read64(GUEST_IA32_EFER); int i, n; if (cpu_has_secondary_exec_ctrls()) secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); pr_err("*** Guest State ***\n"); pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), vmcs_readl(CR0_GUEST_HOST_MASK)); pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) { pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); } pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(GUEST_SYSENTER_ESP), vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", efer, vmcs_read64(GUEST_IA32_PAT)); pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", vmcs_read64(GUEST_IA32_DEBUGCTL), vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); if (cpu_has_load_perf_global_ctrl() && vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); pr_err("Interruptibility = %08x ActivityState = %08x\n", vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), vmcs_read32(GUEST_ACTIVITY_STATE)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) pr_err("InterruptStatus = %04x\n", vmcs_read16(GUEST_INTR_STATUS)); pr_err("*** Host State ***\n"); pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), vmcs_read16(HOST_TR_SELECTOR)); pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), vmcs_readl(HOST_TR_BASE)); pr_err("GDTBase=%016lx IDTBase=%016lx\n", vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), vmcs_readl(HOST_CR4)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(HOST_IA32_SYSENTER_ESP), vmcs_read32(HOST_IA32_SYSENTER_CS), vmcs_readl(HOST_IA32_SYSENTER_EIP)); if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_EFER), vmcs_read64(HOST_IA32_PAT)); if (cpu_has_load_perf_global_ctrl() && vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); pr_err("*** Control State ***\n"); pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", vmcs_read32(EXCEPTION_BITMAP), vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_EXIT_INTR_INFO), vmcs_read32(VM_EXIT_INTR_ERROR_CODE), vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); pr_err(" reason=%08x qualification=%016lx\n", vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); pr_err("IDTVectoring: info=%08x errcode=%08x\n", vmcs_read32(IDT_VECTORING_INFO_FIELD), vmcs_read32(IDT_VECTORING_ERROR_CODE)); pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) pr_err("TSC Multiplier = 0x%016llx\n", vmcs_read64(TSC_MULTIPLIER)); if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); n = vmcs_read32(CR3_TARGET_COUNT); for (i = 0; i + 1 < n; i += 4) pr_err("CR3 target%u=%016lx target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); if (i < n) pr_err("CR3 target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) pr_err("PLE Gap=%08x Window=%08x\n", vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) pr_err("Virtual processor ID = 0x%04x\n", vmcs_read16(VIRTUAL_PROCESSOR_ID)); } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int vmx_handle_exit(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exit_reason = vmx->exit_reason; u32 vectoring_info = vmx->idt_vectoring_info; trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before * querying dirty_bitmap, we only need to kick all vcpus out of guest * mode as if vcpus is in root mode, the PML buffer must has been * flushed already. */ if (enable_pml) vmx_flush_pml_buffer(vcpu); /* If guest state is invalid, start emulating */ if (vmx->emulation_required) return handle_invalid_guest_state(vcpu); if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) return nested_vmx_reflect_vmexit(vcpu, exit_reason); if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { dump_vmcs(); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason; return 0; } if (unlikely(vmx->fail)) { vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = vmcs_read32(VM_INSTRUCTION_ERROR); return 0; } /* * Note: * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by * delivery event since it indicates guest is accessing MMIO. * The vm-exit can be triggered again after return to guest that * will cause infinite loop. */ if ((vectoring_info & VECTORING_INFO_VALID_MASK) && (exit_reason != EXIT_REASON_EXCEPTION_NMI && exit_reason != EXIT_REASON_EPT_VIOLATION && exit_reason != EXIT_REASON_PML_FULL && exit_reason != EXIT_REASON_TASK_SWITCH)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; vcpu->run->internal.ndata = 3; vcpu->run->internal.data[0] = vectoring_info; vcpu->run->internal.data[1] = exit_reason; vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { vcpu->run->internal.ndata++; vcpu->run->internal.data[3] = vmcs_read64(GUEST_PHYSICAL_ADDRESS); } return 0; } if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) { if (vmx_interrupt_allowed(vcpu)) { vmx->loaded_vmcs->soft_vnmi_blocked = 0; } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && vcpu->arch.nmi_pending) { /* * This CPU don't support us in finding the end of an * NMI-blocked window if the guest runs with IRQs * disabled. So we pull the trigger after 1 s of * futile waiting, but inform the user about this. */ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " "state on VCPU %d after 1 s timeout\n", __func__, vcpu->vcpu_id); vmx->loaded_vmcs->soft_vnmi_blocked = 0; } } if (exit_reason < kvm_vmx_max_exit_handlers && kvm_vmx_exit_handlers[exit_reason]) return kvm_vmx_exit_handlers[exit_reason](vcpu); else { vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } } /* * Software based L1D cache flush which is used when microcode providing * the cache control MSR is not loaded. * * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to * flush it is required to read in 64 KiB because the replacement algorithm * is not exactly LRU. This could be sized at runtime via topology * information but as all relevant affected CPUs have 32KiB L1D cache size * there is no point in doing so. */ static void vmx_l1d_flush(struct kvm_vcpu *vcpu) { int size = PAGE_SIZE << L1D_CACHE_ORDER; /* * This code is only executed when the the flush mode is 'cond' or * 'always' */ if (static_branch_likely(&vmx_l1d_flush_cond)) { bool flush_l1d; /* * Clear the per-vcpu flush bit, it gets set again * either from vcpu_run() or from one of the unsafe * VMEXIT handlers. */ flush_l1d = vcpu->arch.l1tf_flush_l1d; vcpu->arch.l1tf_flush_l1d = false; /* * Clear the per-cpu flush bit, it gets set again from * the interrupt handlers. */ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); kvm_clear_cpu_l1tf_flush_l1d(); if (!flush_l1d) return; } vcpu->stat.l1d_flush++; if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); return; } asm volatile( /* First ensure the pages are in the TLB */ "xorl %%eax, %%eax\n" ".Lpopulate_tlb:\n\t" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $4096, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lpopulate_tlb\n\t" "xorl %%eax, %%eax\n\t" "cpuid\n\t" /* Now fill the cache */ "xorl %%eax, %%eax\n" ".Lfill_cache:\n" "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" "addl $64, %%eax\n\t" "cmpl %%eax, %[size]\n\t" "jne .Lfill_cache\n\t" "lfence\n" :: [flush_pages] "r" (vmx_l1d_flush_pages), [size] "r" (size) : "eax", "ebx", "ecx", "edx"); } static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (is_guest_mode(vcpu) && nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return; if (irr == -1 || tpr < irr) { vmcs_write32(TPR_THRESHOLD, 0); return; } vmcs_write32(TPR_THRESHOLD, irr); } void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) { u32 sec_exec_control; if (!lapic_in_kernel(vcpu)) return; if (!flexpriority_enabled && !cpu_has_vmx_virtualize_x2apic_mode()) return; /* Postpone execution until vmcs01 is the current VMCS. */ if (is_guest_mode(vcpu)) { to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; return; } sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); switch (kvm_get_apic_mode(vcpu)) { case LAPIC_MODE_INVALID: WARN_ONCE(true, "Invalid local APIC state"); case LAPIC_MODE_DISABLED: break; case LAPIC_MODE_XAPIC: if (flexpriority_enabled) { sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; vmx_flush_tlb(vcpu, true); } break; case LAPIC_MODE_X2APIC: if (cpu_has_vmx_virtualize_x2apic_mode()) sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; break; } vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); vmx_update_msr_bitmap(vcpu); } static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) { if (!is_guest_mode(vcpu)) { vmcs_write64(APIC_ACCESS_ADDR, hpa); vmx_flush_tlb(vcpu, true); } } static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) { u16 status; u8 old; if (max_isr == -1) max_isr = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = status >> 8; if (max_isr != old) { status &= 0xff; status |= max_isr << 8; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_set_rvi(int vector) { u16 status; u8 old; if (vector == -1) vector = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = (u8)status & 0xff; if ((u8)vector != old) { status &= ~0xff; status |= (u8)vector; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) { /* * When running L2, updating RVI is only relevant when * vmcs12 virtual-interrupt-delivery enabled. * However, it can be enabled only when L1 also * intercepts external-interrupts and in that case * we should not update vmcs02 RVI but instead intercept * interrupt. Therefore, do nothing when running L2. */ if (!is_guest_mode(vcpu)) vmx_set_rvi(max_irr); } static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; bool max_irr_updated; WARN_ON(!vcpu->arch.apicv_active); if (pi_test_on(&vmx->pi_desc)) { pi_clear_on(&vmx->pi_desc); /* * IOMMU can write to PIR.ON, so the barrier matters even on UP. * But on x86 this is just a compiler barrier anyway. */ smp_mb__after_atomic(); max_irr_updated = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); /* * If we are running L2 and L1 has a new pending interrupt * which can be injected, we should re-evaluate * what should be done with this new L1 interrupt. * If L1 intercepts external-interrupts, we should * exit from L2 to L1. Otherwise, interrupt should be * delivered directly to L2. */ if (is_guest_mode(vcpu) && max_irr_updated) { if (nested_exit_on_intr(vcpu)) kvm_vcpu_exiting_guest_mode(vcpu); else kvm_make_request(KVM_REQ_EVENT, vcpu); } } else { max_irr = kvm_lapic_find_highest_irr(vcpu); } vmx_hwapic_irr_update(vcpu, max_irr); return max_irr; } static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) return; vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); pi_clear_on(&vmx->pi_desc); memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); } static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) { u32 exit_intr_info = 0; u16 basic_exit_reason = (u16)vmx->exit_reason; if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) return; if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); vmx->exit_intr_info = exit_intr_info; /* if exit due to PF check for async PF */ if (is_page_fault(exit_intr_info)) vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); /* Handle machine checks before interrupts are enabled */ if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || is_machine_check(exit_intr_info)) kvm_machine_check(); /* We need to handle NMIs before interrupts are enabled */ if (is_nmi(exit_intr_info)) { kvm_before_interrupt(&vmx->vcpu); asm("int $2"); kvm_after_interrupt(&vmx->vcpu); } } static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) { u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { unsigned int vector; unsigned long entry; gate_desc *desc; struct vcpu_vmx *vmx = to_vmx(vcpu); #ifdef CONFIG_X86_64 unsigned long tmp; #endif vector = exit_intr_info & INTR_INFO_VECTOR_MASK; desc = (gate_desc *)vmx->host_idt_base + vector; entry = gate_offset(desc); asm volatile( #ifdef CONFIG_X86_64 "mov %%" _ASM_SP ", %[sp]\n\t" "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" "push $%c[ss]\n\t" "push %[sp]\n\t" #endif "pushf\n\t" __ASM_SIZE(push) " $%c[cs]\n\t" CALL_NOSPEC : #ifdef CONFIG_X86_64 [sp]"=&r"(tmp), #endif ASM_CALL_CONSTRAINT : THUNK_TARGET(entry), [ss]"i"(__KERNEL_DS), [cs]"i"(__KERNEL_CS) ); } } STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); static bool vmx_has_emulated_msr(int index) { switch (index) { case MSR_IA32_SMBASE: /* * We cannot do SMM unless we can run the guest in big * real mode. */ return enable_unrestricted_guest || emulate_invalid_guest_state; case MSR_AMD64_VIRT_SPEC_CTRL: /* This is AMD only. */ return false; default: return true; } } static bool vmx_pt_supported(void) { return pt_mode == PT_MODE_HOST_GUEST; } static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) { u32 exit_intr_info; bool unblock_nmi; u8 vector; bool idtv_info_valid; idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; if (enable_vnmi) { if (vmx->loaded_vmcs->nmi_known_unmasked) return; /* * Can't use vmx->exit_intr_info since we're not sure what * the exit reason is. */ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; vector = exit_intr_info & INTR_INFO_VECTOR_MASK; /* * SDM 3: 27.7.1.2 (September 2008) * Re-set bit "block by NMI" before VM entry if vmexit caused by * a guest IRET fault. * SDM 3: 23.2.2 (September 2008) * Bit 12 is undefined in any of the following cases: * If the VM exit sets the valid bit in the IDT-vectoring * information field. * If the VM exit is due to a double fault. */ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && vector != DF_VECTOR && !idtv_info_valid) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmx->loaded_vmcs->nmi_known_unmasked = !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI); } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->vnmi_blocked_time += ktime_to_ns(ktime_sub(ktime_get(), vmx->loaded_vmcs->entry_time)); } static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, u32 idt_vectoring_info, int instr_len_field, int error_code_field) { u8 vector; int type; bool idtv_info_valid; idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!idtv_info_valid) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = true; /* * SDM 3: 27.7.1.2 (September 2008) * Clear bit "block by NMI" before VM entry if a NMI * delivery faulted. */ vmx_set_nmi_mask(vcpu, false); break; case INTR_TYPE_SOFT_EXCEPTION: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_HARD_EXCEPTION: if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { u32 err = vmcs_read32(error_code_field); kvm_requeue_exception_e(vcpu, vector, err); } else kvm_requeue_exception(vcpu, vector); break; case INTR_TYPE_SOFT_INTR: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_EXT_INTR: kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); break; default: break; } } static void vmx_complete_interrupts(struct vcpu_vmx *vmx) { __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_ERROR_CODE); } static void vmx_cancel_injection(struct kvm_vcpu *vcpu) { __vmx_complete_interrupts(vcpu, vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) { int i, nr_msrs; struct perf_guest_switch_msr *msrs; msrs = perf_guest_get_msrs(&nr_msrs); if (!msrs) return; for (i = 0; i < nr_msrs; i++) if (msrs[i].host == msrs[i].guest) clear_atomic_switch_msr(vmx, msrs[i].msr); else add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, msrs[i].host, false); } static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); if (!vmx->loaded_vmcs->hv_timer_armed) vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); vmx->loaded_vmcs->hv_timer_armed = true; } static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl; u32 delta_tsc; if (vmx->req_immediate_exit) { vmx_arm_hv_timer(vmx, 0); return; } if (vmx->hv_deadline_tsc != -1) { tscl = rdtsc(); if (vmx->hv_deadline_tsc > tscl) /* set_hv_timer ensures the delta fits in 32-bits */ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> cpu_preemption_timer_multi); else delta_tsc = 0; vmx_arm_hv_timer(vmx, delta_tsc); return; } if (vmx->loaded_vmcs->hv_timer_armed) vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); vmx->loaded_vmcs->hv_timer_armed = false; } static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long cr3, cr4, evmcs_rsp; /* Record the guest's net vcpu time for enforced NMI injections. */ if (unlikely(!enable_vnmi && vmx->loaded_vmcs->soft_vnmi_blocked)) vmx->loaded_vmcs->entry_time = ktime_get(); /* Don't enter VMX if guest state is invalid, let the exit handler start emulation until we arrive back to a valid state */ if (vmx->emulation_required) return; if (vmx->ple_window_dirty) { vmx->ple_window_dirty = false; vmcs_write32(PLE_WINDOW, vmx->ple_window); } if (vmx->nested.need_vmcs12_sync) nested_sync_from_vmcs12(vcpu); if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); cr3 = __get_current_cr3_fast(); if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { vmcs_writel(HOST_CR3, cr3); vmx->loaded_vmcs->host_state.cr3 = cr3; } cr4 = cr4_read_shadow(); if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { vmcs_writel(HOST_CR4, cr4); vmx->loaded_vmcs->host_state.cr4 = cr4; } /* When single-stepping over STI and MOV SS, we must clear the * corresponding interruptibility bits in the guest state. Otherwise * vmentry fails as it then expects bit 14 (BS) in pending debug * exceptions being set, but that's not correct for the guest debugging * case. */ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vmx_set_interrupt_shadow(vcpu, 0); if (static_cpu_has(X86_FEATURE_PKU) && kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && vcpu->arch.pkru != vmx->host_pkru) __write_pkru(vcpu->arch.pkru); atomic_switch_perf_msrs(vmx); vmx_update_hv_timer(vcpu); /* * If this vCPU has touched SPEC_CTRL, restore the guest's value if * it's non-zero. Since vmentry is serialising on affected CPUs, there * is no need to worry about the conditional branch over the wrmsr * being speculatively taken. */ x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); vmx->__launched = vmx->loaded_vmcs->launched; evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? (unsigned long)¤t_evmcs->host_rsp : 0; if (static_branch_unlikely(&vmx_l1d_should_flush)) vmx_l1d_flush(vcpu); asm( /* Store host registers */ "push %%" _ASM_DX "; push %%" _ASM_BP ";" "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ "push %%" _ASM_CX " \n\t" "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" "je 1f \n\t" "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" /* Avoid VMWRITE when Enlightened VMCS is in use */ "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" "jz 2f \n\t" "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" "jmp 1f \n\t" "2: \n\t" __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" "1: \n\t" /* Reload cr2 if changed */ "mov %c[cr2](%0), %%" _ASM_AX " \n\t" "mov %%cr2, %%" _ASM_DX " \n\t" "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" "je 3f \n\t" "mov %%" _ASM_AX", %%cr2 \n\t" "3: \n\t" /* Check if vmlaunch or vmresume is needed */ "cmpl $0, %c[launched](%0) \n\t" /* Load guest registers. Don't clobber flags. */ "mov %c[rax](%0), %%" _ASM_AX " \n\t" "mov %c[rbx](%0), %%" _ASM_BX " \n\t" "mov %c[rdx](%0), %%" _ASM_DX " \n\t" "mov %c[rsi](%0), %%" _ASM_SI " \n\t" "mov %c[rdi](%0), %%" _ASM_DI " \n\t" "mov %c[rbp](%0), %%" _ASM_BP " \n\t" #ifdef CONFIG_X86_64 "mov %c[r8](%0), %%r8 \n\t" "mov %c[r9](%0), %%r9 \n\t" "mov %c[r10](%0), %%r10 \n\t" "mov %c[r11](%0), %%r11 \n\t" "mov %c[r12](%0), %%r12 \n\t" "mov %c[r13](%0), %%r13 \n\t" "mov %c[r14](%0), %%r14 \n\t" "mov %c[r15](%0), %%r15 \n\t" #endif "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ /* Enter guest mode */ "jne 1f \n\t" __ex("vmlaunch") "\n\t" "jmp 2f \n\t" "1: " __ex("vmresume") "\n\t" "2: " /* Save guest registers, load host registers, keep flags */ "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" "pop %0 \n\t" "setbe %c[fail](%0)\n\t" "mov %%" _ASM_AX ", %c[rax](%0) \n\t" "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" __ASM_SIZE(pop) " %c[rcx](%0) \n\t" "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" #ifdef CONFIG_X86_64 "mov %%r8, %c[r8](%0) \n\t" "mov %%r9, %c[r9](%0) \n\t" "mov %%r10, %c[r10](%0) \n\t" "mov %%r11, %c[r11](%0) \n\t" "mov %%r12, %c[r12](%0) \n\t" "mov %%r13, %c[r13](%0) \n\t" "mov %%r14, %c[r14](%0) \n\t" "mov %%r15, %c[r15](%0) \n\t" /* * Clear host registers marked as clobbered to prevent * speculative use. */ "xor %%r8d, %%r8d \n\t" "xor %%r9d, %%r9d \n\t" "xor %%r10d, %%r10d \n\t" "xor %%r11d, %%r11d \n\t" "xor %%r12d, %%r12d \n\t" "xor %%r13d, %%r13d \n\t" "xor %%r14d, %%r14d \n\t" "xor %%r15d, %%r15d \n\t" #endif "mov %%cr2, %%" _ASM_AX " \n\t" "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" "xor %%eax, %%eax \n\t" "xor %%ebx, %%ebx \n\t" "xor %%esi, %%esi \n\t" "xor %%edi, %%edi \n\t" "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" ".pushsection .rodata \n\t" ".global vmx_return \n\t" "vmx_return: " _ASM_PTR " 2b \n\t" ".popsection" : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), [launched]"i"(offsetof(struct vcpu_vmx, __launched)), [fail]"i"(offsetof(struct vcpu_vmx, fail)), [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), #ifdef CONFIG_X86_64 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), #endif [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), [wordsize]"i"(sizeof(ulong)) : "cc", "memory" #ifdef CONFIG_X86_64 , "rax", "rbx", "rdi" , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" #else , "eax", "ebx", "edi" #endif ); /* * We do not use IBRS in the kernel. If this vCPU has used the * SPEC_CTRL MSR it may have left it on; save the value and * turn it off. This is much more efficient than blindly adding * it to the atomic save/restore list. Especially as the former * (Saving guest MSRs on vmexit) doesn't even exist in KVM. * * For non-nested case: * If the L01 MSR bitmap does not intercept the MSR, then we need to * save it. * * For nested case: * If the L02 MSR bitmap does not intercept the MSR, then we need to * save it. */ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); /* Eliminate branch target predictions from guest mode */ vmexit_fill_RSB(); /* All fields are clean at this point */ if (static_branch_unlikely(&enable_evmcs)) current_evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ if (vmx->host_debugctlmsr) update_debugctlmsr(vmx->host_debugctlmsr); #ifndef CONFIG_X86_64 /* * The sysexit path does not restore ds/es, so we must set them to * a reasonable value ourselves. * * We can't defer this to vmx_prepare_switch_to_host() since that * function may be executed in interrupt context, which saves and * restore segments around it, nullifying its effect. */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) | (1 << VCPU_EXREG_RFLAGS) | (1 << VCPU_EXREG_PDPTR) | (1 << VCPU_EXREG_SEGMENTS) | (1 << VCPU_EXREG_CR3)); vcpu->arch.regs_dirty = 0; /* * eager fpu is enabled if PKEY is supported and CR4 is switched * back on host, so it is safe to read guest PKRU from current * XSAVE. */ if (static_cpu_has(X86_FEATURE_PKU) && kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { vcpu->arch.pkru = __read_pkru(); if (vcpu->arch.pkru != vmx->host_pkru) __write_pkru(vmx->host_pkru); } vmx->nested.nested_run_pending = 0; vmx->idt_vectoring_info = 0; vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) return; vmx->loaded_vmcs->launched = 1; vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); vmx_complete_atomic_exit(vmx); vmx_recover_nmi_blocking(vmx); vmx_complete_interrupts(vmx); } STACK_FRAME_NON_STANDARD(vmx_vcpu_run); static struct kvm *vmx_vm_alloc(void) { struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); return &kvm_vmx->kvm; } static void vmx_vm_free(struct kvm *kvm) { vfree(to_kvm_vmx(kvm)); } static void vmx_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (enable_pml) vmx_destroy_pml_buffer(vmx); free_vpid(vmx->vpid); leave_guest_mode(vcpu); nested_vmx_free_vcpu(vcpu); free_loaded_vmcs(vmx->loaded_vmcs); kfree(vmx->guest_msrs); kvm_vcpu_uninit(vcpu); kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); kmem_cache_free(kvm_vcpu_cache, vmx); } static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) { int err; struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); unsigned long *msr_bitmap; int cpu; if (!vmx) return ERR_PTR(-ENOMEM); vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL); if (!vmx->vcpu.arch.guest_fpu) { printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); err = -ENOMEM; goto free_partial_vcpu; } vmx->vpid = allocate_vpid(); err = kvm_vcpu_init(&vmx->vcpu, kvm, id); if (err) goto free_vcpu; err = -ENOMEM; /* * If PML is turned on, failure on enabling PML just results in failure * of creating the vcpu, therefore we can simplify PML logic (by * avoiding dealing with cases, such as enabling PML partially on vcpus * for the guest, etc. */ if (enable_pml) { vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!vmx->pml_pg) goto uninit_vcpu; } vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) > PAGE_SIZE); if (!vmx->guest_msrs) goto free_pml; err = alloc_loaded_vmcs(&vmx->vmcs01); if (err < 0) goto free_msrs; msr_bitmap = vmx->vmcs01.msr_bitmap; vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); vmx->msr_bitmap_mode = 0; vmx->loaded_vmcs = &vmx->vmcs01; cpu = get_cpu(); vmx_vcpu_load(&vmx->vcpu, cpu); vmx->vcpu.cpu = cpu; vmx_vcpu_setup(vmx); vmx_vcpu_put(&vmx->vcpu); put_cpu(); if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { err = alloc_apic_access_page(kvm); if (err) goto free_vmcs; } if (enable_ept && !enable_unrestricted_guest) { err = init_rmode_identity_map(kvm); if (err) goto free_vmcs; } if (nested) nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, vmx_capability.ept, kvm_vcpu_apicv_active(&vmx->vcpu)); else memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); vmx->nested.posted_intr_nv = -1; vmx->nested.current_vmptr = -1ull; vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; /* * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR * or POSTED_INTR_WAKEUP_VECTOR. */ vmx->pi_desc.nv = POSTED_INTR_VECTOR; vmx->pi_desc.sn = 1; vmx->ept_pointer = INVALID_PAGE; return &vmx->vcpu; free_vmcs: free_loaded_vmcs(vmx->loaded_vmcs); free_msrs: kfree(vmx->guest_msrs); free_pml: vmx_destroy_pml_buffer(vmx); uninit_vcpu: kvm_vcpu_uninit(&vmx->vcpu); free_vcpu: free_vpid(vmx->vpid); kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); free_partial_vcpu: kmem_cache_free(kvm_vcpu_cache, vmx); return ERR_PTR(err); } #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" static int vmx_vm_init(struct kvm *kvm) { spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); if (!ple_gap) kvm->arch.pause_in_guest = true; if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: case L1TF_MITIGATION_FLUSH_NOWARN: /* 'I explicitly don't care' is set */ break; case L1TF_MITIGATION_FLUSH: case L1TF_MITIGATION_FLUSH_NOSMT: case L1TF_MITIGATION_FULL: /* * Warn upon starting the first VM in a potentially * insecure environment. */ if (cpu_smt_control == CPU_SMT_ENABLED) pr_warn_once(L1TF_MSG_SMT); if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) pr_warn_once(L1TF_MSG_L1D); break; case L1TF_MITIGATION_FULL_FORCE: /* Flush is enforced */ break; } } return 0; } static void __init vmx_check_processor_compat(void *rtn) { struct vmcs_config vmcs_conf; struct vmx_capability vmx_cap; *(int *)rtn = 0; if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) *(int *)rtn = -EIO; if (nested) nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, enable_apicv); if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", smp_processor_id()); *(int *)rtn = -EIO; } } static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { u8 cache; u64 ipat = 0; /* For VT-d and EPT combination * 1. MMIO: always map as UC * 2. EPT with VT-d: * a. VT-d without snooping control feature: can't guarantee the * result, try to trust guest. * b. VT-d with snooping control feature: snooping control feature of * VT-d engine can guarantee the cache correctness. Just set it * to WB to keep consistent with host. So the same as item 3. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep * consistent with host MTRR */ if (is_mmio) { cache = MTRR_TYPE_UNCACHABLE; goto exit; } if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { ipat = VMX_EPT_IPAT_BIT; cache = MTRR_TYPE_WRBACK; goto exit; } if (kvm_read_cr0(vcpu) & X86_CR0_CD) { ipat = VMX_EPT_IPAT_BIT; if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cache = MTRR_TYPE_WRBACK; else cache = MTRR_TYPE_UNCACHABLE; goto exit; } cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); exit: return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; } static int vmx_get_lpage_level(void) { if (enable_ept && !cpu_has_vmx_ept_1g_page()) return PT_DIRECTORY_LEVEL; else /* For shadow and EPT supported 1GB page */ return PT_PDPE_LEVEL; } static void vmcs_set_secondary_exec_control(u32 new_ctl) { /* * These bits in the secondary execution controls field * are dynamic, the others are mostly based on the hypervisor * architecture and the guest's CPUID. Do not touch the * dynamic bits. */ u32 mask = SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_DESC; u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, (new_ctl & ~mask) | (cur_ctl & mask)); } /* * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits * (indicating "allowed-1") if they are supported in the guest's CPUID. */ static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_cpuid_entry2 *entry; vmx->nested.msrs.cr0_fixed1 = 0xffffffff; vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ if (entry && (entry->_reg & (_cpuid_mask))) \ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ } while (0) entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); #undef cr4_fixed1_update } static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (kvm_mpx_supported()) { bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); if (mpx_enabled) { vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; } else { vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; } } } static void vmx_cpuid_update(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (cpu_has_secondary_exec_ctrls()) { vmx_compute_secondary_exec_control(vmx); vmcs_set_secondary_exec_control(vmx->secondary_exec_control); } if (nested_vmx_allowed(vcpu)) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (nested_vmx_allowed(vcpu)) { nested_vmx_cr_fixed1_bits_update(vcpu); nested_vmx_entry_exit_ctls_update(vcpu); } } static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) { if (func == 1 && nested) entry->ecx |= bit(X86_FEATURE_VMX); } static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->req_immediate_exit = true; } static int vmx_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; /* * RDPID causes #UD if disabled through secondary execution controls. * Because it is marked as EmulateOnUD, we need to intercept it here. */ if (info->intercept == x86_intercept_rdtscp && !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { ctxt->exception.vector = UD_VECTOR; ctxt->exception.error_code_valid = false; return X86EMUL_PROPAGATE_FAULT; } /* TODO: check more intercepts... */ return X86EMUL_CONTINUE; } #ifdef CONFIG_X86_64 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ static inline int u64_shl_div_u64(u64 a, unsigned int shift, u64 divisor, u64 *result) { u64 low = a << shift, high = a >> (64 - shift); /* To avoid the overflow on divq */ if (high >= divisor) return 1; /* Low hold the result, high hold rem which is discarded */ asm("divq %2\n\t" : "=a" (low), "=d" (high) : "rm" (divisor), "0" (low), "1" (high)); *result = low; return 0; } static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) { struct vcpu_vmx *vmx; u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; if (kvm_mwait_in_guest(vcpu->kvm)) return -EOPNOTSUPP; vmx = to_vmx(vcpu); tscl = rdtsc(); guest_tscl = kvm_read_l1_tsc(vcpu, tscl); delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); if (delta_tsc > lapic_timer_advance_cycles) delta_tsc -= lapic_timer_advance_cycles; else delta_tsc = 0; /* Convert to host delta tsc if tsc scaling is enabled */ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && u64_shl_div_u64(delta_tsc, kvm_tsc_scaling_ratio_frac_bits, vcpu->arch.tsc_scaling_ratio, &delta_tsc)) return -ERANGE; /* * If the delta tsc can't fit in the 32 bit after the multi shift, * we can't use the preemption timer. * It's possible that it fits on later vmentries, but checking * on every vmentry is costly so we just use an hrtimer. */ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) return -ERANGE; vmx->hv_deadline_tsc = tscl + delta_tsc; return delta_tsc == 0; } static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) { to_vmx(vcpu)->hv_deadline_tsc = -1; } #endif static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (!kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); } static void vmx_slot_enable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_leaf_clear_dirty(kvm, slot); kvm_mmu_slot_largepage_remove_write_access(kvm, slot); } static void vmx_slot_disable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_set_dirty(kvm, slot); } static void vmx_flush_log_dirty(struct kvm *kvm) { kvm_flush_pml_buffers(kvm); } static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12; struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t gpa; struct page *page = NULL; u64 *pml_address; if (is_guest_mode(vcpu)) { WARN_ON_ONCE(vmx->nested.pml_full); /* * Check if PML is enabled for the nested guest. * Whether eptp bit 6 is set is already checked * as part of A/D emulation. */ vmcs12 = get_vmcs12(vcpu); if (!nested_cpu_has_pml(vmcs12)) return 0; if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { vmx->nested.pml_full = true; return 1; } gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); if (is_error_page(page)) return 0; pml_address = kmap(page); pml_address[vmcs12->guest_pml_index--] = gpa; kunmap(page); kvm_release_page_clean(page); } return 0; } static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t offset, unsigned long mask) { kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); } static void __pi_post_block(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; do { old.control = new.control = pi_desc->control; WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, "Wakeup handler not enabled while the VCPU is blocked\n"); dest = cpu_physical_id(vcpu->cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* set 'NV' to 'notification vector' */ new.nv = POSTED_INTR_VECTOR; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); list_del(&vcpu->blocked_vcpu_list); spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); vcpu->pre_pcpu = -1; } } /* * This routine does the following things for vCPU which is going * to be blocked if VT-d PI is enabled. * - Store the vCPU to the wakeup list, so when interrupts happen * we can find the right vCPU to wake up. * - Change the Posted-interrupt descriptor as below: * 'NDST' <-- vcpu->pre_pcpu * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR * - If 'ON' is set during this process, which means at least one * interrupt is posted for this vCPU, we cannot block it, in * this case, return 1, otherwise, return 0. * */ static int pi_pre_block(struct kvm_vcpu *vcpu) { unsigned int dest; struct pi_desc old, new; struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(vcpu)) return 0; WARN_ON(irqs_disabled()); local_irq_disable(); if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { vcpu->pre_pcpu = vcpu->cpu; spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); list_add_tail(&vcpu->blocked_vcpu_list, &per_cpu(blocked_vcpu_on_cpu, vcpu->pre_pcpu)); spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); } do { old.control = new.control = pi_desc->control; WARN((pi_desc->sn == 1), "Warning: SN field of posted-interrupts " "is set before blocking\n"); /* * Since vCPU can be preempted during this process, * vcpu->cpu could be different with pre_pcpu, we * need to set pre_pcpu as the destination of wakeup * notification event, then we can find the right vCPU * to wakeup in wakeup handler if interrupts happen * when the vCPU is in blocked state. */ dest = cpu_physical_id(vcpu->pre_pcpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* set 'NV' to 'wakeup vector' */ new.nv = POSTED_INTR_WAKEUP_VECTOR; } while (cmpxchg64(&pi_desc->control, old.control, new.control) != old.control); /* We should not block the vCPU if an interrupt is posted for it. */ if (pi_test_on(pi_desc) == 1) __pi_post_block(vcpu); local_irq_enable(); return (vcpu->pre_pcpu == -1); } static int vmx_pre_block(struct kvm_vcpu *vcpu) { if (pi_pre_block(vcpu)) return 1; if (kvm_lapic_hv_timer_in_use(vcpu)) kvm_lapic_switch_to_sw_timer(vcpu); return 0; } static void pi_post_block(struct kvm_vcpu *vcpu) { if (vcpu->pre_pcpu == -1) return; WARN_ON(irqs_disabled()); local_irq_disable(); __pi_post_block(vcpu); local_irq_enable(); } static void vmx_post_block(struct kvm_vcpu *vcpu) { if (kvm_x86_ops->set_hv_timer) kvm_lapic_switch_to_hv_timer(vcpu); pi_post_block(vcpu); } /* * vmx_update_pi_irte - set IRTE for Posted-Interrupts * * @kvm: kvm * @host_irq: host irq of the interrupt * @guest_irq: gsi of the interrupt * @set: set or unset PI * returns 0 on success, < 0 on failure */ static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set) { struct kvm_kernel_irq_routing_entry *e; struct kvm_irq_routing_table *irq_rt; struct kvm_lapic_irq irq; struct kvm_vcpu *vcpu; struct vcpu_data vcpu_info; int idx, ret = 0; if (!kvm_arch_has_assigned_device(kvm) || !irq_remapping_cap(IRQ_POSTING_CAP) || !kvm_vcpu_apicv_active(kvm->vcpus[0])) return 0; idx = srcu_read_lock(&kvm->irq_srcu); irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); if (guest_irq >= irq_rt->nr_rt_entries || hlist_empty(&irq_rt->map[guest_irq])) { pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", guest_irq, irq_rt->nr_rt_entries); goto out; } hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { if (e->type != KVM_IRQ_ROUTING_MSI) continue; /* * VT-d PI cannot support posting multicast/broadcast * interrupts to a vCPU, we still use interrupt remapping * for these kind of interrupts. * * For lowest-priority interrupts, we only support * those with single CPU as the destination, e.g. user * configures the interrupts via /proc/irq or uses * irqbalance to make the interrupts single-CPU. * * We will support full lowest-priority interrupt later. */ kvm_set_msi_irq(kvm, e, &irq); if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { /* * Make sure the IRTE is in remapped mode if * we don't handle it in posted mode. */ ret = irq_set_vcpu_affinity(host_irq, NULL); if (ret < 0) { printk(KERN_INFO "failed to back to remapped mode, irq: %u\n", host_irq); goto out; } continue; } vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); vcpu_info.vector = irq.vector; trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, vcpu_info.vector, vcpu_info.pi_desc_addr, set); if (set) ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); else ret = irq_set_vcpu_affinity(host_irq, NULL); if (ret < 0) { printk(KERN_INFO "%s: failed to update PI IRTE\n", __func__); goto out; } } ret = 0; out: srcu_read_unlock(&kvm->irq_srcu, idx); return ret; } static void vmx_setup_mce(struct kvm_vcpu *vcpu) { if (vcpu->arch.mcg_cap & MCG_LMCE_P) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_LMCE; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_LMCE; } static int vmx_smi_allowed(struct kvm_vcpu *vcpu) { /* we need a nested vmexit to enter SMM, postpone if run is pending */ if (to_vmx(vcpu)->nested.nested_run_pending) return 0; return 1; } static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmx->nested.smm.guest_mode = is_guest_mode(vcpu); if (vmx->nested.smm.guest_mode) nested_vmx_vmexit(vcpu, -1, 0, 0); vmx->nested.smm.vmxon = vmx->nested.vmxon; vmx->nested.vmxon = false; vmx_clear_hlt(vcpu); return 0; } static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) { struct vcpu_vmx *vmx = to_vmx(vcpu); int ret; if (vmx->nested.smm.vmxon) { vmx->nested.vmxon = true; vmx->nested.smm.vmxon = false; } if (vmx->nested.smm.guest_mode) { vcpu->arch.hflags &= ~HF_SMM_MASK; ret = nested_vmx_enter_non_root_mode(vcpu, false); vcpu->arch.hflags |= HF_SMM_MASK; if (ret) return ret; vmx->nested.smm.guest_mode = false; } return 0; } static int enable_smi_window(struct kvm_vcpu *vcpu) { return 0; } static __init int hardware_setup(void) { unsigned long host_bndcfgs; int r, i; rdmsrl_safe(MSR_EFER, &host_efer); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) kvm_define_shared_msr(i, vmx_msr_index[i]); if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) return -EIO; if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_MPX)) { rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); } if (boot_cpu_has(X86_FEATURE_XSAVES)) rdmsrl(MSR_IA32_XSS, host_xss); if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) enable_vpid = 0; if (!cpu_has_vmx_ept() || !cpu_has_vmx_ept_4levels() || !cpu_has_vmx_ept_mt_wb() || !cpu_has_vmx_invept_global()) enable_ept = 0; if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) enable_ept_ad_bits = 0; if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) enable_unrestricted_guest = 0; if (!cpu_has_vmx_flexpriority()) flexpriority_enabled = 0; if (!cpu_has_virtual_nmis()) enable_vnmi = 0; /* * set_apic_access_page_addr() is used to reload apic access * page upon invalidation. No need to do anything if not * using the APIC_ACCESS_ADDR VMCS field. */ if (!flexpriority_enabled) kvm_x86_ops->set_apic_access_page_addr = NULL; if (!cpu_has_vmx_tpr_shadow()) kvm_x86_ops->update_cr8_intercept = NULL; if (enable_ept && !cpu_has_vmx_ept_2m_page()) kvm_disable_largepages(); #if IS_ENABLED(CONFIG_HYPERV) if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH && enable_ept) kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb; #endif if (!cpu_has_vmx_ple()) { ple_gap = 0; ple_window = 0; ple_window_grow = 0; ple_window_max = 0; ple_window_shrink = 0; } if (!cpu_has_vmx_apicv()) { enable_apicv = 0; kvm_x86_ops->sync_pir_to_irr = NULL; } if (cpu_has_vmx_tsc_scaling()) { kvm_has_tsc_control = true; kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; kvm_tsc_scaling_ratio_frac_bits = 48; } set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ if (enable_ept) vmx_enable_tdp(); else kvm_disable_tdp(); /* * Only enable PML when hardware supports PML feature, and both EPT * and EPT A/D bit features are enabled -- PML depends on them to work. */ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) enable_pml = 0; if (!enable_pml) { kvm_x86_ops->slot_enable_log_dirty = NULL; kvm_x86_ops->slot_disable_log_dirty = NULL; kvm_x86_ops->flush_log_dirty = NULL; kvm_x86_ops->enable_log_dirty_pt_masked = NULL; } if (!cpu_has_vmx_preemption_timer()) kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { u64 vmx_msr; rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); cpu_preemption_timer_multi = vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; } else { kvm_x86_ops->set_hv_timer = NULL; kvm_x86_ops->cancel_hv_timer = NULL; } kvm_set_posted_intr_wakeup_handler(wakeup_handler); kvm_mce_cap_supported |= MCG_LMCE_P; if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) return -EINVAL; if (!enable_ept || !cpu_has_vmx_intel_pt()) pt_mode = PT_MODE_SYSTEM; if (nested) { nested_vmx_setup_ctls_msrs(&vmcs_config.nested, vmx_capability.ept, enable_apicv); r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); if (r) return r; } r = alloc_kvm_area(); if (r) nested_vmx_hardware_unsetup(); return r; } static __exit void hardware_unsetup(void) { if (nested) nested_vmx_hardware_unsetup(); free_kvm_area(); } static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { .cpu_has_kvm_support = cpu_has_kvm_support, .disabled_by_bios = vmx_disabled_by_bios, .hardware_setup = hardware_setup, .hardware_unsetup = hardware_unsetup, .check_processor_compatibility = vmx_check_processor_compat, .hardware_enable = hardware_enable, .hardware_disable = hardware_disable, .cpu_has_accelerated_tpr = report_flexpriority, .has_emulated_msr = vmx_has_emulated_msr, .vm_init = vmx_vm_init, .vm_alloc = vmx_vm_alloc, .vm_free = vmx_vm_free, .vcpu_create = vmx_create_vcpu, .vcpu_free = vmx_free_vcpu, .vcpu_reset = vmx_vcpu_reset, .prepare_guest_switch = vmx_prepare_switch_to_guest, .vcpu_load = vmx_vcpu_load, .vcpu_put = vmx_vcpu_put, .update_bp_intercept = update_exception_bitmap, .get_msr_feature = vmx_get_msr_feature, .get_msr = vmx_get_msr, .set_msr = vmx_set_msr, .get_segment_base = vmx_get_segment_base, .get_segment = vmx_get_segment, .set_segment = vmx_set_segment, .get_cpl = vmx_get_cpl, .get_cs_db_l_bits = vmx_get_cs_db_l_bits, .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, .decache_cr3 = vmx_decache_cr3, .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, .set_cr0 = vmx_set_cr0, .set_cr3 = vmx_set_cr3, .set_cr4 = vmx_set_cr4, .set_efer = vmx_set_efer, .get_idt = vmx_get_idt, .set_idt = vmx_set_idt, .get_gdt = vmx_get_gdt, .set_gdt = vmx_set_gdt, .get_dr6 = vmx_get_dr6, .set_dr6 = vmx_set_dr6, .set_dr7 = vmx_set_dr7, .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, .cache_reg = vmx_cache_reg, .get_rflags = vmx_get_rflags, .set_rflags = vmx_set_rflags, .tlb_flush = vmx_flush_tlb, .tlb_flush_gva = vmx_flush_tlb_gva, .run = vmx_vcpu_run, .handle_exit = vmx_handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .set_interrupt_shadow = vmx_set_interrupt_shadow, .get_interrupt_shadow = vmx_get_interrupt_shadow, .patch_hypercall = vmx_patch_hypercall, .set_irq = vmx_inject_irq, .set_nmi = vmx_inject_nmi, .queue_exception = vmx_queue_exception, .cancel_injection = vmx_cancel_injection, .interrupt_allowed = vmx_interrupt_allowed, .nmi_allowed = vmx_nmi_allowed, .get_nmi_mask = vmx_get_nmi_mask, .set_nmi_mask = vmx_set_nmi_mask, .enable_nmi_window = enable_nmi_window, .enable_irq_window = enable_irq_window, .update_cr8_intercept = update_cr8_intercept, .set_virtual_apic_mode = vmx_set_virtual_apic_mode, .set_apic_access_page_addr = vmx_set_apic_access_page_addr, .get_enable_apicv = vmx_get_enable_apicv, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, .apicv_post_state_restore = vmx_apicv_post_state_restore, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, .sync_pir_to_irr = vmx_sync_pir_to_irr, .deliver_posted_interrupt = vmx_deliver_posted_interrupt, .set_tss_addr = vmx_set_tss_addr, .set_identity_map_addr = vmx_set_identity_map_addr, .get_tdp_level = get_ept_level, .get_mt_mask = vmx_get_mt_mask, .get_exit_info = vmx_get_exit_info, .get_lpage_level = vmx_get_lpage_level, .cpuid_update = vmx_cpuid_update, .rdtscp_supported = vmx_rdtscp_supported, .invpcid_supported = vmx_invpcid_supported, .set_supported_cpuid = vmx_set_supported_cpuid, .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, .read_l1_tsc_offset = vmx_read_l1_tsc_offset, .write_l1_tsc_offset = vmx_write_l1_tsc_offset, .set_tdp_cr3 = vmx_set_cr3, .check_intercept = vmx_check_intercept, .handle_external_intr = vmx_handle_external_intr, .mpx_supported = vmx_mpx_supported, .xsaves_supported = vmx_xsaves_supported, .umip_emulated = vmx_umip_emulated, .pt_supported = vmx_pt_supported, .request_immediate_exit = vmx_request_immediate_exit, .sched_in = vmx_sched_in, .slot_enable_log_dirty = vmx_slot_enable_log_dirty, .slot_disable_log_dirty = vmx_slot_disable_log_dirty, .flush_log_dirty = vmx_flush_log_dirty, .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, .write_log_dirty = vmx_write_pml_buffer, .pre_block = vmx_pre_block, .post_block = vmx_post_block, .pmu_ops = &intel_pmu_ops, .update_pi_irte = vmx_update_pi_irte, #ifdef CONFIG_X86_64 .set_hv_timer = vmx_set_hv_timer, .cancel_hv_timer = vmx_cancel_hv_timer, #endif .setup_mce = vmx_setup_mce, .smi_allowed = vmx_smi_allowed, .pre_enter_smm = vmx_pre_enter_smm, .pre_leave_smm = vmx_pre_leave_smm, .enable_smi_window = enable_smi_window, .check_nested_events = NULL, .get_nested_state = NULL, .set_nested_state = NULL, .get_vmcs12_pages = NULL, .nested_enable_evmcs = NULL, }; static void vmx_cleanup_l1d_flush(void) { if (vmx_l1d_flush_pages) { free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); vmx_l1d_flush_pages = NULL; } /* Restore state so sysfs ignores VMX */ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; } static void vmx_exit(void) { #ifdef CONFIG_KEXEC_CORE RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); synchronize_rcu(); #endif kvm_exit(); #if IS_ENABLED(CONFIG_HYPERV) if (static_branch_unlikely(&enable_evmcs)) { int cpu; struct hv_vp_assist_page *vp_ap; /* * Reset everything to support using non-enlightened VMCS * access later (e.g. when we reload the module with * enlightened_vmcs=0) */ for_each_online_cpu(cpu) { vp_ap = hv_get_vp_assist_page(cpu); if (!vp_ap) continue; vp_ap->current_nested_vmcs = 0; vp_ap->enlighten_vmentry = 0; } static_branch_disable(&enable_evmcs); } #endif vmx_cleanup_l1d_flush(); } module_exit(vmx_exit); static int __init vmx_init(void) { int r; #if IS_ENABLED(CONFIG_HYPERV) /* * Enlightened VMCS usage should be recommended and the host needs * to support eVMCS v1 or above. We can also disable eVMCS support * with module parameter. */ if (enlightened_vmcs && ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= KVM_EVMCS_VERSION) { int cpu; /* Check that we have assist pages on all online CPUs */ for_each_online_cpu(cpu) { if (!hv_get_vp_assist_page(cpu)) { enlightened_vmcs = false; break; } } if (enlightened_vmcs) { pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); static_branch_enable(&enable_evmcs); } } else { enlightened_vmcs = false; } #endif r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), THIS_MODULE); if (r) return r; /* * Must be called after kvm_init() so enable_ept is properly set * up. Hand the parameter mitigation value in which was stored in * the pre module init parser. If no parameter was given, it will * contain 'auto' which will be turned into the default 'cond' * mitigation mode. */ if (boot_cpu_has(X86_BUG_L1TF)) { r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); if (r) { vmx_exit(); return r; } } #ifdef CONFIG_KEXEC_CORE rcu_assign_pointer(crash_vmclear_loaded_vmcss, crash_vmclear_local_loaded_vmcss); #endif vmx_check_vmcs12_offsets(); return 0; } module_init(vmx_init);