/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_inode.h" #include "xfs_dinode.h" #include "xfs_error.h" #include "xfs_mru_cache.h" #include "xfs_filestream.h" #include "xfs_vnodeops.h" #include "xfs_utils.h" #include "xfs_buf_item.h" #include "xfs_inode_item.h" #include "xfs_rw.h" #include "xfs_quota.h" #include #include STATIC int xfs_sync_inode_data( struct xfs_inode *ip, int flags) { struct inode *inode = VFS_I(ip); struct address_space *mapping = inode->i_mapping; int error = 0; if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) goto out_wait; if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { if (flags & SYNC_TRYLOCK) goto out_wait; xfs_ilock(ip, XFS_IOLOCK_SHARED); } error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? 0 : XFS_B_ASYNC, FI_NONE); xfs_iunlock(ip, XFS_IOLOCK_SHARED); out_wait: if (flags & SYNC_IOWAIT) xfs_ioend_wait(ip); return error; } STATIC int xfs_sync_inode_attr( struct xfs_inode *ip, int flags) { int error = 0; xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_inode_clean(ip)) goto out_unlock; if (!xfs_iflock_nowait(ip)) { if (!(flags & SYNC_WAIT)) goto out_unlock; xfs_iflock(ip); } if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); goto out_unlock; } error = xfs_iflush(ip, (flags & SYNC_WAIT) ? XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI); out_unlock: xfs_iunlock(ip, XFS_ILOCK_SHARED); return error; } /* * Sync all the inodes in the given AG according to the * direction given by the flags. */ STATIC int xfs_sync_inodes_ag( xfs_mount_t *mp, int ag, int flags) { xfs_perag_t *pag = &mp->m_perag[ag]; int nr_found; uint32_t first_index = 0; int error = 0; int last_error = 0; do { struct inode *inode; xfs_inode_t *ip = NULL; /* * use a gang lookup to find the next inode in the tree * as the tree is sparse and a gang lookup walks to find * the number of objects requested. */ read_lock(&pag->pag_ici_lock); nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)&ip, first_index, 1); if (!nr_found) { read_unlock(&pag->pag_ici_lock); break; } /* * Update the index for the next lookup. Catch overflows * into the next AG range which can occur if we have inodes * in the last block of the AG and we are currently * pointing to the last inode. */ first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { read_unlock(&pag->pag_ici_lock); break; } /* nothing to sync during shutdown */ if (XFS_FORCED_SHUTDOWN(mp)) { read_unlock(&pag->pag_ici_lock); return 0; } /* * If we can't get a reference on the inode, it must be * in reclaim. Leave it for the reclaim code to flush. */ inode = VFS_I(ip); if (!igrab(inode)) { read_unlock(&pag->pag_ici_lock); continue; } read_unlock(&pag->pag_ici_lock); /* avoid new or bad inodes */ if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) { IRELE(ip); continue; } /* * If we have to flush data or wait for I/O completion * we need to hold the iolock. */ if (flags & SYNC_DELWRI) error = xfs_sync_inode_data(ip, flags); if (flags & SYNC_ATTR) error = xfs_sync_inode_attr(ip, flags); IRELE(ip); if (error) last_error = error; /* * bail out if the filesystem is corrupted. */ if (error == EFSCORRUPTED) return XFS_ERROR(error); } while (nr_found); return last_error; } int xfs_sync_inodes( xfs_mount_t *mp, int flags) { int error; int last_error; int i; int lflags = XFS_LOG_FORCE; if (mp->m_flags & XFS_MOUNT_RDONLY) return 0; error = 0; last_error = 0; if (flags & SYNC_WAIT) lflags |= XFS_LOG_SYNC; for (i = 0; i < mp->m_sb.sb_agcount; i++) { if (!mp->m_perag[i].pag_ici_init) continue; error = xfs_sync_inodes_ag(mp, i, flags); if (error) last_error = error; if (error == EFSCORRUPTED) break; } if (flags & SYNC_DELWRI) xfs_log_force(mp, 0, lflags); return XFS_ERROR(last_error); } STATIC int xfs_commit_dummy_trans( struct xfs_mount *mp, uint log_flags) { struct xfs_inode *ip = mp->m_rootip; struct xfs_trans *tp; int error; /* * Put a dummy transaction in the log to tell recovery * that all others are OK. */ tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); if (error) { xfs_trans_cancel(tp, 0); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_ihold(tp, ip); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); /* XXX(hch): ignoring the error here.. */ error = xfs_trans_commit(tp, 0); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_log_force(mp, 0, log_flags); return 0; } int xfs_sync_fsdata( struct xfs_mount *mp, int flags) { struct xfs_buf *bp; struct xfs_buf_log_item *bip; int error = 0; /* * If this is xfssyncd() then only sync the superblock if we can * lock it without sleeping and it is not pinned. */ if (flags & SYNC_BDFLUSH) { ASSERT(!(flags & SYNC_WAIT)); bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); if (!bp) goto out; bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) goto out_brelse; } else { bp = xfs_getsb(mp, 0); /* * If the buffer is pinned then push on the log so we won't * get stuck waiting in the write for someone, maybe * ourselves, to flush the log. * * Even though we just pushed the log above, we did not have * the superblock buffer locked at that point so it can * become pinned in between there and here. */ if (XFS_BUF_ISPINNED(bp)) xfs_log_force(mp, 0, XFS_LOG_FORCE); } if (flags & SYNC_WAIT) XFS_BUF_UNASYNC(bp); else XFS_BUF_ASYNC(bp); return xfs_bwrite(mp, bp); out_brelse: xfs_buf_relse(bp); out: return error; } /* * When remounting a filesystem read-only or freezing the filesystem, we have * two phases to execute. This first phase is syncing the data before we * quiesce the filesystem, and the second is flushing all the inodes out after * we've waited for all the transactions created by the first phase to * complete. The second phase ensures that the inodes are written to their * location on disk rather than just existing in transactions in the log. This * means after a quiesce there is no log replay required to write the inodes to * disk (this is the main difference between a sync and a quiesce). */ /* * First stage of freeze - no writers will make progress now we are here, * so we flush delwri and delalloc buffers here, then wait for all I/O to * complete. Data is frozen at that point. Metadata is not frozen, * transactions can still occur here so don't bother flushing the buftarg * because it'll just get dirty again. */ int xfs_quiesce_data( struct xfs_mount *mp) { int error; /* push non-blocking */ xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH); xfs_qm_sync(mp, SYNC_BDFLUSH); xfs_filestream_flush(mp); /* push and block */ xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT); xfs_qm_sync(mp, SYNC_WAIT); /* write superblock and hoover up shutdown errors */ error = xfs_sync_fsdata(mp, 0); /* flush data-only devices */ if (mp->m_rtdev_targp) XFS_bflush(mp->m_rtdev_targp); return error; } STATIC void xfs_quiesce_fs( struct xfs_mount *mp) { int count = 0, pincount; xfs_flush_buftarg(mp->m_ddev_targp, 0); xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); /* * This loop must run at least twice. The first instance of the loop * will flush most meta data but that will generate more meta data * (typically directory updates). Which then must be flushed and * logged before we can write the unmount record. */ do { xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT); pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); if (!pincount) { delay(50); count++; } } while (count < 2); } /* * Second stage of a quiesce. The data is already synced, now we have to take * care of the metadata. New transactions are already blocked, so we need to * wait for any remaining transactions to drain out before proceding. */ void xfs_quiesce_attr( struct xfs_mount *mp) { int error = 0; /* wait for all modifications to complete */ while (atomic_read(&mp->m_active_trans) > 0) delay(100); /* flush inodes and push all remaining buffers out to disk */ xfs_quiesce_fs(mp); /* * Just warn here till VFS can correctly support * read-only remount without racing. */ WARN_ON(atomic_read(&mp->m_active_trans) != 0); /* Push the superblock and write an unmount record */ error = xfs_log_sbcount(mp, 1); if (error) xfs_fs_cmn_err(CE_WARN, mp, "xfs_attr_quiesce: failed to log sb changes. " "Frozen image may not be consistent."); xfs_log_unmount_write(mp); xfs_unmountfs_writesb(mp); } /* * Enqueue a work item to be picked up by the vfs xfssyncd thread. * Doing this has two advantages: * - It saves on stack space, which is tight in certain situations * - It can be used (with care) as a mechanism to avoid deadlocks. * Flushing while allocating in a full filesystem requires both. */ STATIC void xfs_syncd_queue_work( struct xfs_mount *mp, void *data, void (*syncer)(struct xfs_mount *, void *), struct completion *completion) { struct xfs_sync_work *work; work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP); INIT_LIST_HEAD(&work->w_list); work->w_syncer = syncer; work->w_data = data; work->w_mount = mp; work->w_completion = completion; spin_lock(&mp->m_sync_lock); list_add_tail(&work->w_list, &mp->m_sync_list); spin_unlock(&mp->m_sync_lock); wake_up_process(mp->m_sync_task); } /* * Flush delayed allocate data, attempting to free up reserved space * from existing allocations. At this point a new allocation attempt * has failed with ENOSPC and we are in the process of scratching our * heads, looking about for more room... */ STATIC void xfs_flush_inodes_work( struct xfs_mount *mp, void *arg) { struct inode *inode = arg; xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK); xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT); iput(inode); } void xfs_flush_inodes( xfs_inode_t *ip) { struct inode *inode = VFS_I(ip); DECLARE_COMPLETION_ONSTACK(completion); igrab(inode); xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion); wait_for_completion(&completion); xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); } /* * Every sync period we need to unpin all items, reclaim inodes, sync * quota and write out the superblock. We might need to cover the log * to indicate it is idle. */ STATIC void xfs_sync_worker( struct xfs_mount *mp, void *unused) { int error; if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); /* dgc: errors ignored here */ error = xfs_qm_sync(mp, SYNC_BDFLUSH); error = xfs_sync_fsdata(mp, SYNC_BDFLUSH); if (xfs_log_need_covered(mp)) error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE); } mp->m_sync_seq++; wake_up(&mp->m_wait_single_sync_task); } STATIC int xfssyncd( void *arg) { struct xfs_mount *mp = arg; long timeleft; xfs_sync_work_t *work, *n; LIST_HEAD (tmp); set_freezable(); timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); for (;;) { timeleft = schedule_timeout_interruptible(timeleft); /* swsusp */ try_to_freeze(); if (kthread_should_stop() && list_empty(&mp->m_sync_list)) break; spin_lock(&mp->m_sync_lock); /* * We can get woken by laptop mode, to do a sync - * that's the (only!) case where the list would be * empty with time remaining. */ if (!timeleft || list_empty(&mp->m_sync_list)) { if (!timeleft) timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); INIT_LIST_HEAD(&mp->m_sync_work.w_list); list_add_tail(&mp->m_sync_work.w_list, &mp->m_sync_list); } list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) list_move(&work->w_list, &tmp); spin_unlock(&mp->m_sync_lock); list_for_each_entry_safe(work, n, &tmp, w_list) { (*work->w_syncer)(mp, work->w_data); list_del(&work->w_list); if (work == &mp->m_sync_work) continue; if (work->w_completion) complete(work->w_completion); kmem_free(work); } } return 0; } int xfs_syncd_init( struct xfs_mount *mp) { mp->m_sync_work.w_syncer = xfs_sync_worker; mp->m_sync_work.w_mount = mp; mp->m_sync_work.w_completion = NULL; mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); if (IS_ERR(mp->m_sync_task)) return -PTR_ERR(mp->m_sync_task); return 0; } void xfs_syncd_stop( struct xfs_mount *mp) { kthread_stop(mp->m_sync_task); } int xfs_reclaim_inode( xfs_inode_t *ip, int locked, int sync_mode) { xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino); /* The hash lock here protects a thread in xfs_iget_core from * racing with us on linking the inode back with a vnode. * Once we have the XFS_IRECLAIM flag set it will not touch * us. */ write_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); if (__xfs_iflags_test(ip, XFS_IRECLAIM) || !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) { spin_unlock(&ip->i_flags_lock); write_unlock(&pag->pag_ici_lock); if (locked) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); } return 1; } __xfs_iflags_set(ip, XFS_IRECLAIM); spin_unlock(&ip->i_flags_lock); write_unlock(&pag->pag_ici_lock); xfs_put_perag(ip->i_mount, pag); /* * If the inode is still dirty, then flush it out. If the inode * is not in the AIL, then it will be OK to flush it delwri as * long as xfs_iflush() does not keep any references to the inode. * We leave that decision up to xfs_iflush() since it has the * knowledge of whether it's OK to simply do a delwri flush of * the inode or whether we need to wait until the inode is * pulled from the AIL. * We get the flush lock regardless, though, just to make sure * we don't free it while it is being flushed. */ if (!locked) { xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_iflock(ip); } /* * In the case of a forced shutdown we rely on xfs_iflush() to * wait for the inode to be unpinned before returning an error. */ if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) { /* synchronize with xfs_iflush_done */ xfs_iflock(ip); xfs_ifunlock(ip); } xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_ireclaim(ip); return 0; } /* * We set the inode flag atomically with the radix tree tag. * Once we get tag lookups on the radix tree, this inode flag * can go away. */ void xfs_inode_set_reclaim_tag( xfs_inode_t *ip) { xfs_mount_t *mp = ip->i_mount; xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); read_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); __xfs_iflags_set(ip, XFS_IRECLAIMABLE); spin_unlock(&ip->i_flags_lock); read_unlock(&pag->pag_ici_lock); xfs_put_perag(mp, pag); } void __xfs_inode_clear_reclaim_tag( xfs_mount_t *mp, xfs_perag_t *pag, xfs_inode_t *ip) { radix_tree_tag_clear(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); } void xfs_inode_clear_reclaim_tag( xfs_inode_t *ip) { xfs_mount_t *mp = ip->i_mount; xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); read_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); __xfs_inode_clear_reclaim_tag(mp, pag, ip); spin_unlock(&ip->i_flags_lock); read_unlock(&pag->pag_ici_lock); xfs_put_perag(mp, pag); } STATIC void xfs_reclaim_inodes_ag( xfs_mount_t *mp, int ag, int noblock, int mode) { xfs_inode_t *ip = NULL; xfs_perag_t *pag = &mp->m_perag[ag]; int nr_found; uint32_t first_index; int skipped; restart: first_index = 0; skipped = 0; do { /* * use a gang lookup to find the next inode in the tree * as the tree is sparse and a gang lookup walks to find * the number of objects requested. */ read_lock(&pag->pag_ici_lock); nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, (void**)&ip, first_index, 1, XFS_ICI_RECLAIM_TAG); if (!nr_found) { read_unlock(&pag->pag_ici_lock); break; } /* * Update the index for the next lookup. Catch overflows * into the next AG range which can occur if we have inodes * in the last block of the AG and we are currently * pointing to the last inode. */ first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { read_unlock(&pag->pag_ici_lock); break; } /* ignore if already under reclaim */ if (xfs_iflags_test(ip, XFS_IRECLAIM)) { read_unlock(&pag->pag_ici_lock); continue; } if (noblock) { if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { read_unlock(&pag->pag_ici_lock); continue; } if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip)) { xfs_iunlock(ip, XFS_ILOCK_EXCL); read_unlock(&pag->pag_ici_lock); continue; } } read_unlock(&pag->pag_ici_lock); /* * hmmm - this is an inode already in reclaim. Do * we even bother catching it here? */ if (xfs_reclaim_inode(ip, noblock, mode)) skipped++; } while (nr_found); if (skipped) { delay(1); goto restart; } return; } int xfs_reclaim_inodes( xfs_mount_t *mp, int noblock, int mode) { int i; for (i = 0; i < mp->m_sb.sb_agcount; i++) { if (!mp->m_perag[i].pag_ici_init) continue; xfs_reclaim_inodes_ag(mp, i, noblock, mode); } return 0; }