// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_rmap_item.h" #include "xfs_log.h" #include "xfs_rmap.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" kmem_zone_t *xfs_rui_zone; kmem_zone_t *xfs_rud_zone; static const struct xfs_item_ops xfs_rui_item_ops; static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_rui_log_item, rui_item); } STATIC void xfs_rui_item_free( struct xfs_rui_log_item *ruip) { if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) kmem_free(ruip); else kmem_cache_free(xfs_rui_zone, ruip); } /* * Freeing the RUI requires that we remove it from the AIL if it has already * been placed there. However, the RUI may not yet have been placed in the AIL * when called by xfs_rui_release() from RUD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the RUI. */ STATIC void xfs_rui_release( struct xfs_rui_log_item *ruip) { ASSERT(atomic_read(&ruip->rui_refcount) > 0); if (atomic_dec_and_test(&ruip->rui_refcount)) { xfs_trans_ail_delete(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR); xfs_rui_item_free(ruip); } } STATIC void xfs_rui_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); *nvecs += 1; *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); } /* * This is called to fill in the vector of log iovecs for the * given rui log item. We use only 1 iovec, and we point that * at the rui_log_format structure embedded in the rui item. * It is at this point that we assert that all of the extent * slots in the rui item have been filled. */ STATIC void xfs_rui_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&ruip->rui_next_extent) == ruip->rui_format.rui_nextents); ruip->rui_format.rui_type = XFS_LI_RUI; ruip->rui_format.rui_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); } /* * The unpin operation is the last place an RUI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the RUI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the RUI to either construct * and commit the RUD or drop the RUD's reference in the event of error. Simply * drop the log's RUI reference now that the log is done with it. */ STATIC void xfs_rui_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); xfs_rui_release(ruip); } /* * The RUI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an RUD isn't going to be * constructed and thus we free the RUI here directly. */ STATIC void xfs_rui_item_release( struct xfs_log_item *lip) { xfs_rui_release(RUI_ITEM(lip)); } /* * Allocate and initialize an rui item with the given number of extents. */ STATIC struct xfs_rui_log_item * xfs_rui_init( struct xfs_mount *mp, uint nextents) { struct xfs_rui_log_item *ruip; ASSERT(nextents > 0); if (nextents > XFS_RUI_MAX_FAST_EXTENTS) ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0); else ruip = kmem_zone_zalloc(xfs_rui_zone, 0); xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); ruip->rui_format.rui_nextents = nextents; ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; atomic_set(&ruip->rui_next_extent, 0); atomic_set(&ruip->rui_refcount, 2); return ruip; } /* * Copy an RUI format buffer from the given buf, and into the destination * RUI format structure. The RUI/RUD items were designed not to need any * special alignment handling. */ STATIC int xfs_rui_copy_format( struct xfs_log_iovec *buf, struct xfs_rui_log_format *dst_rui_fmt) { struct xfs_rui_log_format *src_rui_fmt; uint len; src_rui_fmt = buf->i_addr; len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); if (buf->i_len != len) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } memcpy(dst_rui_fmt, src_rui_fmt, len); return 0; } static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_rud_log_item, rud_item); } STATIC void xfs_rud_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_rud_log_format); } /* * This is called to fill in the vector of log iovecs for the * given rud log item. We use only 1 iovec, and we point that * at the rud_log_format structure embedded in the rud item. * It is at this point that we assert that all of the extent * slots in the rud item have been filled. */ STATIC void xfs_rud_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_rud_log_item *rudp = RUD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; rudp->rud_format.rud_type = XFS_LI_RUD; rudp->rud_format.rud_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, sizeof(struct xfs_rud_log_format)); } /* * The RUD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the RUI and free the * RUD. */ STATIC void xfs_rud_item_release( struct xfs_log_item *lip) { struct xfs_rud_log_item *rudp = RUD_ITEM(lip); xfs_rui_release(rudp->rud_ruip); kmem_cache_free(xfs_rud_zone, rudp); } static const struct xfs_item_ops xfs_rud_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, .iop_size = xfs_rud_item_size, .iop_format = xfs_rud_item_format, .iop_release = xfs_rud_item_release, }; static struct xfs_rud_log_item * xfs_trans_get_rud( struct xfs_trans *tp, struct xfs_rui_log_item *ruip) { struct xfs_rud_log_item *rudp; rudp = kmem_zone_zalloc(xfs_rud_zone, 0); xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops); rudp->rud_ruip = ruip; rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; xfs_trans_add_item(tp, &rudp->rud_item); return rudp; } /* Set the map extent flags for this reverse mapping. */ static void xfs_trans_set_rmap_flags( struct xfs_map_extent *rmap, enum xfs_rmap_intent_type type, int whichfork, xfs_exntst_t state) { rmap->me_flags = 0; if (state == XFS_EXT_UNWRITTEN) rmap->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN; if (whichfork == XFS_ATTR_FORK) rmap->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK; switch (type) { case XFS_RMAP_MAP: rmap->me_flags |= XFS_RMAP_EXTENT_MAP; break; case XFS_RMAP_MAP_SHARED: rmap->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED; break; case XFS_RMAP_UNMAP: rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP; break; case XFS_RMAP_UNMAP_SHARED: rmap->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED; break; case XFS_RMAP_CONVERT: rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT; break; case XFS_RMAP_CONVERT_SHARED: rmap->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED; break; case XFS_RMAP_ALLOC: rmap->me_flags |= XFS_RMAP_EXTENT_ALLOC; break; case XFS_RMAP_FREE: rmap->me_flags |= XFS_RMAP_EXTENT_FREE; break; default: ASSERT(0); } } /* * Finish an rmap update and log it to the RUD. Note that the transaction is * marked dirty regardless of whether the rmap update succeeds or fails to * support the RUI/RUD lifecycle rules. */ static int xfs_trans_log_finish_rmap_update( struct xfs_trans *tp, struct xfs_rud_log_item *rudp, enum xfs_rmap_intent_type type, uint64_t owner, int whichfork, xfs_fileoff_t startoff, xfs_fsblock_t startblock, xfs_filblks_t blockcount, xfs_exntst_t state, struct xfs_btree_cur **pcur) { int error; error = xfs_rmap_finish_one(tp, type, owner, whichfork, startoff, startblock, blockcount, state, pcur); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the RUI and frees the RUD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags); return error; } /* Sort rmap intents by AG. */ static int xfs_rmap_update_diff_items( void *priv, struct list_head *a, struct list_head *b) { struct xfs_mount *mp = priv; struct xfs_rmap_intent *ra; struct xfs_rmap_intent *rb; ra = container_of(a, struct xfs_rmap_intent, ri_list); rb = container_of(b, struct xfs_rmap_intent, ri_list); return XFS_FSB_TO_AGNO(mp, ra->ri_bmap.br_startblock) - XFS_FSB_TO_AGNO(mp, rb->ri_bmap.br_startblock); } /* Log rmap updates in the intent item. */ STATIC void xfs_rmap_update_log_item( struct xfs_trans *tp, struct xfs_rui_log_item *ruip, struct xfs_rmap_intent *rmap) { uint next_extent; struct xfs_map_extent *map; tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags); /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1; ASSERT(next_extent < ruip->rui_format.rui_nextents); map = &ruip->rui_format.rui_extents[next_extent]; map->me_owner = rmap->ri_owner; map->me_startblock = rmap->ri_bmap.br_startblock; map->me_startoff = rmap->ri_bmap.br_startoff; map->me_len = rmap->ri_bmap.br_blockcount; xfs_trans_set_rmap_flags(map, rmap->ri_type, rmap->ri_whichfork, rmap->ri_bmap.br_state); } static struct xfs_log_item * xfs_rmap_update_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count); struct xfs_rmap_intent *rmap; ASSERT(count > 0); xfs_trans_add_item(tp, &ruip->rui_item); if (sort) list_sort(mp, items, xfs_rmap_update_diff_items); list_for_each_entry(rmap, items, ri_list) xfs_rmap_update_log_item(tp, ruip, rmap); return &ruip->rui_item; } /* Get an RUD so we can process all the deferred rmap updates. */ static struct xfs_log_item * xfs_rmap_update_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { return &xfs_trans_get_rud(tp, RUI_ITEM(intent))->rud_item; } /* Process a deferred rmap update. */ STATIC int xfs_rmap_update_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_rmap_intent *rmap; int error; rmap = container_of(item, struct xfs_rmap_intent, ri_list); error = xfs_trans_log_finish_rmap_update(tp, RUD_ITEM(done), rmap->ri_type, rmap->ri_owner, rmap->ri_whichfork, rmap->ri_bmap.br_startoff, rmap->ri_bmap.br_startblock, rmap->ri_bmap.br_blockcount, rmap->ri_bmap.br_state, state); kmem_free(rmap); return error; } /* Abort all pending RUIs. */ STATIC void xfs_rmap_update_abort_intent( struct xfs_log_item *intent) { xfs_rui_release(RUI_ITEM(intent)); } /* Cancel a deferred rmap update. */ STATIC void xfs_rmap_update_cancel_item( struct list_head *item) { struct xfs_rmap_intent *rmap; rmap = container_of(item, struct xfs_rmap_intent, ri_list); kmem_free(rmap); } const struct xfs_defer_op_type xfs_rmap_update_defer_type = { .max_items = XFS_RUI_MAX_FAST_EXTENTS, .create_intent = xfs_rmap_update_create_intent, .abort_intent = xfs_rmap_update_abort_intent, .create_done = xfs_rmap_update_create_done, .finish_item = xfs_rmap_update_finish_item, .finish_cleanup = xfs_rmap_finish_one_cleanup, .cancel_item = xfs_rmap_update_cancel_item, }; /* * Process an rmap update intent item that was recovered from the log. * We need to update the rmapbt. */ STATIC int xfs_rui_recover( struct xfs_mount *mp, struct xfs_rui_log_item *ruip) { int i; int error = 0; struct xfs_map_extent *rmap; xfs_fsblock_t startblock_fsb; bool op_ok; struct xfs_rud_log_item *rudp; enum xfs_rmap_intent_type type; int whichfork; xfs_exntst_t state; struct xfs_trans *tp; struct xfs_btree_cur *rcur = NULL; ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)); /* * First check the validity of the extents described by the * RUI. If any are bad, then assume that all are bad and * just toss the RUI. */ for (i = 0; i < ruip->rui_format.rui_nextents; i++) { rmap = &ruip->rui_format.rui_extents[i]; startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, rmap->me_startblock)); switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { case XFS_RMAP_EXTENT_MAP: case XFS_RMAP_EXTENT_MAP_SHARED: case XFS_RMAP_EXTENT_UNMAP: case XFS_RMAP_EXTENT_UNMAP_SHARED: case XFS_RMAP_EXTENT_CONVERT: case XFS_RMAP_EXTENT_CONVERT_SHARED: case XFS_RMAP_EXTENT_ALLOC: case XFS_RMAP_EXTENT_FREE: op_ok = true; break; default: op_ok = false; break; } if (!op_ok || startblock_fsb == 0 || rmap->me_len == 0 || startblock_fsb >= mp->m_sb.sb_dblocks || rmap->me_len >= mp->m_sb.sb_agblocks || (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) { /* * This will pull the RUI from the AIL and * free the memory associated with it. */ set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); xfs_rui_release(ruip); return -EFSCORRUPTED; } } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; rudp = xfs_trans_get_rud(tp, ruip); for (i = 0; i < ruip->rui_format.rui_nextents; i++) { rmap = &ruip->rui_format.rui_extents[i]; state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? XFS_EXT_UNWRITTEN : XFS_EXT_NORM; whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? XFS_ATTR_FORK : XFS_DATA_FORK; switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { case XFS_RMAP_EXTENT_MAP: type = XFS_RMAP_MAP; break; case XFS_RMAP_EXTENT_MAP_SHARED: type = XFS_RMAP_MAP_SHARED; break; case XFS_RMAP_EXTENT_UNMAP: type = XFS_RMAP_UNMAP; break; case XFS_RMAP_EXTENT_UNMAP_SHARED: type = XFS_RMAP_UNMAP_SHARED; break; case XFS_RMAP_EXTENT_CONVERT: type = XFS_RMAP_CONVERT; break; case XFS_RMAP_EXTENT_CONVERT_SHARED: type = XFS_RMAP_CONVERT_SHARED; break; case XFS_RMAP_EXTENT_ALLOC: type = XFS_RMAP_ALLOC; break; case XFS_RMAP_EXTENT_FREE: type = XFS_RMAP_FREE; break; default: XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); error = -EFSCORRUPTED; goto abort_error; } error = xfs_trans_log_finish_rmap_update(tp, rudp, type, rmap->me_owner, whichfork, rmap->me_startoff, rmap->me_startblock, rmap->me_len, state, &rcur); if (error) goto abort_error; } xfs_rmap_finish_one_cleanup(tp, rcur, error); set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); error = xfs_trans_commit(tp); return error; abort_error: xfs_rmap_finish_one_cleanup(tp, rcur, error); xfs_trans_cancel(tp); return error; } /* Recover the RUI if necessary. */ STATIC int xfs_rui_item_recover( struct xfs_log_item *lip, struct xfs_trans *tp) { struct xfs_ail *ailp = lip->li_ailp; struct xfs_rui_log_item *ruip = RUI_ITEM(lip); int error; /* * Skip RUIs that we've already processed. */ if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) return 0; spin_unlock(&ailp->ail_lock); error = xfs_rui_recover(tp->t_mountp, ruip); spin_lock(&ailp->ail_lock); return error; } STATIC bool xfs_rui_item_match( struct xfs_log_item *lip, uint64_t intent_id) { return RUI_ITEM(lip)->rui_format.rui_id == intent_id; } static const struct xfs_item_ops xfs_rui_item_ops = { .iop_size = xfs_rui_item_size, .iop_format = xfs_rui_item_format, .iop_unpin = xfs_rui_item_unpin, .iop_release = xfs_rui_item_release, .iop_recover = xfs_rui_item_recover, .iop_match = xfs_rui_item_match, }; /* * This routine is called to create an in-core extent rmap update * item from the rui format structure which was logged on disk. * It allocates an in-core rui, copies the extents from the format * structure into it, and adds the rui to the AIL with the given * LSN. */ STATIC int xlog_recover_rui_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; struct xfs_mount *mp = log->l_mp; struct xfs_rui_log_item *ruip; struct xfs_rui_log_format *rui_formatp; rui_formatp = item->ri_buf[0].i_addr; ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); if (error) { xfs_rui_item_free(ruip); return error; } atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); /* * Insert the intent into the AIL directly and drop one reference so * that finishing or canceling the work will drop the other. */ xfs_trans_ail_insert(log->l_ailp, &ruip->rui_item, lsn); xfs_rui_release(ruip); return 0; } const struct xlog_recover_item_ops xlog_rui_item_ops = { .item_type = XFS_LI_RUI, .commit_pass2 = xlog_recover_rui_commit_pass2, }; /* * This routine is called when an RUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding RUI if it * was still in the log. To do this it searches the AIL for the RUI with an id * equal to that in the RUD format structure. If we find it we drop the RUD * reference, which removes the RUI from the AIL and frees it. */ STATIC int xlog_recover_rud_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_rud_log_format *rud_formatp; rud_formatp = item->ri_buf[0].i_addr; ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id); return 0; } const struct xlog_recover_item_ops xlog_rud_item_ops = { .item_type = XFS_LI_RUD, .commit_pass2 = xlog_recover_rud_commit_pass2, };