/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" /** * DOC: interrupt handling * * These functions provide the basic support for enabling and disabling the * interrupt handling support. There's a lot more functionality in i915_irq.c * and related files, but that will be described in separate chapters. */ static const u32 hpd_ibx[] = { [HPD_CRT] = SDE_CRT_HOTPLUG, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, [HPD_PORT_B] = SDE_PORTB_HOTPLUG, [HPD_PORT_C] = SDE_PORTC_HOTPLUG, [HPD_PORT_D] = SDE_PORTD_HOTPLUG }; static const u32 hpd_cpt[] = { [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT }; static const u32 hpd_mask_i915[] = { [HPD_CRT] = CRT_HOTPLUG_INT_EN, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN }; static const u32 hpd_status_g4x[] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */ [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; /* IIR can theoretically queue up two events. Be paranoid. */ #define GEN8_IRQ_RESET_NDX(type, which) do { \ I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IMR(which)); \ I915_WRITE(GEN8_##type##_IER(which), 0); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR(which)); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR(which)); \ } while (0) #define GEN5_IRQ_RESET(type) do { \ I915_WRITE(type##IMR, 0xffffffff); \ POSTING_READ(type##IMR); \ I915_WRITE(type##IER, 0); \ I915_WRITE(type##IIR, 0xffffffff); \ POSTING_READ(type##IIR); \ I915_WRITE(type##IIR, 0xffffffff); \ POSTING_READ(type##IIR); \ } while (0) /* * We should clear IMR at preinstall/uninstall, and just check at postinstall. */ #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \ u32 val = I915_READ(reg); \ if (val) { \ WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \ (reg), val); \ I915_WRITE((reg), 0xffffffff); \ POSTING_READ(reg); \ I915_WRITE((reg), 0xffffffff); \ POSTING_READ(reg); \ } \ } while (0) #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \ I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ POSTING_READ(GEN8_##type##_IMR(which)); \ } while (0) #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \ GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \ I915_WRITE(type##IER, (ier_val)); \ I915_WRITE(type##IMR, (imr_val)); \ POSTING_READ(type##IMR); \ } while (0) static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); /* For display hotplug interrupt */ void ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; if ((dev_priv->irq_mask & mask) != 0) { dev_priv->irq_mask &= ~mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } void ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; if ((dev_priv->irq_mask & mask) != mask) { dev_priv->irq_mask |= mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } /** * ilk_update_gt_irq - update GTIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; dev_priv->gt_irq_mask &= ~interrupt_mask; dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); POSTING_READ(GTIMR); } void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, mask); } void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, 0); } static u32 gen6_pm_iir(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; } static u32 gen6_pm_imr(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR; } static u32 gen6_pm_ier(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER; } /** * snb_update_pm_irq - update GEN6_PMIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void snb_update_pm_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; new_val = dev_priv->pm_irq_mask; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->pm_irq_mask) { dev_priv->pm_irq_mask = new_val; I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask); POSTING_READ(gen6_pm_imr(dev_priv)); } } void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) { snb_update_pm_irq(dev_priv, mask, mask); } void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) { snb_update_pm_irq(dev_priv, mask, 0); } void gen6_enable_rps_interrupts(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; spin_lock_irq(&dev_priv->irq_lock); WARN_ON(dev_priv->rps.pm_iir); gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); } void gen6_disable_rps_interrupts(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(GEN6_PMINTRMSK, INTEL_INFO(dev_priv)->gen >= 8 ? ~GEN8_PMINTR_REDIRECT_TO_NON_DISP : ~0); I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) & ~dev_priv->pm_rps_events); /* Complete PM interrupt masking here doesn't race with the rps work * item again unmasking PM interrupts because that is using a different * register (PMIMR) to mask PM interrupts. The only risk is in leaving * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */ spin_lock_irq(&dev_priv->irq_lock); dev_priv->rps.pm_iir = 0; spin_unlock_irq(&dev_priv->irq_lock); I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events); } /** * ibx_display_interrupt_update - update SDEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t sdeimr = I915_READ(SDEIMR); sdeimr &= ~interrupt_mask; sdeimr |= (~enabled_irq_mask & interrupt_mask); assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; I915_WRITE(SDEIMR, sdeimr); POSTING_READ(SDEIMR); } static void __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 enable_mask, u32 status_mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", pipe_name(pipe), enable_mask, status_mask)) return; if ((pipestat & enable_mask) == enable_mask) return; dev_priv->pipestat_irq_mask[pipe] |= status_mask; /* Enable the interrupt, clear any pending status */ pipestat |= enable_mask | status_mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } static void __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 enable_mask, u32 status_mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", pipe_name(pipe), enable_mask, status_mask)) return; if ((pipestat & enable_mask) == 0) return; dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; pipestat &= ~enable_mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask) { u32 enable_mask = status_mask << 16; /* * On pipe A we don't support the PSR interrupt yet, * on pipe B and C the same bit MBZ. */ if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) return 0; /* * On pipe B and C we don't support the PSR interrupt yet, on pipe * A the same bit is for perf counters which we don't use either. */ if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) return 0; enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | SPRITE0_FLIP_DONE_INT_EN_VLV | SPRITE1_FLIP_DONE_INT_EN_VLV); if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; return enable_mask; } void i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { u32 enable_mask; if (IS_VALLEYVIEW(dev_priv->dev)) enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev, status_mask); else enable_mask = status_mask << 16; __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask); } void i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { u32 enable_mask; if (IS_VALLEYVIEW(dev_priv->dev)) enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev, status_mask); else enable_mask = status_mask << 16; __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask); } /** * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion */ static void i915_enable_asle_pipestat(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->opregion.asle || !IS_MOBILE(dev)) return; spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, PIPE_A, PIPE_LEGACY_BLC_EVENT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } /** * i915_pipe_enabled - check if a pipe is enabled * @dev: DRM device * @pipe: pipe to check * * Reading certain registers when the pipe is disabled can hang the chip. * Use this routine to make sure the PLL is running and the pipe is active * before reading such registers if unsure. */ static int i915_pipe_enabled(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; if (drm_core_check_feature(dev, DRIVER_MODESET)) { /* Locking is horribly broken here, but whatever. */ struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->active; } else { return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE; } } /* * This timing diagram depicts the video signal in and * around the vertical blanking period. * * Assumptions about the fictitious mode used in this example: * vblank_start >= 3 * vsync_start = vblank_start + 1 * vsync_end = vblank_start + 2 * vtotal = vblank_start + 3 * * start of vblank: * latch double buffered registers * increment frame counter (ctg+) * generate start of vblank interrupt (gen4+) * | * | frame start: * | generate frame start interrupt (aka. vblank interrupt) (gmch) * | may be shifted forward 1-3 extra lines via PIPECONF * | | * | | start of vsync: * | | generate vsync interrupt * | | | * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx * . \hs/ . \hs/ \hs/ \hs/ . \hs/ * ----va---> <-----------------vb--------------------> <--------va------------- * | | <----vs-----> | * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) * | | | * last visible pixel first visible pixel * | increment frame counter (gen3/4) * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) * * x = horizontal active * _ = horizontal blanking * hs = horizontal sync * va = vertical active * vb = vertical blanking * vs = vertical sync * vbs = vblank_start (number) * * Summary: * - most events happen at the start of horizontal sync * - frame start happens at the start of horizontal blank, 1-4 lines * (depending on PIPECONF settings) after the start of vblank * - gen3/4 pixel and frame counter are synchronized with the start * of horizontal active on the first line of vertical active */ static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe) { /* Gen2 doesn't have a hardware frame counter */ return 0; } /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long high_frame; unsigned long low_frame; u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } if (drm_core_check_feature(dev, DRIVER_MODESET)) { struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode; htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vbl_start = mode->crtc_vblank_start; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vbl_start = DIV_ROUND_UP(vbl_start, 2); } else { enum transcoder cpu_transcoder = (enum transcoder) pipe; htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1; hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1; vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1; if ((I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE) vbl_start = DIV_ROUND_UP(vbl_start, 2); } /* Convert to pixel count */ vbl_start *= htotal; /* Start of vblank event occurs at start of hsync */ vbl_start -= htotal - hsync_start; high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ(low_frame); high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); high1 >>= PIPE_FRAME_HIGH_SHIFT; pixel = low & PIPE_PIXEL_MASK; low >>= PIPE_FRAME_LOW_SHIFT; /* * The frame counter increments at beginning of active. * Cook up a vblank counter by also checking the pixel * counter against vblank start. */ return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; } static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int reg = PIPE_FRMCOUNT_GM45(pipe); if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } return I915_READ(reg); } /* raw reads, only for fast reads of display block, no need for forcewake etc. */ #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__)) static int __intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; const struct drm_display_mode *mode = &crtc->config.adjusted_mode; enum pipe pipe = crtc->pipe; int position, vtotal; vtotal = mode->crtc_vtotal; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; if (IS_GEN2(dev)) position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; else position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; /* * See update_scanline_offset() for the details on the * scanline_offset adjustment. */ return (position + crtc->scanline_offset) % vtotal; } static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe, unsigned int flags, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode; int position; int vbl_start, vbl_end, hsync_start, htotal, vtotal; bool in_vbl = true; int ret = 0; unsigned long irqflags; if (!intel_crtc->active) { DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vtotal = mode->crtc_vtotal; vbl_start = mode->crtc_vblank_start; vbl_end = mode->crtc_vblank_end; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vbl_start = DIV_ROUND_UP(vbl_start, 2); vbl_end /= 2; vtotal /= 2; } ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; /* * Lock uncore.lock, as we will do multiple timing critical raw * register reads, potentially with preemption disabled, so the * following code must not block on uncore.lock. */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ position = __intel_get_crtc_scanline(intel_crtc); } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; /* convert to pixel counts */ vbl_start *= htotal; vbl_end *= htotal; vtotal *= htotal; /* * In interlaced modes, the pixel counter counts all pixels, * so one field will have htotal more pixels. In order to avoid * the reported position from jumping backwards when the pixel * counter is beyond the length of the shorter field, just * clamp the position the length of the shorter field. This * matches how the scanline counter based position works since * the scanline counter doesn't count the two half lines. */ if (position >= vtotal) position = vtotal - 1; /* * Start of vblank interrupt is triggered at start of hsync, * just prior to the first active line of vblank. However we * consider lines to start at the leading edge of horizontal * active. So, should we get here before we've crossed into * the horizontal active of the first line in vblank, we would * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, * always add htotal-hsync_start to the current pixel position. */ position = (position + htotal - hsync_start) % vtotal; } /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); in_vbl = position >= vbl_start && position < vbl_end; /* * While in vblank, position will be negative * counting up towards 0 at vbl_end. And outside * vblank, position will be positive counting * up since vbl_end. */ if (position >= vbl_start) position -= vbl_end; else position += vtotal - vbl_end; if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { *vpos = position; *hpos = 0; } else { *vpos = position / htotal; *hpos = position - (*vpos * htotal); } /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_IN_VBLANK; return ret; } int intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; unsigned long irqflags; int position; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); position = __intel_get_crtc_scanline(crtc); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); return position; } static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct drm_crtc *crtc; if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } /* Get drm_crtc to timestamp: */ crtc = intel_get_crtc_for_pipe(dev, pipe); if (crtc == NULL) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } if (!crtc->enabled) { DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); return -EBUSY; } /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, crtc, &to_intel_crtc(crtc)->config.adjusted_mode); } static bool intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector) { enum drm_connector_status old_status; WARN_ON(!mutex_is_locked(&dev->mode_config.mutex)); old_status = connector->status; connector->status = connector->funcs->detect(connector, false); if (old_status == connector->status) return false; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n", connector->base.id, connector->name, drm_get_connector_status_name(old_status), drm_get_connector_status_name(connector->status)); return true; } static void i915_digport_work_func(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, dig_port_work); u32 long_port_mask, short_port_mask; struct intel_digital_port *intel_dig_port; int i, ret; u32 old_bits = 0; spin_lock_irq(&dev_priv->irq_lock); long_port_mask = dev_priv->long_hpd_port_mask; dev_priv->long_hpd_port_mask = 0; short_port_mask = dev_priv->short_hpd_port_mask; dev_priv->short_hpd_port_mask = 0; spin_unlock_irq(&dev_priv->irq_lock); for (i = 0; i < I915_MAX_PORTS; i++) { bool valid = false; bool long_hpd = false; intel_dig_port = dev_priv->hpd_irq_port[i]; if (!intel_dig_port || !intel_dig_port->hpd_pulse) continue; if (long_port_mask & (1 << i)) { valid = true; long_hpd = true; } else if (short_port_mask & (1 << i)) valid = true; if (valid) { ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd); if (ret == true) { /* if we get true fallback to old school hpd */ old_bits |= (1 << intel_dig_port->base.hpd_pin); } } } if (old_bits) { spin_lock_irq(&dev_priv->irq_lock); dev_priv->hpd_event_bits |= old_bits; spin_unlock_irq(&dev_priv->irq_lock); schedule_work(&dev_priv->hotplug_work); } } /* * Handle hotplug events outside the interrupt handler proper. */ #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000) static void i915_hotplug_work_func(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, hotplug_work); struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_connector *intel_connector; struct intel_encoder *intel_encoder; struct drm_connector *connector; bool hpd_disabled = false; bool changed = false; u32 hpd_event_bits; mutex_lock(&mode_config->mutex); DRM_DEBUG_KMS("running encoder hotplug functions\n"); spin_lock_irq(&dev_priv->irq_lock); hpd_event_bits = dev_priv->hpd_event_bits; dev_priv->hpd_event_bits = 0; list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); if (!intel_connector->encoder) continue; intel_encoder = intel_connector->encoder; if (intel_encoder->hpd_pin > HPD_NONE && dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED && connector->polled == DRM_CONNECTOR_POLL_HPD) { DRM_INFO("HPD interrupt storm detected on connector %s: " "switching from hotplug detection to polling\n", connector->name); dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED; connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; hpd_disabled = true; } if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n", connector->name, intel_encoder->hpd_pin); } } /* if there were no outputs to poll, poll was disabled, * therefore make sure it's enabled when disabling HPD on * some connectors */ if (hpd_disabled) { drm_kms_helper_poll_enable(dev); mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work, msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY)); } spin_unlock_irq(&dev_priv->irq_lock); list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); if (!intel_connector->encoder) continue; intel_encoder = intel_connector->encoder; if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { if (intel_encoder->hot_plug) intel_encoder->hot_plug(intel_encoder); if (intel_hpd_irq_event(dev, connector)) changed = true; } } mutex_unlock(&mode_config->mutex); if (changed) drm_kms_helper_hotplug_event(dev); } static void ironlake_rps_change_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay; spin_lock(&mchdev_lock); I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); new_delay = dev_priv->ips.cur_delay; I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = I915_READ(RCPREVBSYTUPAVG); busy_down = I915_READ(RCPREVBSYTDNAVG); max_avg = I915_READ(RCBMAXAVG); min_avg = I915_READ(RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) new_delay = dev_priv->ips.cur_delay - 1; if (new_delay < dev_priv->ips.max_delay) new_delay = dev_priv->ips.max_delay; } else if (busy_down < min_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) new_delay = dev_priv->ips.cur_delay + 1; if (new_delay > dev_priv->ips.min_delay) new_delay = dev_priv->ips.min_delay; } if (ironlake_set_drps(dev, new_delay)) dev_priv->ips.cur_delay = new_delay; spin_unlock(&mchdev_lock); return; } static void notify_ring(struct drm_device *dev, struct intel_engine_cs *ring) { if (!intel_ring_initialized(ring)) return; trace_i915_gem_request_complete(ring); wake_up_all(&ring->irq_queue); i915_queue_hangcheck(dev); } static u32 vlv_c0_residency(struct drm_i915_private *dev_priv, struct intel_rps_ei *rps_ei) { u32 cz_ts, cz_freq_khz; u32 render_count, media_count; u32 elapsed_render, elapsed_media, elapsed_time; u32 residency = 0; cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP); cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4); render_count = I915_READ(VLV_RENDER_C0_COUNT_REG); media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG); if (rps_ei->cz_clock == 0) { rps_ei->cz_clock = cz_ts; rps_ei->render_c0 = render_count; rps_ei->media_c0 = media_count; return dev_priv->rps.cur_freq; } elapsed_time = cz_ts - rps_ei->cz_clock; rps_ei->cz_clock = cz_ts; elapsed_render = render_count - rps_ei->render_c0; rps_ei->render_c0 = render_count; elapsed_media = media_count - rps_ei->media_c0; rps_ei->media_c0 = media_count; /* Convert all the counters into common unit of milli sec */ elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC; elapsed_render /= cz_freq_khz; elapsed_media /= cz_freq_khz; /* * Calculate overall C0 residency percentage * only if elapsed time is non zero */ if (elapsed_time) { residency = ((max(elapsed_render, elapsed_media) * 100) / elapsed_time); } return residency; } /** * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU * busy-ness calculated from C0 counters of render & media power wells * @dev_priv: DRM device private * */ static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv) { u32 residency_C0_up = 0, residency_C0_down = 0; int new_delay, adj; dev_priv->rps.ei_interrupt_count++; WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); if (dev_priv->rps.up_ei.cz_clock == 0) { vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei); vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei); return dev_priv->rps.cur_freq; } /* * To down throttle, C0 residency should be less than down threshold * for continous EI intervals. So calculate down EI counters * once in VLV_INT_COUNT_FOR_DOWN_EI */ if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) { dev_priv->rps.ei_interrupt_count = 0; residency_C0_down = vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei); } else { residency_C0_up = vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei); } new_delay = dev_priv->rps.cur_freq; adj = dev_priv->rps.last_adj; /* C0 residency is greater than UP threshold. Increase Frequency */ if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) { if (adj > 0) adj *= 2; else adj = 1; if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit) new_delay = dev_priv->rps.cur_freq + adj; /* * For better performance, jump directly * to RPe if we're below it. */ if (new_delay < dev_priv->rps.efficient_freq) new_delay = dev_priv->rps.efficient_freq; } else if (!dev_priv->rps.ei_interrupt_count && (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) { if (adj < 0) adj *= 2; else adj = -1; /* * This means, C0 residency is less than down threshold over * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq */ if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit) new_delay = dev_priv->rps.cur_freq + adj; } return new_delay; } static void gen6_pm_rps_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, rps.work); u32 pm_iir; int new_delay, adj; spin_lock_irq(&dev_priv->irq_lock); pm_iir = dev_priv->rps.pm_iir; dev_priv->rps.pm_iir = 0; /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ WARN_ON(pm_iir & ~dev_priv->pm_rps_events); if ((pm_iir & dev_priv->pm_rps_events) == 0) return; mutex_lock(&dev_priv->rps.hw_lock); adj = dev_priv->rps.last_adj; if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else { /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1; } new_delay = dev_priv->rps.cur_freq + adj; /* * For better performance, jump directly * to RPe if we're below it. */ if (new_delay < dev_priv->rps.efficient_freq) new_delay = dev_priv->rps.efficient_freq; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq) new_delay = dev_priv->rps.efficient_freq; else new_delay = dev_priv->rps.min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) { new_delay = vlv_calc_delay_from_C0_counters(dev_priv); } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else { /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1; } new_delay = dev_priv->rps.cur_freq + adj; } else { /* unknown event */ new_delay = dev_priv->rps.cur_freq; } /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ new_delay = clamp_t(int, new_delay, dev_priv->rps.min_freq_softlimit, dev_priv->rps.max_freq_softlimit); dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq; if (IS_VALLEYVIEW(dev_priv->dev)) valleyview_set_rps(dev_priv->dev, new_delay); else gen6_set_rps(dev_priv->dev, new_delay); mutex_unlock(&dev_priv->rps.hw_lock); } /** * ivybridge_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivybridge_parity_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, l3_parity.error_work); u32 error_status, row, bank, subbank; char *parity_event[6]; uint32_t misccpctl; uint8_t slice = 0; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->dev->struct_mutex); /* If we've screwed up tracking, just let the interrupt fire again */ if (WARN_ON(!dev_priv->l3_parity.which_slice)) goto out; misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); POSTING_READ(GEN7_MISCCPCTL); while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { u32 reg; slice--; if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev))) break; dev_priv->l3_parity.which_slice &= ~(1<dev->primary->kdev->kobj, KOBJ_CHANGE, parity_event); DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", slice, row, bank, subbank); kfree(parity_event[4]); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } I915_WRITE(GEN7_MISCCPCTL, misccpctl); out: WARN_ON(dev_priv->l3_parity.which_slice); spin_lock_irq(&dev_priv->irq_lock); gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev)); spin_unlock_irq(&dev_priv->irq_lock); mutex_unlock(&dev_priv->dev->struct_mutex); } static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir) { struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_L3_DPF(dev)) return; spin_lock(&dev_priv->irq_lock); gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev)); spin_unlock(&dev_priv->irq_lock); iir &= GT_PARITY_ERROR(dev); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) dev_priv->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) dev_priv->l3_parity.which_slice |= 1 << 0; queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); } static void ilk_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & ILK_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); } static void snb_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & GT_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[BCS]); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) { i915_handle_error(dev, false, "GT error interrupt 0x%08x", gt_iir); } if (gt_iir & GT_PARITY_ERROR(dev)) ivybridge_parity_error_irq_handler(dev, gt_iir); } static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 master_ctl) { struct intel_engine_cs *ring; u32 rcs, bcs, vcs; uint32_t tmp = 0; irqreturn_t ret = IRQ_NONE; if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { tmp = I915_READ(GEN8_GT_IIR(0)); if (tmp) { I915_WRITE(GEN8_GT_IIR(0), tmp); ret = IRQ_HANDLED; rcs = tmp >> GEN8_RCS_IRQ_SHIFT; ring = &dev_priv->ring[RCS]; if (rcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, ring); if (rcs & GT_CONTEXT_SWITCH_INTERRUPT) intel_execlists_handle_ctx_events(ring); bcs = tmp >> GEN8_BCS_IRQ_SHIFT; ring = &dev_priv->ring[BCS]; if (bcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, ring); if (bcs & GT_CONTEXT_SWITCH_INTERRUPT) intel_execlists_handle_ctx_events(ring); } else DRM_ERROR("The master control interrupt lied (GT0)!\n"); } if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { tmp = I915_READ(GEN8_GT_IIR(1)); if (tmp) { I915_WRITE(GEN8_GT_IIR(1), tmp); ret = IRQ_HANDLED; vcs = tmp >> GEN8_VCS1_IRQ_SHIFT; ring = &dev_priv->ring[VCS]; if (vcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, ring); if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) intel_execlists_handle_ctx_events(ring); vcs = tmp >> GEN8_VCS2_IRQ_SHIFT; ring = &dev_priv->ring[VCS2]; if (vcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, ring); if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) intel_execlists_handle_ctx_events(ring); } else DRM_ERROR("The master control interrupt lied (GT1)!\n"); } if (master_ctl & GEN8_GT_PM_IRQ) { tmp = I915_READ(GEN8_GT_IIR(2)); if (tmp & dev_priv->pm_rps_events) { I915_WRITE(GEN8_GT_IIR(2), tmp & dev_priv->pm_rps_events); ret = IRQ_HANDLED; gen6_rps_irq_handler(dev_priv, tmp); } else DRM_ERROR("The master control interrupt lied (PM)!\n"); } if (master_ctl & GEN8_GT_VECS_IRQ) { tmp = I915_READ(GEN8_GT_IIR(3)); if (tmp) { I915_WRITE(GEN8_GT_IIR(3), tmp); ret = IRQ_HANDLED; vcs = tmp >> GEN8_VECS_IRQ_SHIFT; ring = &dev_priv->ring[VECS]; if (vcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, ring); if (vcs & GT_CONTEXT_SWITCH_INTERRUPT) intel_execlists_handle_ctx_events(ring); } else DRM_ERROR("The master control interrupt lied (GT3)!\n"); } return ret; } #define HPD_STORM_DETECT_PERIOD 1000 #define HPD_STORM_THRESHOLD 5 static int pch_port_to_hotplug_shift(enum port port) { switch (port) { case PORT_A: case PORT_E: default: return -1; case PORT_B: return 0; case PORT_C: return 8; case PORT_D: return 16; } } static int i915_port_to_hotplug_shift(enum port port) { switch (port) { case PORT_A: case PORT_E: default: return -1; case PORT_B: return 17; case PORT_C: return 19; case PORT_D: return 21; } } static inline enum port get_port_from_pin(enum hpd_pin pin) { switch (pin) { case HPD_PORT_B: return PORT_B; case HPD_PORT_C: return PORT_C; case HPD_PORT_D: return PORT_D; default: return PORT_A; /* no hpd */ } } static inline void intel_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger, u32 dig_hotplug_reg, const u32 *hpd) { struct drm_i915_private *dev_priv = dev->dev_private; int i; enum port port; bool storm_detected = false; bool queue_dig = false, queue_hp = false; u32 dig_shift; u32 dig_port_mask = 0; if (!hotplug_trigger) return; DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n", hotplug_trigger, dig_hotplug_reg); spin_lock(&dev_priv->irq_lock); for (i = 1; i < HPD_NUM_PINS; i++) { if (!(hpd[i] & hotplug_trigger)) continue; port = get_port_from_pin(i); if (port && dev_priv->hpd_irq_port[port]) { bool long_hpd; if (HAS_PCH_SPLIT(dev)) { dig_shift = pch_port_to_hotplug_shift(port); long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT; } else { dig_shift = i915_port_to_hotplug_shift(port); long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT; } DRM_DEBUG_DRIVER("digital hpd port %c - %s\n", port_name(port), long_hpd ? "long" : "short"); /* for long HPD pulses we want to have the digital queue happen, but we still want HPD storm detection to function. */ if (long_hpd) { dev_priv->long_hpd_port_mask |= (1 << port); dig_port_mask |= hpd[i]; } else { /* for short HPD just trigger the digital queue */ dev_priv->short_hpd_port_mask |= (1 << port); hotplug_trigger &= ~hpd[i]; } queue_dig = true; } } for (i = 1; i < HPD_NUM_PINS; i++) { if (hpd[i] & hotplug_trigger && dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) { /* * On GMCH platforms the interrupt mask bits only * prevent irq generation, not the setting of the * hotplug bits itself. So only WARN about unexpected * interrupts on saner platforms. */ WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev), "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n", hotplug_trigger, i, hpd[i]); continue; } if (!(hpd[i] & hotplug_trigger) || dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED) continue; if (!(dig_port_mask & hpd[i])) { dev_priv->hpd_event_bits |= (1 << i); queue_hp = true; } if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) { dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies; dev_priv->hpd_stats[i].hpd_cnt = 0; DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i); } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) { dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED; dev_priv->hpd_event_bits &= ~(1 << i); DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i); storm_detected = true; } else { dev_priv->hpd_stats[i].hpd_cnt++; DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i, dev_priv->hpd_stats[i].hpd_cnt); } } if (storm_detected) dev_priv->display.hpd_irq_setup(dev); spin_unlock(&dev_priv->irq_lock); /* * Our hotplug handler can grab modeset locks (by calling down into the * fb helpers). Hence it must not be run on our own dev-priv->wq work * queue for otherwise the flush_work in the pageflip code will * deadlock. */ if (queue_dig) queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work); if (queue_hp) schedule_work(&dev_priv->hotplug_work); } static void gmbus_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } static void dp_aux_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } #if defined(CONFIG_DEBUG_FS) static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; struct intel_pipe_crc_entry *entry; int head, tail; spin_lock(&pipe_crc->lock); if (!pipe_crc->entries) { spin_unlock(&pipe_crc->lock); DRM_ERROR("spurious interrupt\n"); return; } head = pipe_crc->head; tail = pipe_crc->tail; if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { spin_unlock(&pipe_crc->lock); DRM_ERROR("CRC buffer overflowing\n"); return; } entry = &pipe_crc->entries[head]; entry->frame = dev->driver->get_vblank_counter(dev, pipe); entry->crc[0] = crc0; entry->crc[1] = crc1; entry->crc[2] = crc2; entry->crc[3] = crc3; entry->crc[4] = crc4; head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); pipe_crc->head = head; spin_unlock(&pipe_crc->lock); wake_up_interruptible(&pipe_crc->wq); } #else static inline void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) {} #endif static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 0, 0, 0, 0); } static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), I915_READ(PIPE_CRC_RES_2_IVB(pipe)), I915_READ(PIPE_CRC_RES_3_IVB(pipe)), I915_READ(PIPE_CRC_RES_4_IVB(pipe)), I915_READ(PIPE_CRC_RES_5_IVB(pipe))); } static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t res1, res2; if (INTEL_INFO(dev)->gen >= 3) res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); else res1 = 0; if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); else res2 = 0; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_RED(pipe)), I915_READ(PIPE_CRC_RES_GREEN(pipe)), I915_READ(PIPE_CRC_RES_BLUE(pipe)), res1, res2); } /* The RPS events need forcewake, so we add them to a work queue and mask their * IMR bits until the work is done. Other interrupts can be processed without * the work queue. */ static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { /* TODO: RPS on GEN9 is not supported yet. */ if (WARN_ONCE(INTEL_INFO(dev_priv)->gen == 9, "GEN9: unexpected RPS IRQ\n")) return; if (pm_iir & dev_priv->pm_rps_events) { spin_lock(&dev_priv->irq_lock); dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->rps.work); } if (INTEL_INFO(dev_priv)->gen >= 8) return; if (HAS_VEBOX(dev_priv->dev)) { if (pm_iir & PM_VEBOX_USER_INTERRUPT) notify_ring(dev_priv->dev, &dev_priv->ring[VECS]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) { i915_handle_error(dev_priv->dev, false, "VEBOX CS error interrupt 0x%08x", pm_iir); } } } static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe) { if (!drm_handle_vblank(dev, pipe)) return false; return true; } static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pipe_stats[I915_MAX_PIPES] = { }; int pipe; spin_lock(&dev_priv->irq_lock); for_each_pipe(dev_priv, pipe) { int reg; u32 mask, iir_bit = 0; /* * PIPESTAT bits get signalled even when the interrupt is * disabled with the mask bits, and some of the status bits do * not generate interrupts at all (like the underrun bit). Hence * we need to be careful that we only handle what we want to * handle. */ /* fifo underruns are filterered in the underrun handler. */ mask = PIPE_FIFO_UNDERRUN_STATUS; switch (pipe) { case PIPE_A: iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; break; case PIPE_B: iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; break; case PIPE_C: iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; break; } if (iir & iir_bit) mask |= dev_priv->pipestat_irq_mask[pipe]; if (!mask) continue; reg = PIPESTAT(pipe); mask |= PIPESTAT_INT_ENABLE_MASK; pipe_stats[pipe] = I915_READ(reg) & mask; /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS | PIPESTAT_INT_STATUS_MASK)) I915_WRITE(reg, pipe_stats[pipe]); } spin_unlock(&dev_priv->irq_lock); for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && intel_pipe_handle_vblank(dev, pipe)) intel_check_page_flip(dev, pipe); if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip(dev, pipe); } if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); } static void i9xx_hpd_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); if (hotplug_status) { I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); /* * Make sure hotplug status is cleared before we clear IIR, or else we * may miss hotplug events. */ POSTING_READ(PORT_HOTPLUG_STAT); if (IS_G4X(dev)) { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x); } else { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915); } if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) dp_aux_irq_handler(dev); } } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 iir, gt_iir, pm_iir; irqreturn_t ret = IRQ_NONE; while (true) { /* Find, clear, then process each source of interrupt */ gt_iir = I915_READ(GTIIR); if (gt_iir) I915_WRITE(GTIIR, gt_iir); pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) I915_WRITE(GEN6_PMIIR, pm_iir); iir = I915_READ(VLV_IIR); if (iir) { /* Consume port before clearing IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) i9xx_hpd_irq_handler(dev); I915_WRITE(VLV_IIR, iir); } if (gt_iir == 0 && pm_iir == 0 && iir == 0) goto out; ret = IRQ_HANDLED; if (gt_iir) snb_gt_irq_handler(dev, dev_priv, gt_iir); if (pm_iir) gen6_rps_irq_handler(dev_priv, pm_iir); /* Call regardless, as some status bits might not be * signalled in iir */ valleyview_pipestat_irq_handler(dev, iir); } out: return ret; } static irqreturn_t cherryview_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 master_ctl, iir; irqreturn_t ret = IRQ_NONE; for (;;) { master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; iir = I915_READ(VLV_IIR); if (master_ctl == 0 && iir == 0) break; ret = IRQ_HANDLED; I915_WRITE(GEN8_MASTER_IRQ, 0); /* Find, clear, then process each source of interrupt */ if (iir) { /* Consume port before clearing IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) i9xx_hpd_irq_handler(dev); I915_WRITE(VLV_IIR, iir); } gen8_gt_irq_handler(dev, dev_priv, master_ctl); /* Call regardless, as some status bits might not be * signalled in iir */ valleyview_pipestat_irq_handler(dev, iir); I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); } return ret; } static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx); if (pch_iir & SDE_AUDIO_POWER_MASK) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); if (pch_iir & SDE_TRANSB_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); } static void ivb_err_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 err_int = I915_READ(GEN7_ERR_INT); enum pipe pipe; if (err_int & ERR_INT_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { if (IS_IVYBRIDGE(dev)) ivb_pipe_crc_irq_handler(dev, pipe); else hsw_pipe_crc_irq_handler(dev, pipe); } } I915_WRITE(GEN7_ERR_INT, err_int); } static void cpt_serr_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 serr_int = I915_READ(SERR_INT); if (serr_int & SERR_INT_POISON) DRM_ERROR("PCH poison interrupt\n"); if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C); I915_WRITE(SERR_INT, serr_int); } static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt); if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> SDE_AUDIO_POWER_SHIFT_CPT); DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK_CPT) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_CP_REQ_CPT) DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); if (pch_iir & SDE_AUDIO_CP_CHG_CPT) DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); if (pch_iir & SDE_FDI_MASK_CPT) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & SDE_ERROR_CPT) cpt_serr_int_handler(dev); } static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; if (de_iir & DE_AUX_CHANNEL_A) dp_aux_irq_handler(dev); if (de_iir & DE_GSE) intel_opregion_asle_intr(dev); if (de_iir & DE_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (de_iir & DE_PIPE_VBLANK(pipe) && intel_pipe_handle_vblank(dev, pipe)) intel_check_page_flip(dev, pipe); if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (de_iir & DE_PIPE_CRC_DONE(pipe)) i9xx_pipe_crc_irq_handler(dev, pipe); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE(pipe)) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip_plane(dev, pipe); } } /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { u32 pch_iir = I915_READ(SDEIIR); if (HAS_PCH_CPT(dev)) cpt_irq_handler(dev, pch_iir); else ibx_irq_handler(dev, pch_iir); /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT) ironlake_rps_change_irq_handler(dev); } static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; if (de_iir & DE_ERR_INT_IVB) ivb_err_int_handler(dev); if (de_iir & DE_AUX_CHANNEL_A_IVB) dp_aux_irq_handler(dev); if (de_iir & DE_GSE_IVB) intel_opregion_asle_intr(dev); for_each_pipe(dev_priv, pipe) { if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) && intel_pipe_handle_vblank(dev, pipe)) intel_check_page_flip(dev, pipe); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip_plane(dev, pipe); } } /* check event from PCH */ if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) { u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev, pch_iir); /* clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } } /* * To handle irqs with the minimum potential races with fresh interrupts, we: * 1 - Disable Master Interrupt Control. * 2 - Find the source(s) of the interrupt. * 3 - Clear the Interrupt Identity bits (IIR). * 4 - Process the interrupt(s) that had bits set in the IIRs. * 5 - Re-enable Master Interrupt Control. */ static irqreturn_t ironlake_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 de_iir, gt_iir, de_ier, sde_ier = 0; irqreturn_t ret = IRQ_NONE; /* We get interrupts on unclaimed registers, so check for this before we * do any I915_{READ,WRITE}. */ intel_uncore_check_errors(dev); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(dev)) { sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); POSTING_READ(SDEIER); } /* Find, clear, then process each source of interrupt */ gt_iir = I915_READ(GTIIR); if (gt_iir) { I915_WRITE(GTIIR, gt_iir); ret = IRQ_HANDLED; if (INTEL_INFO(dev)->gen >= 6) snb_gt_irq_handler(dev, dev_priv, gt_iir); else ilk_gt_irq_handler(dev, dev_priv, gt_iir); } de_iir = I915_READ(DEIIR); if (de_iir) { I915_WRITE(DEIIR, de_iir); ret = IRQ_HANDLED; if (INTEL_INFO(dev)->gen >= 7) ivb_display_irq_handler(dev, de_iir); else ilk_display_irq_handler(dev, de_iir); } if (INTEL_INFO(dev)->gen >= 6) { u32 pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) { I915_WRITE(GEN6_PMIIR, pm_iir); ret = IRQ_HANDLED; gen6_rps_irq_handler(dev_priv, pm_iir); } } I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); if (!HAS_PCH_NOP(dev)) { I915_WRITE(SDEIER, sde_ier); POSTING_READ(SDEIER); } return ret; } static irqreturn_t gen8_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 master_ctl; irqreturn_t ret = IRQ_NONE; uint32_t tmp = 0; enum pipe pipe; u32 aux_mask = GEN8_AUX_CHANNEL_A; if (IS_GEN9(dev)) aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; master_ctl = I915_READ(GEN8_MASTER_IRQ); master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; if (!master_ctl) return IRQ_NONE; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); /* Find, clear, then process each source of interrupt */ ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl); if (master_ctl & GEN8_DE_MISC_IRQ) { tmp = I915_READ(GEN8_DE_MISC_IIR); if (tmp) { I915_WRITE(GEN8_DE_MISC_IIR, tmp); ret = IRQ_HANDLED; if (tmp & GEN8_DE_MISC_GSE) intel_opregion_asle_intr(dev); else DRM_ERROR("Unexpected DE Misc interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); } if (master_ctl & GEN8_DE_PORT_IRQ) { tmp = I915_READ(GEN8_DE_PORT_IIR); if (tmp) { I915_WRITE(GEN8_DE_PORT_IIR, tmp); ret = IRQ_HANDLED; if (tmp & aux_mask) dp_aux_irq_handler(dev); else DRM_ERROR("Unexpected DE Port interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); } for_each_pipe(dev_priv, pipe) { uint32_t pipe_iir, flip_done = 0, fault_errors = 0; if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) continue; pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); if (pipe_iir) { ret = IRQ_HANDLED; I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir); if (pipe_iir & GEN8_PIPE_VBLANK && intel_pipe_handle_vblank(dev, pipe)) intel_check_page_flip(dev, pipe); if (IS_GEN9(dev)) flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE; else flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE; if (flip_done) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip_plane(dev, pipe); } if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE) hsw_pipe_crc_irq_handler(dev, pipe); if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (IS_GEN9(dev)) fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS; else fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS; if (fault_errors) DRM_ERROR("Fault errors on pipe %c\n: 0x%08x", pipe_name(pipe), pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS); } else DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); } if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) { /* * FIXME(BDW): Assume for now that the new interrupt handling * scheme also closed the SDE interrupt handling race we've seen * on older pch-split platforms. But this needs testing. */ u32 pch_iir = I915_READ(SDEIIR); if (pch_iir) { I915_WRITE(SDEIIR, pch_iir); ret = IRQ_HANDLED; cpt_irq_handler(dev, pch_iir); } else DRM_ERROR("The master control interrupt lied (SDE)!\n"); } I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return ret; } static void i915_error_wake_up(struct drm_i915_private *dev_priv, bool reset_completed) { struct intel_engine_cs *ring; int i; /* * Notify all waiters for GPU completion events that reset state has * been changed, and that they need to restart their wait after * checking for potential errors (and bail out to drop locks if there is * a gpu reset pending so that i915_error_work_func can acquire them). */ /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ for_each_ring(ring, dev_priv, i) wake_up_all(&ring->irq_queue); /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ wake_up_all(&dev_priv->pending_flip_queue); /* * Signal tasks blocked in i915_gem_wait_for_error that the pending * reset state is cleared. */ if (reset_completed) wake_up_all(&dev_priv->gpu_error.reset_queue); } /** * i915_error_work_func - do process context error handling work * @work: work struct * * Fire an error uevent so userspace can see that a hang or error * was detected. */ static void i915_error_work_func(struct work_struct *work) { struct i915_gpu_error *error = container_of(work, struct i915_gpu_error, work); struct drm_i915_private *dev_priv = container_of(error, struct drm_i915_private, gpu_error); struct drm_device *dev = dev_priv->dev; char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; int ret; kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); /* * Note that there's only one work item which does gpu resets, so we * need not worry about concurrent gpu resets potentially incrementing * error->reset_counter twice. We only need to take care of another * racing irq/hangcheck declaring the gpu dead for a second time. A * quick check for that is good enough: schedule_work ensures the * correct ordering between hang detection and this work item, and since * the reset in-progress bit is only ever set by code outside of this * work we don't need to worry about any other races. */ if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) { DRM_DEBUG_DRIVER("resetting chip\n"); kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, reset_event); /* * In most cases it's guaranteed that we get here with an RPM * reference held, for example because there is a pending GPU * request that won't finish until the reset is done. This * isn't the case at least when we get here by doing a * simulated reset via debugs, so get an RPM reference. */ intel_runtime_pm_get(dev_priv); /* * All state reset _must_ be completed before we update the * reset counter, for otherwise waiters might miss the reset * pending state and not properly drop locks, resulting in * deadlocks with the reset work. */ ret = i915_reset(dev); intel_display_handle_reset(dev); intel_runtime_pm_put(dev_priv); if (ret == 0) { /* * After all the gem state is reset, increment the reset * counter and wake up everyone waiting for the reset to * complete. * * Since unlock operations are a one-sided barrier only, * we need to insert a barrier here to order any seqno * updates before * the counter increment. */ smp_mb__before_atomic(); atomic_inc(&dev_priv->gpu_error.reset_counter); kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, reset_done_event); } else { atomic_set_mask(I915_WEDGED, &error->reset_counter); } /* * Note: The wake_up also serves as a memory barrier so that * waiters see the update value of the reset counter atomic_t. */ i915_error_wake_up(dev_priv, true); } } static void i915_report_and_clear_eir(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t instdone[I915_NUM_INSTDONE_REG]; u32 eir = I915_READ(EIR); int pipe, i; if (!eir) return; pr_err("render error detected, EIR: 0x%08x\n", eir); i915_get_extra_instdone(dev, instdone); if (IS_G4X(dev)) { if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } if (eir & GM45_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (!IS_GEN2(dev)) { if (eir & I915_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (eir & I915_ERROR_MEMORY_REFRESH) { pr_err("memory refresh error:\n"); for_each_pipe(dev_priv, pipe) pr_err("pipe %c stat: 0x%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); /* pipestat has already been acked */ } if (eir & I915_ERROR_INSTRUCTION) { pr_err("instruction error\n"); pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); if (INTEL_INFO(dev)->gen < 4) { u32 ipeir = I915_READ(IPEIR); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD)); I915_WRITE(IPEIR, ipeir); POSTING_READ(IPEIR); } else { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } } I915_WRITE(EIR, eir); POSTING_READ(EIR); eir = I915_READ(EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir); I915_WRITE(EMR, I915_READ(EMR) | eir); I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); } } /** * i915_handle_error - handle an error interrupt * @dev: drm device * * Do some basic checking of regsiter state at error interrupt time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void i915_handle_error(struct drm_device *dev, bool wedged, const char *fmt, ...) { struct drm_i915_private *dev_priv = dev->dev_private; va_list args; char error_msg[80]; va_start(args, fmt); vscnprintf(error_msg, sizeof(error_msg), fmt, args); va_end(args); i915_capture_error_state(dev, wedged, error_msg); i915_report_and_clear_eir(dev); if (wedged) { atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG, &dev_priv->gpu_error.reset_counter); /* * Wakeup waiting processes so that the reset work function * i915_error_work_func doesn't deadlock trying to grab various * locks. By bumping the reset counter first, the woken * processes will see a reset in progress and back off, * releasing their locks and then wait for the reset completion. * We must do this for _all_ gpu waiters that might hold locks * that the reset work needs to acquire. * * Note: The wake_up serves as the required memory barrier to * ensure that the waiters see the updated value of the reset * counter atomic_t. */ i915_error_wake_up(dev_priv, false); } /* * Our reset work can grab modeset locks (since it needs to reset the * state of outstanding pagelips). Hence it must not be run on our own * dev-priv->wq work queue for otherwise the flush_work in the pageflip * code will deadlock. */ schedule_work(&dev_priv->gpu_error.work); } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static int i915_enable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); else i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int ironlake_enable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int valleyview_enable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int gen8_enable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static void i915_disable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS | PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void ironlake_disable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_disable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void valleyview_disable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void gen8_disable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static u32 ring_last_seqno(struct intel_engine_cs *ring) { return list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno; } static bool ring_idle(struct intel_engine_cs *ring, u32 seqno) { return (list_empty(&ring->request_list) || i915_seqno_passed(seqno, ring_last_seqno(ring))); } static bool ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr) { if (INTEL_INFO(dev)->gen >= 8) { return (ipehr >> 23) == 0x1c; } else { ipehr &= ~MI_SEMAPHORE_SYNC_MASK; return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER); } } static struct intel_engine_cs * semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset) { struct drm_i915_private *dev_priv = ring->dev->dev_private; struct intel_engine_cs *signaller; int i; if (INTEL_INFO(dev_priv->dev)->gen >= 8) { for_each_ring(signaller, dev_priv, i) { if (ring == signaller) continue; if (offset == signaller->semaphore.signal_ggtt[ring->id]) return signaller; } } else { u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK; for_each_ring(signaller, dev_priv, i) { if(ring == signaller) continue; if (sync_bits == signaller->semaphore.mbox.wait[ring->id]) return signaller; } } DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n", ring->id, ipehr, offset); return NULL; } static struct intel_engine_cs * semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; u32 cmd, ipehr, head; u64 offset = 0; int i, backwards; ipehr = I915_READ(RING_IPEHR(ring->mmio_base)); if (!ipehr_is_semaphore_wait(ring->dev, ipehr)) return NULL; /* * HEAD is likely pointing to the dword after the actual command, * so scan backwards until we find the MBOX. But limit it to just 3 * or 4 dwords depending on the semaphore wait command size. * Note that we don't care about ACTHD here since that might * point at at batch, and semaphores are always emitted into the * ringbuffer itself. */ head = I915_READ_HEAD(ring) & HEAD_ADDR; backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4; for (i = backwards; i; --i) { /* * Be paranoid and presume the hw has gone off into the wild - * our ring is smaller than what the hardware (and hence * HEAD_ADDR) allows. Also handles wrap-around. */ head &= ring->buffer->size - 1; /* This here seems to blow up */ cmd = ioread32(ring->buffer->virtual_start + head); if (cmd == ipehr) break; head -= 4; } if (!i) return NULL; *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1; if (INTEL_INFO(ring->dev)->gen >= 8) { offset = ioread32(ring->buffer->virtual_start + head + 12); offset <<= 32; offset = ioread32(ring->buffer->virtual_start + head + 8); } return semaphore_wait_to_signaller_ring(ring, ipehr, offset); } static int semaphore_passed(struct intel_engine_cs *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; struct intel_engine_cs *signaller; u32 seqno; ring->hangcheck.deadlock++; signaller = semaphore_waits_for(ring, &seqno); if (signaller == NULL) return -1; /* Prevent pathological recursion due to driver bugs */ if (signaller->hangcheck.deadlock >= I915_NUM_RINGS) return -1; if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno)) return 1; /* cursory check for an unkickable deadlock */ if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0) return -1; return 0; } static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv) { struct intel_engine_cs *ring; int i; for_each_ring(ring, dev_priv, i) ring->hangcheck.deadlock = 0; } static enum intel_ring_hangcheck_action ring_stuck(struct intel_engine_cs *ring, u64 acthd) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp; if (acthd != ring->hangcheck.acthd) { if (acthd > ring->hangcheck.max_acthd) { ring->hangcheck.max_acthd = acthd; return HANGCHECK_ACTIVE; } return HANGCHECK_ACTIVE_LOOP; } if (IS_GEN2(dev)) return HANGCHECK_HUNG; /* Is the chip hanging on a WAIT_FOR_EVENT? * If so we can simply poke the RB_WAIT bit * and break the hang. This should work on * all but the second generation chipsets. */ tmp = I915_READ_CTL(ring); if (tmp & RING_WAIT) { i915_handle_error(dev, false, "Kicking stuck wait on %s", ring->name); I915_WRITE_CTL(ring, tmp); return HANGCHECK_KICK; } if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) { switch (semaphore_passed(ring)) { default: return HANGCHECK_HUNG; case 1: i915_handle_error(dev, false, "Kicking stuck semaphore on %s", ring->name); I915_WRITE_CTL(ring, tmp); return HANGCHECK_KICK; case 0: return HANGCHECK_WAIT; } } return HANGCHECK_HUNG; } /** * This is called when the chip hasn't reported back with completed * batchbuffers in a long time. We keep track per ring seqno progress and * if there are no progress, hangcheck score for that ring is increased. * Further, acthd is inspected to see if the ring is stuck. On stuck case * we kick the ring. If we see no progress on three subsequent calls * we assume chip is wedged and try to fix it by resetting the chip. */ static void i915_hangcheck_elapsed(unsigned long data) { struct drm_device *dev = (struct drm_device *)data; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; int i; int busy_count = 0, rings_hung = 0; bool stuck[I915_NUM_RINGS] = { 0 }; #define BUSY 1 #define KICK 5 #define HUNG 20 if (!i915.enable_hangcheck) return; for_each_ring(ring, dev_priv, i) { u64 acthd; u32 seqno; bool busy = true; semaphore_clear_deadlocks(dev_priv); seqno = ring->get_seqno(ring, false); acthd = intel_ring_get_active_head(ring); if (ring->hangcheck.seqno == seqno) { if (ring_idle(ring, seqno)) { ring->hangcheck.action = HANGCHECK_IDLE; if (waitqueue_active(&ring->irq_queue)) { /* Issue a wake-up to catch stuck h/w. */ if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) { if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring))) DRM_ERROR("Hangcheck timer elapsed... %s idle\n", ring->name); else DRM_INFO("Fake missed irq on %s\n", ring->name); wake_up_all(&ring->irq_queue); } /* Safeguard against driver failure */ ring->hangcheck.score += BUSY; } else busy = false; } else { /* We always increment the hangcheck score * if the ring is busy and still processing * the same request, so that no single request * can run indefinitely (such as a chain of * batches). The only time we do not increment * the hangcheck score on this ring, if this * ring is in a legitimate wait for another * ring. In that case the waiting ring is a * victim and we want to be sure we catch the * right culprit. Then every time we do kick * the ring, add a small increment to the * score so that we can catch a batch that is * being repeatedly kicked and so responsible * for stalling the machine. */ ring->hangcheck.action = ring_stuck(ring, acthd); switch (ring->hangcheck.action) { case HANGCHECK_IDLE: case HANGCHECK_WAIT: case HANGCHECK_ACTIVE: break; case HANGCHECK_ACTIVE_LOOP: ring->hangcheck.score += BUSY; break; case HANGCHECK_KICK: ring->hangcheck.score += KICK; break; case HANGCHECK_HUNG: ring->hangcheck.score += HUNG; stuck[i] = true; break; } } } else { ring->hangcheck.action = HANGCHECK_ACTIVE; /* Gradually reduce the count so that we catch DoS * attempts across multiple batches. */ if (ring->hangcheck.score > 0) ring->hangcheck.score--; ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0; } ring->hangcheck.seqno = seqno; ring->hangcheck.acthd = acthd; busy_count += busy; } for_each_ring(ring, dev_priv, i) { if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) { DRM_INFO("%s on %s\n", stuck[i] ? "stuck" : "no progress", ring->name); rings_hung++; } } if (rings_hung) return i915_handle_error(dev, true, "Ring hung"); if (busy_count) /* Reset timer case chip hangs without another request * being added */ i915_queue_hangcheck(dev); } void i915_queue_hangcheck(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!i915.enable_hangcheck) return; mod_timer(&dev_priv->gpu_error.hangcheck_timer, round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); } static void ibx_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_PCH_NOP(dev)) return; GEN5_IRQ_RESET(SDE); if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev)) I915_WRITE(SERR_INT, 0xffffffff); } /* * SDEIER is also touched by the interrupt handler to work around missed PCH * interrupts. Hence we can't update it after the interrupt handler is enabled - * instead we unconditionally enable all PCH interrupt sources here, but then * only unmask them as needed with SDEIMR. * * This function needs to be called before interrupts are enabled. */ static void ibx_irq_pre_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_PCH_NOP(dev)) return; WARN_ON(I915_READ(SDEIER) != 0); I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); } static void gen5_gt_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; GEN5_IRQ_RESET(GT); if (INTEL_INFO(dev)->gen >= 6) GEN5_IRQ_RESET(GEN6_PM); } /* drm_dma.h hooks */ static void ironlake_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(HWSTAM, 0xffffffff); GEN5_IRQ_RESET(DE); if (IS_GEN7(dev)) I915_WRITE(GEN7_ERR_INT, 0xffffffff); gen5_gt_irq_reset(dev); ibx_irq_reset(dev); } static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) { enum pipe pipe; I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); GEN5_IRQ_RESET(VLV_); } static void valleyview_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* VLV magic */ I915_WRITE(VLV_IMR, 0); I915_WRITE(RING_IMR(RENDER_RING_BASE), 0); I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0); I915_WRITE(RING_IMR(BLT_RING_BASE), 0); gen5_gt_irq_reset(dev); I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); vlv_display_irq_reset(dev_priv); } static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) { GEN8_IRQ_RESET_NDX(GT, 0); GEN8_IRQ_RESET_NDX(GT, 1); GEN8_IRQ_RESET_NDX(GT, 2); GEN8_IRQ_RESET_NDX(GT, 3); } static void gen8_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); GEN5_IRQ_RESET(GEN8_DE_PORT_); GEN5_IRQ_RESET(GEN8_DE_MISC_); GEN5_IRQ_RESET(GEN8_PCU_); ibx_irq_reset(dev); } void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv) { uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; spin_lock_irq(&dev_priv->irq_lock); GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B], ~dev_priv->de_irq_mask[PIPE_B] | extra_ier); GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C], ~dev_priv->de_irq_mask[PIPE_C] | extra_ier); spin_unlock_irq(&dev_priv->irq_lock); } static void cherryview_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); GEN5_IRQ_RESET(GEN8_PCU_); I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); vlv_display_irq_reset(dev_priv); } static void ibx_hpd_irq_setup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; u32 hotplug_irqs, hotplug, enabled_irqs = 0; if (HAS_PCH_IBX(dev)) { hotplug_irqs = SDE_HOTPLUG_MASK; for_each_intel_encoder(dev, intel_encoder) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin]; } else { hotplug_irqs = SDE_HOTPLUG_MASK_CPT; for_each_intel_encoder(dev, intel_encoder) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin]; } ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * * This register is the same on all known PCH chips. */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void ibx_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 mask; if (HAS_PCH_NOP(dev)) return; if (HAS_PCH_IBX(dev)) mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; else mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; GEN5_ASSERT_IIR_IS_ZERO(SDEIIR); I915_WRITE(SDEIMR, ~mask); } static void gen5_gt_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pm_irqs, gt_irqs; pm_irqs = gt_irqs = 0; dev_priv->gt_irq_mask = ~0; if (HAS_L3_DPF(dev)) { /* L3 parity interrupt is always unmasked. */ dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev); gt_irqs |= GT_PARITY_ERROR(dev); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (IS_GEN5(dev)) { gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT | ILK_BSD_USER_INTERRUPT; } else { gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; } GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); if (INTEL_INFO(dev)->gen >= 6) { pm_irqs |= dev_priv->pm_rps_events; if (HAS_VEBOX(dev)) pm_irqs |= PM_VEBOX_USER_INTERRUPT; dev_priv->pm_irq_mask = 0xffffffff; GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs); } } static int ironlake_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 display_mask, extra_mask; if (INTEL_INFO(dev)->gen >= 7) { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | DE_PLANEB_FLIP_DONE_IVB | DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB); extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB); } else { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | DE_POISON); extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN; } dev_priv->irq_mask = ~display_mask; I915_WRITE(HWSTAM, 0xeffe); ibx_irq_pre_postinstall(dev); GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); gen5_gt_irq_postinstall(dev); ibx_irq_postinstall(dev); if (IS_IRONLAKE_M(dev)) { /* Enable PCU event interrupts * * spinlocking not required here for correctness since interrupt * setup is guaranteed to run in single-threaded context. But we * need it to make the assert_spin_locked happy. */ spin_lock_irq(&dev_priv->irq_lock); ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT); spin_unlock_irq(&dev_priv->irq_lock); } return 0; } static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv) { u32 pipestat_mask; u32 iir_mask; enum pipe pipe; pipestat_mask = PIPESTAT_INT_STATUS_MASK | PIPE_FIFO_UNDERRUN_STATUS; for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), pipestat_mask); POSTING_READ(PIPESTAT(PIPE_A)); pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | PIPE_CRC_DONE_INTERRUPT_STATUS; i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); for_each_pipe(dev_priv, pipe) i915_enable_pipestat(dev_priv, pipe, pipestat_mask); iir_mask = I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; if (IS_CHERRYVIEW(dev_priv)) iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; dev_priv->irq_mask &= ~iir_mask; I915_WRITE(VLV_IIR, iir_mask); I915_WRITE(VLV_IIR, iir_mask); I915_WRITE(VLV_IER, ~dev_priv->irq_mask); I915_WRITE(VLV_IMR, dev_priv->irq_mask); POSTING_READ(VLV_IMR); } static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv) { u32 pipestat_mask; u32 iir_mask; enum pipe pipe; iir_mask = I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; if (IS_CHERRYVIEW(dev_priv)) iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; dev_priv->irq_mask |= iir_mask; I915_WRITE(VLV_IMR, dev_priv->irq_mask); I915_WRITE(VLV_IER, ~dev_priv->irq_mask); I915_WRITE(VLV_IIR, iir_mask); I915_WRITE(VLV_IIR, iir_mask); POSTING_READ(VLV_IIR); pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | PIPE_CRC_DONE_INTERRUPT_STATUS; i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); for_each_pipe(dev_priv, pipe) i915_disable_pipestat(dev_priv, pipe, pipestat_mask); pipestat_mask = PIPESTAT_INT_STATUS_MASK | PIPE_FIFO_UNDERRUN_STATUS; for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), pipestat_mask); POSTING_READ(PIPESTAT(PIPE_A)); } void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) { assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = true; if (intel_irqs_enabled(dev_priv)) valleyview_display_irqs_install(dev_priv); } void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) { assert_spin_locked(&dev_priv->irq_lock); if (!dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = false; if (intel_irqs_enabled(dev_priv)) valleyview_display_irqs_uninstall(dev_priv); } static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) { dev_priv->irq_mask = ~0; I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IER, ~dev_priv->irq_mask); I915_WRITE(VLV_IMR, dev_priv->irq_mask); POSTING_READ(VLV_IMR); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) valleyview_display_irqs_install(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static int valleyview_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; vlv_display_irq_postinstall(dev_priv); gen5_gt_irq_postinstall(dev); /* ack & enable invalid PTE error interrupts */ #if 0 /* FIXME: add support to irq handler for checking these bits */ I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK); #endif I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); return 0; } static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) { /* These are interrupts we'll toggle with the ring mask register */ uint32_t gt_interrupts[] = { GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 0, GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT }; dev_priv->pm_irq_mask = 0xffffffff; GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events); GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); } static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) { uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; uint32_t de_pipe_enables; int pipe; u32 aux_en = GEN8_AUX_CHANNEL_A; if (IS_GEN9(dev_priv)) { de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE | GEN9_DE_PIPE_IRQ_FAULT_ERRORS; aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; } else de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE | GEN8_DE_PIPE_IRQ_FAULT_ERRORS; de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked; dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked; dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked; for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe], de_pipe_enables); GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en); } static int gen8_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; ibx_irq_pre_postinstall(dev); gen8_gt_irq_postinstall(dev_priv); gen8_de_irq_postinstall(dev_priv); ibx_irq_postinstall(dev); I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return 0; } static int cherryview_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; vlv_display_irq_postinstall(dev_priv); gen8_gt_irq_postinstall(dev_priv); I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE); POSTING_READ(GEN8_MASTER_IRQ); return 0; } static void gen8_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv) return; gen8_irq_reset(dev); } static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv) { /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) valleyview_display_irqs_uninstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); vlv_display_irq_reset(dev_priv); dev_priv->irq_mask = 0; } static void valleyview_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv) return; I915_WRITE(VLV_MASTER_IER, 0); gen5_gt_irq_reset(dev); I915_WRITE(HWSTAM, 0xffffffff); vlv_display_irq_uninstall(dev_priv); } static void cherryview_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv) return; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); GEN5_IRQ_RESET(GEN8_PCU_); vlv_display_irq_uninstall(dev_priv); } static void ironlake_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv) return; ironlake_irq_reset(dev); } static void i8xx_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); POSTING_READ16(IER); } static int i8xx_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); I915_WRITE16(IMR, dev_priv->irq_mask); I915_WRITE16(IER, I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT); POSTING_READ16(IER); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); return 0; } /* * Returns true when a page flip has completed. */ static bool i8xx_handle_vblank(struct drm_device *dev, int plane, int pipe, u32 iir) { struct drm_i915_private *dev_priv = dev->dev_private; u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!intel_pipe_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) goto check_page_flip; intel_prepare_page_flip(dev, plane); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ16(ISR) & flip_pending) goto check_page_flip; intel_finish_page_flip(dev, pipe); return true; check_page_flip: intel_check_page_flip(dev, pipe); return false; } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u16 iir, new_iir; u32 pipe_stats[2]; int pipe; u16 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; iir = I915_READ16(IIR); if (iir == 0) return IRQ_NONE; while (iir & ~flip_mask) { /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false, "Command parser error, iir 0x%08x", iir); for_each_pipe(dev_priv, pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) I915_WRITE(reg, pipe_stats[pipe]); } spin_unlock(&dev_priv->irq_lock); I915_WRITE16(IIR, iir & ~flip_mask); new_iir = I915_READ16(IIR); /* Flush posted writes */ i915_update_dri1_breadcrumb(dev); if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); for_each_pipe(dev_priv, pipe) { int plane = pipe; if (HAS_FBC(dev)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i8xx_handle_vblank(dev, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } iir = new_iir; } return IRQ_HANDLED; } static void i8xx_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; for_each_pipe(dev_priv, pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); I915_WRITE16(IIR, I915_READ16(IIR)); } static void i915_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xeffe); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i915_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 enable_mask; I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); i915_enable_asle_pipestat(dev); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); return 0; } /* * Returns true when a page flip has completed. */ static bool i915_handle_vblank(struct drm_device *dev, int plane, int pipe, u32 iir) { struct drm_i915_private *dev_priv = dev->dev_private; u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!intel_pipe_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) goto check_page_flip; intel_prepare_page_flip(dev, plane); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ(ISR) & flip_pending) goto check_page_flip; intel_finish_page_flip(dev, pipe); return true; check_page_flip: intel_check_page_flip(dev, pipe); return false; } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; int pipe, ret = IRQ_NONE; iir = I915_READ(IIR); do { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false, "Command parser error, iir 0x%08x", iir); for_each_pipe(dev_priv, pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock(&dev_priv->irq_lock); if (!irq_received) break; /* Consume port. Then clear IIR or we'll miss events */ if (I915_HAS_HOTPLUG(dev) && iir & I915_DISPLAY_PORT_INTERRUPT) i9xx_hpd_irq_handler(dev); I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); for_each_pipe(dev_priv, pipe) { int plane = pipe; if (HAS_FBC(dev)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ ret = IRQ_HANDLED; iir = new_iir; } while (iir & ~flip_mask); i915_update_dri1_breadcrumb(dev); return ret; } static void i915_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xffff); for_each_pipe(dev_priv, pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); I915_WRITE(IIR, I915_READ(IIR)); } static void i965_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xeffe); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i965_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 enable_mask; u32 error_mask; /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = ~dev_priv->irq_mask; enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); enable_mask |= I915_USER_INTERRUPT; if (IS_G4X(dev)) enable_mask |= I915_BSD_USER_INTERRUPT; /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); i915_enable_asle_pipestat(dev); return 0; } static void i915_hpd_irq_setup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; u32 hotplug_en; assert_spin_locked(&dev_priv->irq_lock); if (I915_HAS_HOTPLUG(dev)) { hotplug_en = I915_READ(PORT_HOTPLUG_EN); hotplug_en &= ~HOTPLUG_INT_EN_MASK; /* Note HDMI and DP share hotplug bits */ /* enable bits are the same for all generations */ for_each_intel_encoder(dev, intel_encoder) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin]; /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; /* Ignore TV since it's buggy */ I915_WRITE(PORT_HOTPLUG_EN, hotplug_en); } } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 iir, new_iir; u32 pipe_stats[I915_MAX_PIPES]; int ret = IRQ_NONE, pipe; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; iir = I915_READ(IIR); for (;;) { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false, "Command parser error, iir 0x%08x", iir); for_each_pipe(dev_priv, pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock(&dev_priv->irq_lock); if (!irq_received) break; ret = IRQ_HANDLED; /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) i9xx_hpd_irq_handler(dev); I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); if (iir & I915_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, pipe, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ iir = new_iir; } i915_update_dri1_breadcrumb(dev); return ret; } static void i965_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; if (!dev_priv) return; I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xffffffff); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)) & 0x8000ffff); I915_WRITE(IIR, I915_READ(IIR)); } static void intel_hpd_irq_reenable_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), hotplug_reenable_work.work); struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; int i; intel_runtime_pm_get(dev_priv); spin_lock_irq(&dev_priv->irq_lock); for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) { struct drm_connector *connector; if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED) continue; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); if (intel_connector->encoder->hpd_pin == i) { if (connector->polled != intel_connector->polled) DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n", connector->name); connector->polled = intel_connector->polled; if (!connector->polled) connector->polled = DRM_CONNECTOR_POLL_HPD; } } } if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irq(&dev_priv->irq_lock); intel_runtime_pm_put(dev_priv); } /** * intel_irq_init - initializes irq support * @dev_priv: i915 device instance * * This function initializes all the irq support including work items, timers * and all the vtables. It does not setup the interrupt itself though. */ void intel_irq_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func); INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func); INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func); INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); /* Let's track the enabled rps events */ if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) /* WaGsvRC0ResidencyMethod:vlv */ dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; else dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; setup_timer(&dev_priv->gpu_error.hangcheck_timer, i915_hangcheck_elapsed, (unsigned long) dev); INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work, intel_hpd_irq_reenable_work); pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); if (IS_GEN2(dev_priv)) { dev->max_vblank_count = 0; dev->driver->get_vblank_counter = i8xx_get_vblank_counter; } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = gm45_get_vblank_counter; } else { dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ } /* * Opt out of the vblank disable timer on everything except gen2. * Gen2 doesn't have a hardware frame counter and so depends on * vblank interrupts to produce sane vblank seuquence numbers. */ if (!IS_GEN2(dev_priv)) dev->vblank_disable_immediate = true; if (drm_core_check_feature(dev, DRIVER_MODESET)) { dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; } if (IS_CHERRYVIEW(dev_priv)) { dev->driver->irq_handler = cherryview_irq_handler; dev->driver->irq_preinstall = cherryview_irq_preinstall; dev->driver->irq_postinstall = cherryview_irq_postinstall; dev->driver->irq_uninstall = cherryview_irq_uninstall; dev->driver->enable_vblank = valleyview_enable_vblank; dev->driver->disable_vblank = valleyview_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (IS_VALLEYVIEW(dev_priv)) { dev->driver->irq_handler = valleyview_irq_handler; dev->driver->irq_preinstall = valleyview_irq_preinstall; dev->driver->irq_postinstall = valleyview_irq_postinstall; dev->driver->irq_uninstall = valleyview_irq_uninstall; dev->driver->enable_vblank = valleyview_enable_vblank; dev->driver->disable_vblank = valleyview_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (INTEL_INFO(dev_priv)->gen >= 8) { dev->driver->irq_handler = gen8_irq_handler; dev->driver->irq_preinstall = gen8_irq_reset; dev->driver->irq_postinstall = gen8_irq_postinstall; dev->driver->irq_uninstall = gen8_irq_uninstall; dev->driver->enable_vblank = gen8_enable_vblank; dev->driver->disable_vblank = gen8_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else if (HAS_PCH_SPLIT(dev)) { dev->driver->irq_handler = ironlake_irq_handler; dev->driver->irq_preinstall = ironlake_irq_reset; dev->driver->irq_postinstall = ironlake_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ironlake_enable_vblank; dev->driver->disable_vblank = ironlake_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else { if (INTEL_INFO(dev_priv)->gen == 2) { dev->driver->irq_preinstall = i8xx_irq_preinstall; dev->driver->irq_postinstall = i8xx_irq_postinstall; dev->driver->irq_handler = i8xx_irq_handler; dev->driver->irq_uninstall = i8xx_irq_uninstall; } else if (INTEL_INFO(dev_priv)->gen == 3) { dev->driver->irq_preinstall = i915_irq_preinstall; dev->driver->irq_postinstall = i915_irq_postinstall; dev->driver->irq_uninstall = i915_irq_uninstall; dev->driver->irq_handler = i915_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else { dev->driver->irq_preinstall = i965_irq_preinstall; dev->driver->irq_postinstall = i965_irq_postinstall; dev->driver->irq_uninstall = i965_irq_uninstall; dev->driver->irq_handler = i965_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } dev->driver->enable_vblank = i915_enable_vblank; dev->driver->disable_vblank = i915_disable_vblank; } } /** * intel_hpd_init - initializes and enables hpd support * @dev_priv: i915 device instance * * This function enables the hotplug support. It requires that interrupts have * already been enabled with intel_irq_init_hw(). From this point on hotplug and * poll request can run concurrently to other code, so locking rules must be * obeyed. * * This is a separate step from interrupt enabling to simplify the locking rules * in the driver load and resume code. */ void intel_hpd_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; int i; for (i = 1; i < HPD_NUM_PINS; i++) { dev_priv->hpd_stats[i].hpd_cnt = 0; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; } list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); connector->polled = intel_connector->polled; if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE) connector->polled = DRM_CONNECTOR_POLL_HPD; if (intel_connector->mst_port) connector->polled = DRM_CONNECTOR_POLL_HPD; } /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked checks happy. */ spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irq(&dev_priv->irq_lock); } /** * intel_irq_install - enables the hardware interrupt * @dev_priv: i915 device instance * * This function enables the hardware interrupt handling, but leaves the hotplug * handling still disabled. It is called after intel_irq_init(). * * In the driver load and resume code we need working interrupts in a few places * but don't want to deal with the hassle of concurrent probe and hotplug * workers. Hence the split into this two-stage approach. */ int intel_irq_install(struct drm_i915_private *dev_priv) { /* * We enable some interrupt sources in our postinstall hooks, so mark * interrupts as enabled _before_ actually enabling them to avoid * special cases in our ordering checks. */ dev_priv->pm.irqs_enabled = true; return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq); } /** * intel_irq_uninstall - finilizes all irq handling * @dev_priv: i915 device instance * * This stops interrupt and hotplug handling and unregisters and frees all * resources acquired in the init functions. */ void intel_irq_uninstall(struct drm_i915_private *dev_priv) { drm_irq_uninstall(dev_priv->dev); intel_hpd_cancel_work(dev_priv); dev_priv->pm.irqs_enabled = false; } /** * intel_runtime_pm_disable_interrupts - runtime interrupt disabling * @dev_priv: i915 device instance * * This function is used to disable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->dev->driver->irq_uninstall(dev_priv->dev); dev_priv->pm.irqs_enabled = false; } /** * intel_runtime_pm_enable_interrupts - runtime interrupt enabling * @dev_priv: i915 device instance * * This function is used to enable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->pm.irqs_enabled = true; dev_priv->dev->driver->irq_preinstall(dev_priv->dev); dev_priv->dev->driver->irq_postinstall(dev_priv->dev); }