/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 */ /* * Handle hardware traps and faults. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 #include #include #include #else #include #include #include #endif DECLARE_BITMAP(system_vectors, NR_VECTORS); static inline void cond_local_irq_enable(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void cond_local_irq_disable(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); } /* * In IST context, we explicitly disable preemption. This serves two * purposes: it makes it much less likely that we would accidentally * schedule in IST context and it will force a warning if we somehow * manage to schedule by accident. */ void ist_enter(struct pt_regs *regs) { if (user_mode(regs)) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); } else { /* * We might have interrupted pretty much anything. In * fact, if we're a machine check, we can even interrupt * NMI processing. We don't want in_nmi() to return true, * but we need to notify RCU. */ rcu_nmi_enter(); } preempt_disable(); /* This code is a bit fragile. Test it. */ RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); } NOKPROBE_SYMBOL(ist_enter); void ist_exit(struct pt_regs *regs) { preempt_enable_no_resched(); if (!user_mode(regs)) rcu_nmi_exit(); } /** * ist_begin_non_atomic() - begin a non-atomic section in an IST exception * @regs: regs passed to the IST exception handler * * IST exception handlers normally cannot schedule. As a special * exception, if the exception interrupted userspace code (i.e. * user_mode(regs) would return true) and the exception was not * a double fault, it can be safe to schedule. ist_begin_non_atomic() * begins a non-atomic section within an ist_enter()/ist_exit() region. * Callers are responsible for enabling interrupts themselves inside * the non-atomic section, and callers must call ist_end_non_atomic() * before ist_exit(). */ void ist_begin_non_atomic(struct pt_regs *regs) { BUG_ON(!user_mode(regs)); /* * Sanity check: we need to be on the normal thread stack. This * will catch asm bugs and any attempt to use ist_preempt_enable * from double_fault. */ BUG_ON(!on_thread_stack()); preempt_enable_no_resched(); } /** * ist_end_non_atomic() - begin a non-atomic section in an IST exception * * Ends a non-atomic section started with ist_begin_non_atomic(). */ void ist_end_non_atomic(void) { preempt_disable(); } int is_valid_bugaddr(unsigned long addr) { unsigned short ud; if (addr < TASK_SIZE_MAX) return 0; if (probe_kernel_address((unsigned short *)addr, ud)) return 0; return ud == INSN_UD0 || ud == INSN_UD2; } int fixup_bug(struct pt_regs *regs, int trapnr) { if (trapnr != X86_TRAP_UD) return 0; switch (report_bug(regs->ip, regs)) { case BUG_TRAP_TYPE_NONE: case BUG_TRAP_TYPE_BUG: break; case BUG_TRAP_TYPE_WARN: regs->ip += LEN_UD2; return 1; } return 0; } static nokprobe_inline int do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, struct pt_regs *regs, long error_code) { if (v8086_mode(regs)) { /* * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. * On nmi (interrupt 2), do_trap should not be called. */ if (trapnr < X86_TRAP_UD) { if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr)) return 0; } } else if (!user_mode(regs)) { if (fixup_exception(regs, trapnr, error_code, 0)) return 0; tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; die(str, regs, error_code); } /* * We want error_code and trap_nr set for userspace faults and * kernelspace faults which result in die(), but not * kernelspace faults which are fixed up. die() gives the * process no chance to handle the signal and notice the * kernel fault information, so that won't result in polluting * the information about previously queued, but not yet * delivered, faults. See also do_general_protection below. */ tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; return -1; } static void show_signal(struct task_struct *tsk, int signr, const char *type, const char *desc, struct pt_regs *regs, long error_code) { if (show_unhandled_signals && unhandled_signal(tsk, signr) && printk_ratelimit()) { pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", tsk->comm, task_pid_nr(tsk), type, desc, regs->ip, regs->sp, error_code); print_vma_addr(KERN_CONT " in ", regs->ip); pr_cont("\n"); } } static void do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, long error_code, int sicode, void __user *addr) { struct task_struct *tsk = current; if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) return; show_signal(tsk, signr, "trap ", str, regs, error_code); if (!sicode) force_sig(signr); else force_sig_fault(signr, sicode, addr); } NOKPROBE_SYMBOL(do_trap); static void do_error_trap(struct pt_regs *regs, long error_code, char *str, unsigned long trapnr, int signr, int sicode, void __user *addr) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); /* * WARN*()s end up here; fix them up before we call the * notifier chain. */ if (!user_mode(regs) && fixup_bug(regs, trapnr)) return; if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != NOTIFY_STOP) { cond_local_irq_enable(regs); do_trap(trapnr, signr, str, regs, error_code, sicode, addr); } } #define IP ((void __user *)uprobe_get_trap_addr(regs)) #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ { \ do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ } DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check) #undef IP #ifdef CONFIG_VMAP_STACK __visible void __noreturn handle_stack_overflow(const char *message, struct pt_regs *regs, unsigned long fault_address) { printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", (void *)fault_address, current->stack, (char *)current->stack + THREAD_SIZE - 1); die(message, regs, 0); /* Be absolutely certain we don't return. */ panic("%s", message); } #endif #if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT) /* * Runs on an IST stack for x86_64 and on a special task stack for x86_32. * * On x86_64, this is more or less a normal kernel entry. Notwithstanding the * SDM's warnings about double faults being unrecoverable, returning works as * expected. Presumably what the SDM actually means is that the CPU may get * the register state wrong on entry, so returning could be a bad idea. * * Various CPU engineers have promised that double faults due to an IRET fault * while the stack is read-only are, in fact, recoverable. * * On x86_32, this is entered through a task gate, and regs are synthesized * from the TSS. Returning is, in principle, okay, but changes to regs will * be lost. If, for some reason, we need to return to a context with modified * regs, the shim code could be adjusted to synchronize the registers. */ dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) { static const char str[] = "double fault"; struct task_struct *tsk = current; #ifdef CONFIG_X86_ESPFIX64 extern unsigned char native_irq_return_iret[]; /* * If IRET takes a non-IST fault on the espfix64 stack, then we * end up promoting it to a doublefault. In that case, take * advantage of the fact that we're not using the normal (TSS.sp0) * stack right now. We can write a fake #GP(0) frame at TSS.sp0 * and then modify our own IRET frame so that, when we return, * we land directly at the #GP(0) vector with the stack already * set up according to its expectations. * * The net result is that our #GP handler will think that we * entered from usermode with the bad user context. * * No need for ist_enter here because we don't use RCU. */ if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && regs->cs == __KERNEL_CS && regs->ip == (unsigned long)native_irq_return_iret) { struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; /* * regs->sp points to the failing IRET frame on the * ESPFIX64 stack. Copy it to the entry stack. This fills * in gpregs->ss through gpregs->ip. * */ memmove(&gpregs->ip, (void *)regs->sp, 5*8); gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ /* * Adjust our frame so that we return straight to the #GP * vector with the expected RSP value. This is safe because * we won't enable interupts or schedule before we invoke * general_protection, so nothing will clobber the stack * frame we just set up. * * We will enter general_protection with kernel GSBASE, * which is what the stub expects, given that the faulting * RIP will be the IRET instruction. */ regs->ip = (unsigned long)general_protection; regs->sp = (unsigned long)&gpregs->orig_ax; return; } #endif ist_enter(regs); notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_DF; #ifdef CONFIG_VMAP_STACK /* * If we overflow the stack into a guard page, the CPU will fail * to deliver #PF and will send #DF instead. Similarly, if we * take any non-IST exception while too close to the bottom of * the stack, the processor will get a page fault while * delivering the exception and will generate a double fault. * * According to the SDM (footnote in 6.15 under "Interrupt 14 - * Page-Fault Exception (#PF): * * Processors update CR2 whenever a page fault is detected. If a * second page fault occurs while an earlier page fault is being * delivered, the faulting linear address of the second fault will * overwrite the contents of CR2 (replacing the previous * address). These updates to CR2 occur even if the page fault * results in a double fault or occurs during the delivery of a * double fault. * * The logic below has a small possibility of incorrectly diagnosing * some errors as stack overflows. For example, if the IDT or GDT * gets corrupted such that #GP delivery fails due to a bad descriptor * causing #GP and we hit this condition while CR2 coincidentally * points to the stack guard page, we'll think we overflowed the * stack. Given that we're going to panic one way or another * if this happens, this isn't necessarily worth fixing. * * If necessary, we could improve the test by only diagnosing * a stack overflow if the saved RSP points within 47 bytes of * the bottom of the stack: if RSP == tsk_stack + 48 and we * take an exception, the stack is already aligned and there * will be enough room SS, RSP, RFLAGS, CS, RIP, and a * possible error code, so a stack overflow would *not* double * fault. With any less space left, exception delivery could * fail, and, as a practical matter, we've overflowed the * stack even if the actual trigger for the double fault was * something else. */ if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); #endif pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); show_regs(regs); panic("Machine halted."); } #endif dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) { const struct mpx_bndcsr *bndcsr; RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); if (notify_die(DIE_TRAP, "bounds", regs, error_code, X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) return; cond_local_irq_enable(regs); if (!user_mode(regs)) die("bounds", regs, error_code); if (!cpu_feature_enabled(X86_FEATURE_MPX)) { /* The exception is not from Intel MPX */ goto exit_trap; } /* * We need to look at BNDSTATUS to resolve this exception. * A NULL here might mean that it is in its 'init state', * which is all zeros which indicates MPX was not * responsible for the exception. */ bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR); if (!bndcsr) goto exit_trap; trace_bounds_exception_mpx(bndcsr); /* * The error code field of the BNDSTATUS register communicates status * information of a bound range exception #BR or operation involving * bound directory. */ switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { case 2: /* Bound directory has invalid entry. */ if (mpx_handle_bd_fault()) goto exit_trap; break; /* Success, it was handled */ case 1: /* Bound violation. */ { struct task_struct *tsk = current; struct mpx_fault_info mpx; if (mpx_fault_info(&mpx, regs)) { /* * We failed to decode the MPX instruction. Act as if * the exception was not caused by MPX. */ goto exit_trap; } /* * Success, we decoded the instruction and retrieved * an 'mpx' containing the address being accessed * which caused the exception. This information * allows and application to possibly handle the * #BR exception itself. */ if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs, error_code)) break; show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code); force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper); break; } case 0: /* No exception caused by Intel MPX operations. */ goto exit_trap; default: die("bounds", regs, error_code); } return; exit_trap: /* * This path out is for all the cases where we could not * handle the exception in some way (like allocating a * table or telling userspace about it. We will also end * up here if the kernel has MPX turned off at compile * time.. */ do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); } dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code) { const char *desc = "general protection fault"; struct task_struct *tsk; RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); cond_local_irq_enable(regs); if (static_cpu_has(X86_FEATURE_UMIP)) { if (user_mode(regs) && fixup_umip_exception(regs)) return; } if (v8086_mode(regs)) { local_irq_enable(); handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); return; } tsk = current; if (!user_mode(regs)) { if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) return; tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; /* * To be potentially processing a kprobe fault and to * trust the result from kprobe_running(), we have to * be non-preemptible. */ if (!preemptible() && kprobe_running() && kprobe_fault_handler(regs, X86_TRAP_GP)) return; if (notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) die(desc, regs, error_code); return; } tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; show_signal(tsk, SIGSEGV, "", desc, regs, error_code); force_sig(SIGSEGV); } NOKPROBE_SYMBOL(do_general_protection); dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) { #ifdef CONFIG_DYNAMIC_FTRACE /* * ftrace must be first, everything else may cause a recursive crash. * See note by declaration of modifying_ftrace_code in ftrace.c */ if (unlikely(atomic_read(&modifying_ftrace_code)) && ftrace_int3_handler(regs)) return; #endif if (poke_int3_handler(regs)) return; /* * Use ist_enter despite the fact that we don't use an IST stack. * We can be called from a kprobe in non-CONTEXT_KERNEL kernel * mode or even during context tracking state changes. * * This means that we can't schedule. That's okay. */ ist_enter(regs); RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, SIGTRAP) == NOTIFY_STOP) goto exit; #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ #ifdef CONFIG_KPROBES if (kprobe_int3_handler(regs)) goto exit; #endif if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, SIGTRAP) == NOTIFY_STOP) goto exit; cond_local_irq_enable(regs); do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); cond_local_irq_disable(regs); exit: ist_exit(regs); } NOKPROBE_SYMBOL(do_int3); #ifdef CONFIG_X86_64 /* * Help handler running on a per-cpu (IST or entry trampoline) stack * to switch to the normal thread stack if the interrupted code was in * user mode. The actual stack switch is done in entry_64.S */ asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) { struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; if (regs != eregs) *regs = *eregs; return regs; } NOKPROBE_SYMBOL(sync_regs); struct bad_iret_stack { void *error_entry_ret; struct pt_regs regs; }; asmlinkage __visible notrace struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) { /* * This is called from entry_64.S early in handling a fault * caused by a bad iret to user mode. To handle the fault * correctly, we want to move our stack frame to where it would * be had we entered directly on the entry stack (rather than * just below the IRET frame) and we want to pretend that the * exception came from the IRET target. */ struct bad_iret_stack *new_stack = (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; /* Copy the IRET target to the new stack. */ memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); /* Copy the remainder of the stack from the current stack. */ memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); BUG_ON(!user_mode(&new_stack->regs)); return new_stack; } NOKPROBE_SYMBOL(fixup_bad_iret); #endif static bool is_sysenter_singlestep(struct pt_regs *regs) { /* * We don't try for precision here. If we're anywhere in the region of * code that can be single-stepped in the SYSENTER entry path, then * assume that this is a useless single-step trap due to SYSENTER * being invoked with TF set. (We don't know in advance exactly * which instructions will be hit because BTF could plausibly * be set.) */ #ifdef CONFIG_X86_32 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < (unsigned long)__end_SYSENTER_singlestep_region - (unsigned long)__begin_SYSENTER_singlestep_region; #elif defined(CONFIG_IA32_EMULATION) return (regs->ip - (unsigned long)entry_SYSENTER_compat) < (unsigned long)__end_entry_SYSENTER_compat - (unsigned long)entry_SYSENTER_compat; #else return false; #endif } /* * Our handling of the processor debug registers is non-trivial. * We do not clear them on entry and exit from the kernel. Therefore * it is possible to get a watchpoint trap here from inside the kernel. * However, the code in ./ptrace.c has ensured that the user can * only set watchpoints on userspace addresses. Therefore the in-kernel * watchpoint trap can only occur in code which is reading/writing * from user space. Such code must not hold kernel locks (since it * can equally take a page fault), therefore it is safe to call * force_sig_info even though that claims and releases locks. * * Code in ./signal.c ensures that the debug control register * is restored before we deliver any signal, and therefore that * user code runs with the correct debug control register even though * we clear it here. * * Being careful here means that we don't have to be as careful in a * lot of more complicated places (task switching can be a bit lazy * about restoring all the debug state, and ptrace doesn't have to * find every occurrence of the TF bit that could be saved away even * by user code) * * May run on IST stack. */ dotraplinkage void do_debug(struct pt_regs *regs, long error_code) { struct task_struct *tsk = current; int user_icebp = 0; unsigned long dr6; int si_code; ist_enter(regs); get_debugreg(dr6, 6); /* * The Intel SDM says: * * Certain debug exceptions may clear bits 0-3. The remaining * contents of the DR6 register are never cleared by the * processor. To avoid confusion in identifying debug * exceptions, debug handlers should clear the register before * returning to the interrupted task. * * Keep it simple: clear DR6 immediately. */ set_debugreg(0, 6); /* Filter out all the reserved bits which are preset to 1 */ dr6 &= ~DR6_RESERVED; /* * The SDM says "The processor clears the BTF flag when it * generates a debug exception." Clear TIF_BLOCKSTEP to keep * TIF_BLOCKSTEP in sync with the hardware BTF flag. */ clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && is_sysenter_singlestep(regs))) { dr6 &= ~DR_STEP; if (!dr6) goto exit; /* * else we might have gotten a single-step trap and hit a * watchpoint at the same time, in which case we should fall * through and handle the watchpoint. */ } /* * If dr6 has no reason to give us about the origin of this trap, * then it's very likely the result of an icebp/int01 trap. * User wants a sigtrap for that. */ if (!dr6 && user_mode(regs)) user_icebp = 1; /* Store the virtualized DR6 value */ tsk->thread.debugreg6 = dr6; #ifdef CONFIG_KPROBES if (kprobe_debug_handler(regs)) goto exit; #endif if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, SIGTRAP) == NOTIFY_STOP) goto exit; /* * Let others (NMI) know that the debug stack is in use * as we may switch to the interrupt stack. */ debug_stack_usage_inc(); /* It's safe to allow irq's after DR6 has been saved */ cond_local_irq_enable(regs); if (v8086_mode(regs)) { handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, X86_TRAP_DB); cond_local_irq_disable(regs); debug_stack_usage_dec(); goto exit; } if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { /* * Historical junk that used to handle SYSENTER single-stepping. * This should be unreachable now. If we survive for a while * without anyone hitting this warning, we'll turn this into * an oops. */ tsk->thread.debugreg6 &= ~DR_STEP; set_tsk_thread_flag(tsk, TIF_SINGLESTEP); regs->flags &= ~X86_EFLAGS_TF; } si_code = get_si_code(tsk->thread.debugreg6); if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) send_sigtrap(regs, error_code, si_code); cond_local_irq_disable(regs); debug_stack_usage_dec(); exit: ist_exit(regs); } NOKPROBE_SYMBOL(do_debug); /* * Note that we play around with the 'TS' bit in an attempt to get * the correct behaviour even in the presence of the asynchronous * IRQ13 behaviour */ static void math_error(struct pt_regs *regs, int error_code, int trapnr) { struct task_struct *task = current; struct fpu *fpu = &task->thread.fpu; int si_code; char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : "simd exception"; cond_local_irq_enable(regs); if (!user_mode(regs)) { if (fixup_exception(regs, trapnr, error_code, 0)) return; task->thread.error_code = error_code; task->thread.trap_nr = trapnr; if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) != NOTIFY_STOP) die(str, regs, error_code); return; } /* * Save the info for the exception handler and clear the error. */ fpu__save(fpu); task->thread.trap_nr = trapnr; task->thread.error_code = error_code; si_code = fpu__exception_code(fpu, trapnr); /* Retry when we get spurious exceptions: */ if (!si_code) return; force_sig_fault(SIGFPE, si_code, (void __user *)uprobe_get_trap_addr(regs)); } dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); math_error(regs, error_code, X86_TRAP_MF); } dotraplinkage void do_simd_coprocessor_error(struct pt_regs *regs, long error_code) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); math_error(regs, error_code, X86_TRAP_XF); } dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) { cond_local_irq_enable(regs); } dotraplinkage void do_device_not_available(struct pt_regs *regs, long error_code) { unsigned long cr0 = read_cr0(); RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); #ifdef CONFIG_MATH_EMULATION if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { struct math_emu_info info = { }; cond_local_irq_enable(regs); info.regs = regs; math_emulate(&info); return; } #endif /* This should not happen. */ if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { /* Try to fix it up and carry on. */ write_cr0(cr0 & ~X86_CR0_TS); } else { /* * Something terrible happened, and we're better off trying * to kill the task than getting stuck in a never-ending * loop of #NM faults. */ die("unexpected #NM exception", regs, error_code); } } NOKPROBE_SYMBOL(do_device_not_available); #ifdef CONFIG_X86_32 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); local_irq_enable(); if (notify_die(DIE_TRAP, "iret exception", regs, error_code, X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, ILL_BADSTK, (void __user *)NULL); } } #endif void __init trap_init(void) { /* Init cpu_entry_area before IST entries are set up */ setup_cpu_entry_areas(); idt_setup_traps(); /* * Set the IDT descriptor to a fixed read-only location, so that the * "sidt" instruction will not leak the location of the kernel, and * to defend the IDT against arbitrary memory write vulnerabilities. * It will be reloaded in cpu_init() */ cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), PAGE_KERNEL_RO); idt_descr.address = CPU_ENTRY_AREA_RO_IDT; /* * Should be a barrier for any external CPU state: */ cpu_init(); idt_setup_ist_traps(); x86_init.irqs.trap_init(); idt_setup_debugidt_traps(); }