/* * Provides I2C support for Philips PNX010x/PNX4008 boards. * * Authors: Dennis Kovalev <dkovalev@ru.mvista.com> * Vitaly Wool <vwool@ru.mvista.com> * * 2004-2006 (c) MontaVista Software, Inc. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/timer.h> #include <linux/completion.h> #include <linux/platform_device.h> #include <linux/i2c-pnx.h> #include <linux/io.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/slab.h> #include <linux/of.h> #define I2C_PNX_TIMEOUT_DEFAULT 10 /* msec */ #define I2C_PNX_SPEED_KHZ_DEFAULT 100 #define I2C_PNX_REGION_SIZE 0x100 enum { mstatus_tdi = 0x00000001, mstatus_afi = 0x00000002, mstatus_nai = 0x00000004, mstatus_drmi = 0x00000008, mstatus_active = 0x00000020, mstatus_scl = 0x00000040, mstatus_sda = 0x00000080, mstatus_rff = 0x00000100, mstatus_rfe = 0x00000200, mstatus_tff = 0x00000400, mstatus_tfe = 0x00000800, }; enum { mcntrl_tdie = 0x00000001, mcntrl_afie = 0x00000002, mcntrl_naie = 0x00000004, mcntrl_drmie = 0x00000008, mcntrl_drsie = 0x00000010, mcntrl_rffie = 0x00000020, mcntrl_daie = 0x00000040, mcntrl_tffie = 0x00000080, mcntrl_reset = 0x00000100, mcntrl_cdbmode = 0x00000400, }; enum { rw_bit = 1 << 0, start_bit = 1 << 8, stop_bit = 1 << 9, }; #define I2C_REG_RX(a) ((a)->ioaddr) /* Rx FIFO reg (RO) */ #define I2C_REG_TX(a) ((a)->ioaddr) /* Tx FIFO reg (WO) */ #define I2C_REG_STS(a) ((a)->ioaddr + 0x04) /* Status reg (RO) */ #define I2C_REG_CTL(a) ((a)->ioaddr + 0x08) /* Ctl reg */ #define I2C_REG_CKL(a) ((a)->ioaddr + 0x0c) /* Clock divider low */ #define I2C_REG_CKH(a) ((a)->ioaddr + 0x10) /* Clock divider high */ #define I2C_REG_ADR(a) ((a)->ioaddr + 0x14) /* I2C address */ #define I2C_REG_RFL(a) ((a)->ioaddr + 0x18) /* Rx FIFO level (RO) */ #define I2C_REG_TFL(a) ((a)->ioaddr + 0x1c) /* Tx FIFO level (RO) */ #define I2C_REG_RXB(a) ((a)->ioaddr + 0x20) /* Num of bytes Rx-ed (RO) */ #define I2C_REG_TXB(a) ((a)->ioaddr + 0x24) /* Num of bytes Tx-ed (RO) */ #define I2C_REG_TXS(a) ((a)->ioaddr + 0x28) /* Tx slave FIFO (RO) */ #define I2C_REG_STFL(a) ((a)->ioaddr + 0x2c) /* Tx slave FIFO level (RO) */ static inline int wait_timeout(struct i2c_pnx_algo_data *data) { long timeout = data->timeout; while (timeout > 0 && (ioread32(I2C_REG_STS(data)) & mstatus_active)) { mdelay(1); timeout--; } return (timeout <= 0); } static inline int wait_reset(struct i2c_pnx_algo_data *data) { long timeout = data->timeout; while (timeout > 0 && (ioread32(I2C_REG_CTL(data)) & mcntrl_reset)) { mdelay(1); timeout--; } return (timeout <= 0); } static inline void i2c_pnx_arm_timer(struct i2c_pnx_algo_data *alg_data) { struct timer_list *timer = &alg_data->mif.timer; unsigned long expires = msecs_to_jiffies(alg_data->timeout); if (expires <= 1) expires = 2; del_timer_sync(timer); dev_dbg(&alg_data->adapter.dev, "Timer armed at %lu plus %lu jiffies.\n", jiffies, expires); timer->expires = jiffies + expires; add_timer(timer); } /** * i2c_pnx_start - start a device * @slave_addr: slave address * @adap: pointer to adapter structure * * Generate a START signal in the desired mode. */ static int i2c_pnx_start(unsigned char slave_addr, struct i2c_pnx_algo_data *alg_data) { dev_dbg(&alg_data->adapter.dev, "%s(): addr 0x%x mode %d\n", __func__, slave_addr, alg_data->mif.mode); /* Check for 7 bit slave addresses only */ if (slave_addr & ~0x7f) { dev_err(&alg_data->adapter.dev, "%s: Invalid slave address %x. Only 7-bit addresses are supported\n", alg_data->adapter.name, slave_addr); return -EINVAL; } /* First, make sure bus is idle */ if (wait_timeout(alg_data)) { /* Somebody else is monopolizing the bus */ dev_err(&alg_data->adapter.dev, "%s: Bus busy. Slave addr = %02x, cntrl = %x, stat = %x\n", alg_data->adapter.name, slave_addr, ioread32(I2C_REG_CTL(alg_data)), ioread32(I2C_REG_STS(alg_data))); return -EBUSY; } else if (ioread32(I2C_REG_STS(alg_data)) & mstatus_afi) { /* Sorry, we lost the bus */ dev_err(&alg_data->adapter.dev, "%s: Arbitration failure. Slave addr = %02x\n", alg_data->adapter.name, slave_addr); return -EIO; } /* * OK, I2C is enabled and we have the bus. * Clear the current TDI and AFI status flags. */ iowrite32(ioread32(I2C_REG_STS(alg_data)) | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data)); dev_dbg(&alg_data->adapter.dev, "%s(): sending %#x\n", __func__, (slave_addr << 1) | start_bit | alg_data->mif.mode); /* Write the slave address, START bit and R/W bit */ iowrite32((slave_addr << 1) | start_bit | alg_data->mif.mode, I2C_REG_TX(alg_data)); dev_dbg(&alg_data->adapter.dev, "%s(): exit\n", __func__); return 0; } /** * i2c_pnx_stop - stop a device * @adap: pointer to I2C adapter structure * * Generate a STOP signal to terminate the master transaction. */ static void i2c_pnx_stop(struct i2c_pnx_algo_data *alg_data) { /* Only 1 msec max timeout due to interrupt context */ long timeout = 1000; dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); /* Write a STOP bit to TX FIFO */ iowrite32(0xff | stop_bit, I2C_REG_TX(alg_data)); /* Wait until the STOP is seen. */ while (timeout > 0 && (ioread32(I2C_REG_STS(alg_data)) & mstatus_active)) { /* may be called from interrupt context */ udelay(1); timeout--; } dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); } /** * i2c_pnx_master_xmit - transmit data to slave * @adap: pointer to I2C adapter structure * * Sends one byte of data to the slave */ static int i2c_pnx_master_xmit(struct i2c_pnx_algo_data *alg_data) { u32 val; dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); if (alg_data->mif.len > 0) { /* We still have something to talk about... */ val = *alg_data->mif.buf++; if (alg_data->mif.len == 1) val |= stop_bit; alg_data->mif.len--; iowrite32(val, I2C_REG_TX(alg_data)); dev_dbg(&alg_data->adapter.dev, "%s(): xmit %#x [%d]\n", __func__, val, alg_data->mif.len + 1); if (alg_data->mif.len == 0) { if (alg_data->last) { /* Wait until the STOP is seen. */ if (wait_timeout(alg_data)) dev_err(&alg_data->adapter.dev, "The bus is still active after timeout\n"); } /* Disable master interrupts */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) & ~(mcntrl_afie | mcntrl_naie | mcntrl_drmie), I2C_REG_CTL(alg_data)); del_timer_sync(&alg_data->mif.timer); dev_dbg(&alg_data->adapter.dev, "%s(): Waking up xfer routine.\n", __func__); complete(&alg_data->mif.complete); } } else if (alg_data->mif.len == 0) { /* zero-sized transfer */ i2c_pnx_stop(alg_data); /* Disable master interrupts. */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) & ~(mcntrl_afie | mcntrl_naie | mcntrl_drmie), I2C_REG_CTL(alg_data)); /* Stop timer. */ del_timer_sync(&alg_data->mif.timer); dev_dbg(&alg_data->adapter.dev, "%s(): Waking up xfer routine after zero-xfer.\n", __func__); complete(&alg_data->mif.complete); } dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); return 0; } /** * i2c_pnx_master_rcv - receive data from slave * @adap: pointer to I2C adapter structure * * Reads one byte data from the slave */ static int i2c_pnx_master_rcv(struct i2c_pnx_algo_data *alg_data) { unsigned int val = 0; u32 ctl = 0; dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); /* Check, whether there is already data, * or we didn't 'ask' for it yet. */ if (ioread32(I2C_REG_STS(alg_data)) & mstatus_rfe) { /* 'Asking' is done asynchronously, e.g. dummy TX of several * bytes is done before the first actual RX arrives in FIFO. * Therefore, ordered bytes (via TX) are counted separately. */ if (alg_data->mif.order) { dev_dbg(&alg_data->adapter.dev, "%s(): Write dummy data to fill Rx-fifo...\n", __func__); if (alg_data->mif.order == 1) { /* Last byte, do not acknowledge next rcv. */ val |= stop_bit; /* * Enable interrupt RFDAIE (data in Rx fifo), * and disable DRMIE (need data for Tx) */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl |= mcntrl_rffie | mcntrl_daie; ctl &= ~mcntrl_drmie; iowrite32(ctl, I2C_REG_CTL(alg_data)); } /* * Now we'll 'ask' for data: * For each byte we want to receive, we must * write a (dummy) byte to the Tx-FIFO. */ iowrite32(val, I2C_REG_TX(alg_data)); alg_data->mif.order--; } return 0; } /* Handle data. */ if (alg_data->mif.len > 0) { val = ioread32(I2C_REG_RX(alg_data)); *alg_data->mif.buf++ = (u8) (val & 0xff); dev_dbg(&alg_data->adapter.dev, "%s(): rcv 0x%x [%d]\n", __func__, val, alg_data->mif.len); alg_data->mif.len--; if (alg_data->mif.len == 0) { if (alg_data->last) /* Wait until the STOP is seen. */ if (wait_timeout(alg_data)) dev_err(&alg_data->adapter.dev, "The bus is still active after timeout\n"); /* Disable master interrupts */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie | mcntrl_daie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Kill timer. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } } dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n", __func__, ioread32(I2C_REG_STS(alg_data))); return 0; } static irqreturn_t i2c_pnx_interrupt(int irq, void *dev_id) { struct i2c_pnx_algo_data *alg_data = dev_id; u32 stat, ctl; dev_dbg(&alg_data->adapter.dev, "%s(): mstat = %x mctrl = %x, mode = %d\n", __func__, ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data)), alg_data->mif.mode); stat = ioread32(I2C_REG_STS(alg_data)); /* let's see what kind of event this is */ if (stat & mstatus_afi) { /* We lost arbitration in the midst of a transfer */ alg_data->mif.ret = -EIO; /* Disable master interrupts. */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Stop timer, to prevent timeout. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } else if (stat & mstatus_nai) { /* Slave did not acknowledge, generate a STOP */ dev_dbg(&alg_data->adapter.dev, "%s(): Slave did not acknowledge, generating a STOP.\n", __func__); i2c_pnx_stop(alg_data); /* Disable master interrupts. */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Our return value. */ alg_data->mif.ret = -EIO; /* Stop timer, to prevent timeout. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } else { /* * Two options: * - Master Tx needs data. * - There is data in the Rx-fifo * The latter is only the case if we have requested for data, * via a dummy write. (See 'i2c_pnx_master_rcv'.) * We therefore check, as a sanity check, whether that interrupt * has been enabled. */ if ((stat & mstatus_drmi) || !(stat & mstatus_rfe)) { if (alg_data->mif.mode == I2C_SMBUS_WRITE) { i2c_pnx_master_xmit(alg_data); } else if (alg_data->mif.mode == I2C_SMBUS_READ) { i2c_pnx_master_rcv(alg_data); } } } /* Clear TDI and AFI bits */ stat = ioread32(I2C_REG_STS(alg_data)); iowrite32(stat | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data)); dev_dbg(&alg_data->adapter.dev, "%s(): exiting, stat = %x ctrl = %x.\n", __func__, ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data))); return IRQ_HANDLED; } static void i2c_pnx_timeout(struct timer_list *t) { struct i2c_pnx_algo_data *alg_data = from_timer(alg_data, t, mif.timer); u32 ctl; dev_err(&alg_data->adapter.dev, "Master timed out. stat = %04x, cntrl = %04x. Resetting master...\n", ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data))); /* Reset master and disable interrupts */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); ctl |= mcntrl_reset; iowrite32(ctl, I2C_REG_CTL(alg_data)); wait_reset(alg_data); alg_data->mif.ret = -EIO; complete(&alg_data->mif.complete); } static inline void bus_reset_if_active(struct i2c_pnx_algo_data *alg_data) { u32 stat; if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_active) { dev_err(&alg_data->adapter.dev, "%s: Bus is still active after xfer. Reset it...\n", alg_data->adapter.name); iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(alg_data); } else if (!(stat & mstatus_rfe) || !(stat & mstatus_tfe)) { /* If there is data in the fifo's after transfer, * flush fifo's by reset. */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(alg_data); } else if (stat & mstatus_nai) { iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(alg_data); } } /** * i2c_pnx_xfer - generic transfer entry point * @adap: pointer to I2C adapter structure * @msgs: array of messages * @num: number of messages * * Initiates the transfer */ static int i2c_pnx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct i2c_msg *pmsg; int rc = 0, completed = 0, i; struct i2c_pnx_algo_data *alg_data = adap->algo_data; u32 stat; dev_dbg(&alg_data->adapter.dev, "%s(): entering: %d messages, stat = %04x.\n", __func__, num, ioread32(I2C_REG_STS(alg_data))); bus_reset_if_active(alg_data); /* Process transactions in a loop. */ for (i = 0; rc >= 0 && i < num; i++) { u8 addr; pmsg = &msgs[i]; addr = pmsg->addr; if (pmsg->flags & I2C_M_TEN) { dev_err(&alg_data->adapter.dev, "%s: 10 bits addr not supported!\n", alg_data->adapter.name); rc = -EINVAL; break; } alg_data->mif.buf = pmsg->buf; alg_data->mif.len = pmsg->len; alg_data->mif.order = pmsg->len; alg_data->mif.mode = (pmsg->flags & I2C_M_RD) ? I2C_SMBUS_READ : I2C_SMBUS_WRITE; alg_data->mif.ret = 0; alg_data->last = (i == num - 1); dev_dbg(&alg_data->adapter.dev, "%s(): mode %d, %d bytes\n", __func__, alg_data->mif.mode, alg_data->mif.len); i2c_pnx_arm_timer(alg_data); /* initialize the completion var */ init_completion(&alg_data->mif.complete); /* Enable master interrupt */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_afie | mcntrl_naie | mcntrl_drmie, I2C_REG_CTL(alg_data)); /* Put start-code and slave-address on the bus. */ rc = i2c_pnx_start(addr, alg_data); if (rc < 0) break; /* Wait for completion */ wait_for_completion(&alg_data->mif.complete); if (!(rc = alg_data->mif.ret)) completed++; dev_dbg(&alg_data->adapter.dev, "%s(): Complete, return code = %d.\n", __func__, rc); /* Clear TDI and AFI bits in case they are set. */ if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_tdi) { dev_dbg(&alg_data->adapter.dev, "%s: TDI still set... clearing now.\n", alg_data->adapter.name); iowrite32(stat, I2C_REG_STS(alg_data)); } if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_afi) { dev_dbg(&alg_data->adapter.dev, "%s: AFI still set... clearing now.\n", alg_data->adapter.name); iowrite32(stat, I2C_REG_STS(alg_data)); } } bus_reset_if_active(alg_data); /* Cleanup to be sure... */ alg_data->mif.buf = NULL; alg_data->mif.len = 0; alg_data->mif.order = 0; dev_dbg(&alg_data->adapter.dev, "%s(): exiting, stat = %x\n", __func__, ioread32(I2C_REG_STS(alg_data))); if (completed != num) return ((rc < 0) ? rc : -EREMOTEIO); return num; } static u32 i2c_pnx_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm pnx_algorithm = { .master_xfer = i2c_pnx_xfer, .functionality = i2c_pnx_func, }; #ifdef CONFIG_PM_SLEEP static int i2c_pnx_controller_suspend(struct device *dev) { struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev); clk_disable_unprepare(alg_data->clk); return 0; } static int i2c_pnx_controller_resume(struct device *dev) { struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev); return clk_prepare_enable(alg_data->clk); } static SIMPLE_DEV_PM_OPS(i2c_pnx_pm, i2c_pnx_controller_suspend, i2c_pnx_controller_resume); #define PNX_I2C_PM (&i2c_pnx_pm) #else #define PNX_I2C_PM NULL #endif static int i2c_pnx_probe(struct platform_device *pdev) { unsigned long tmp; int ret = 0; struct i2c_pnx_algo_data *alg_data; unsigned long freq; struct resource *res; u32 speed = I2C_PNX_SPEED_KHZ_DEFAULT * 1000; alg_data = devm_kzalloc(&pdev->dev, sizeof(*alg_data), GFP_KERNEL); if (!alg_data) return -ENOMEM; platform_set_drvdata(pdev, alg_data); alg_data->adapter.dev.parent = &pdev->dev; alg_data->adapter.algo = &pnx_algorithm; alg_data->adapter.algo_data = alg_data; alg_data->adapter.nr = pdev->id; alg_data->timeout = I2C_PNX_TIMEOUT_DEFAULT; #ifdef CONFIG_OF alg_data->adapter.dev.of_node = of_node_get(pdev->dev.of_node); if (pdev->dev.of_node) { of_property_read_u32(pdev->dev.of_node, "clock-frequency", &speed); /* * At this point, it is planned to add an OF timeout property. * As soon as there is a consensus about how to call and handle * this, sth. like the following can be put here: * * of_property_read_u32(pdev->dev.of_node, "timeout", * &alg_data->timeout); */ } #endif alg_data->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(alg_data->clk)) return PTR_ERR(alg_data->clk); timer_setup(&alg_data->mif.timer, i2c_pnx_timeout, 0); snprintf(alg_data->adapter.name, sizeof(alg_data->adapter.name), "%s", pdev->name); /* Register I/O resource */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); alg_data->ioaddr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(alg_data->ioaddr)) return PTR_ERR(alg_data->ioaddr); ret = clk_prepare_enable(alg_data->clk); if (ret) return ret; freq = clk_get_rate(alg_data->clk); /* * Clock Divisor High This value is the number of system clocks * the serial clock (SCL) will be high. * For example, if the system clock period is 50 ns and the maximum * desired serial period is 10000 ns (100 kHz), then CLKHI would be * set to 0.5*(f_sys/f_i2c)-2=0.5*(20e6/100e3)-2=98. The actual value * programmed into CLKHI will vary from this slightly due to * variations in the output pad's rise and fall times as well as * the deglitching filter length. */ tmp = (freq / speed) / 2 - 2; if (tmp > 0x3FF) tmp = 0x3FF; iowrite32(tmp, I2C_REG_CKH(alg_data)); iowrite32(tmp, I2C_REG_CKL(alg_data)); iowrite32(mcntrl_reset, I2C_REG_CTL(alg_data)); if (wait_reset(alg_data)) { ret = -ENODEV; goto out_clock; } init_completion(&alg_data->mif.complete); alg_data->irq = platform_get_irq(pdev, 0); if (alg_data->irq < 0) { dev_err(&pdev->dev, "Failed to get IRQ from platform resource\n"); ret = alg_data->irq; goto out_clock; } ret = devm_request_irq(&pdev->dev, alg_data->irq, i2c_pnx_interrupt, 0, pdev->name, alg_data); if (ret) goto out_clock; /* Register this adapter with the I2C subsystem */ ret = i2c_add_numbered_adapter(&alg_data->adapter); if (ret < 0) goto out_clock; dev_dbg(&pdev->dev, "%s: Master at %#8x, irq %d.\n", alg_data->adapter.name, res->start, alg_data->irq); return 0; out_clock: clk_disable_unprepare(alg_data->clk); return ret; } static int i2c_pnx_remove(struct platform_device *pdev) { struct i2c_pnx_algo_data *alg_data = platform_get_drvdata(pdev); i2c_del_adapter(&alg_data->adapter); clk_disable_unprepare(alg_data->clk); return 0; } #ifdef CONFIG_OF static const struct of_device_id i2c_pnx_of_match[] = { { .compatible = "nxp,pnx-i2c" }, { }, }; MODULE_DEVICE_TABLE(of, i2c_pnx_of_match); #endif static struct platform_driver i2c_pnx_driver = { .driver = { .name = "pnx-i2c", .of_match_table = of_match_ptr(i2c_pnx_of_match), .pm = PNX_I2C_PM, }, .probe = i2c_pnx_probe, .remove = i2c_pnx_remove, }; static int __init i2c_adap_pnx_init(void) { return platform_driver_register(&i2c_pnx_driver); } static void __exit i2c_adap_pnx_exit(void) { platform_driver_unregister(&i2c_pnx_driver); } MODULE_AUTHOR("Vitaly Wool, Dennis Kovalev <source@mvista.com>"); MODULE_DESCRIPTION("I2C driver for Philips IP3204-based I2C busses"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pnx-i2c"); /* We need to make sure I2C is initialized before USB */ subsys_initcall(i2c_adap_pnx_init); module_exit(i2c_adap_pnx_exit);