/* * SMP support for power macintosh. * * We support both the old "powersurge" SMP architecture * and the current Core99 (G4 PowerMac) machines. * * Note that we don't support the very first rev. of * Apple/DayStar 2 CPUs board, the one with the funky * watchdog. Hopefully, none of these should be there except * maybe internally to Apple. I should probably still add some * code to detect this card though and disable SMP. --BenH. * * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net) * and Ben Herrenschmidt . * * Support for DayStar quad CPU cards * Copyright (C) XLR8, Inc. 1994-2000 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pmac.h" #undef DEBUG #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif extern void __secondary_start_pmac_0(void); extern int pmac_pfunc_base_install(void); static void (*pmac_tb_freeze)(int freeze); static u64 timebase; static int tb_req; #ifdef CONFIG_PPC32 /* * Powersurge (old powermac SMP) support. */ /* Addresses for powersurge registers */ #define HAMMERHEAD_BASE 0xf8000000 #define HHEAD_CONFIG 0x90 #define HHEAD_SEC_INTR 0xc0 /* register for interrupting the primary processor on the powersurge */ /* N.B. this is actually the ethernet ROM! */ #define PSURGE_PRI_INTR 0xf3019000 /* register for storing the start address for the secondary processor */ /* N.B. this is the PCI config space address register for the 1st bridge */ #define PSURGE_START 0xf2800000 /* Daystar/XLR8 4-CPU card */ #define PSURGE_QUAD_REG_ADDR 0xf8800000 #define PSURGE_QUAD_IRQ_SET 0 #define PSURGE_QUAD_IRQ_CLR 1 #define PSURGE_QUAD_IRQ_PRIMARY 2 #define PSURGE_QUAD_CKSTOP_CTL 3 #define PSURGE_QUAD_PRIMARY_ARB 4 #define PSURGE_QUAD_BOARD_ID 6 #define PSURGE_QUAD_WHICH_CPU 7 #define PSURGE_QUAD_CKSTOP_RDBK 8 #define PSURGE_QUAD_RESET_CTL 11 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v))) #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f) #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v))) #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v))) /* virtual addresses for the above */ static volatile u8 __iomem *hhead_base; static volatile u8 __iomem *quad_base; static volatile u32 __iomem *psurge_pri_intr; static volatile u8 __iomem *psurge_sec_intr; static volatile u32 __iomem *psurge_start; /* values for psurge_type */ #define PSURGE_NONE -1 #define PSURGE_DUAL 0 #define PSURGE_QUAD_OKEE 1 #define PSURGE_QUAD_COTTON 2 #define PSURGE_QUAD_ICEGRASS 3 /* what sort of powersurge board we have */ static int psurge_type = PSURGE_NONE; /* * Set and clear IPIs for powersurge. */ static inline void psurge_set_ipi(int cpu) { if (psurge_type == PSURGE_NONE) return; if (cpu == 0) in_be32(psurge_pri_intr); else if (psurge_type == PSURGE_DUAL) out_8(psurge_sec_intr, 0); else PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu); } static inline void psurge_clr_ipi(int cpu) { if (cpu > 0) { switch(psurge_type) { case PSURGE_DUAL: out_8(psurge_sec_intr, ~0); case PSURGE_NONE: break; default: PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu); } } } /* * On powersurge (old SMP powermac architecture) we don't have * separate IPIs for separate messages like openpic does. Instead * we have a bitmap for each processor, where a 1 bit means that * the corresponding message is pending for that processor. * Ideally each cpu's entry would be in a different cache line. * -- paulus. */ static unsigned long psurge_smp_message[NR_CPUS]; void psurge_smp_message_recv(void) { int cpu = smp_processor_id(); int msg; /* clear interrupt */ psurge_clr_ipi(cpu); if (num_online_cpus() < 2) return; /* make sure there is a message there */ for (msg = 0; msg < 4; msg++) if (test_and_clear_bit(msg, &psurge_smp_message[cpu])) smp_message_recv(msg); } irqreturn_t psurge_primary_intr(int irq, void *d) { psurge_smp_message_recv(); return IRQ_HANDLED; } static void smp_psurge_message_pass(int target, int msg) { int i; if (num_online_cpus() < 2) return; for_each_online_cpu(i) { if (target == MSG_ALL || (target == MSG_ALL_BUT_SELF && i != smp_processor_id()) || target == i) { set_bit(msg, &psurge_smp_message[i]); psurge_set_ipi(i); } } } /* * Determine a quad card presence. We read the board ID register, we * force the data bus to change to something else, and we read it again. * It it's stable, then the register probably exist (ugh !) */ static int __init psurge_quad_probe(void) { int type; unsigned int i; type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID); if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; /* looks OK, try a slightly more rigorous test */ /* bogus is not necessarily cacheline-aligned, though I don't suppose that really matters. -- paulus */ for (i = 0; i < 100; i++) { volatile u32 bogus[8]; bogus[(0+i)%8] = 0x00000000; bogus[(1+i)%8] = 0x55555555; bogus[(2+i)%8] = 0xFFFFFFFF; bogus[(3+i)%8] = 0xAAAAAAAA; bogus[(4+i)%8] = 0x33333333; bogus[(5+i)%8] = 0xCCCCCCCC; bogus[(6+i)%8] = 0xCCCCCCCC; bogus[(7+i)%8] = 0x33333333; wmb(); asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory"); mb(); if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; } return type; } static void __init psurge_quad_init(void) { int procbits; if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351); procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU); if (psurge_type == PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); else PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits); mdelay(33); out_8(psurge_sec_intr, ~0); PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits); PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); if (psurge_type != PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits); PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits); mdelay(33); PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); } static int __init smp_psurge_probe(void) { int i, ncpus; struct device_node *dn; /* We don't do SMP on the PPC601 -- paulus */ if (PVR_VER(mfspr(SPRN_PVR)) == 1) return 1; /* * The powersurge cpu board can be used in the generation * of powermacs that have a socket for an upgradeable cpu card, * including the 7500, 8500, 9500, 9600. * The device tree doesn't tell you if you have 2 cpus because * OF doesn't know anything about the 2nd processor. * Instead we look for magic bits in magic registers, * in the hammerhead memory controller in the case of the * dual-cpu powersurge board. -- paulus. */ dn = of_find_node_by_name(NULL, "hammerhead"); if (dn == NULL) return 1; of_node_put(dn); hhead_base = ioremap(HAMMERHEAD_BASE, 0x800); quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024); psurge_sec_intr = hhead_base + HHEAD_SEC_INTR; psurge_type = psurge_quad_probe(); if (psurge_type != PSURGE_DUAL) { psurge_quad_init(); /* All released cards using this HW design have 4 CPUs */ ncpus = 4; /* No sure how timebase sync works on those, let's use SW */ smp_ops->give_timebase = smp_generic_give_timebase; smp_ops->take_timebase = smp_generic_take_timebase; } else { iounmap(quad_base); if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) { /* not a dual-cpu card */ iounmap(hhead_base); psurge_type = PSURGE_NONE; return 1; } ncpus = 2; } psurge_start = ioremap(PSURGE_START, 4); psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4); /* This is necessary because OF doesn't know about the * secondary cpu(s), and thus there aren't nodes in the * device tree for them, and smp_setup_cpu_maps hasn't * set their bits in cpu_present_mask. */ if (ncpus > NR_CPUS) ncpus = NR_CPUS; for (i = 1; i < ncpus ; ++i) set_cpu_present(i, true); if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352); return ncpus; } static void __init smp_psurge_kick_cpu(int nr) { unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8; unsigned long a, flags; int i, j; /* Defining this here is evil ... but I prefer hiding that * crap to avoid giving people ideas that they can do the * same. */ extern volatile unsigned int cpu_callin_map[NR_CPUS]; /* may need to flush here if secondary bats aren't setup */ for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32) asm volatile("dcbf 0,%0" : : "r" (a) : "memory"); asm volatile("sync"); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353); /* This is going to freeze the timeebase, we disable interrupts */ local_irq_save(flags); out_be32(psurge_start, start); mb(); psurge_set_ipi(nr); /* * We can't use udelay here because the timebase is now frozen. */ for (i = 0; i < 2000; ++i) asm volatile("nop" : : : "memory"); psurge_clr_ipi(nr); /* * Also, because the timebase is frozen, we must not return to the * caller which will try to do udelay's etc... Instead, we wait -here- * for the CPU to callin. */ for (i = 0; i < 100000 && !cpu_callin_map[nr]; ++i) { for (j = 1; j < 10000; j++) asm volatile("nop" : : : "memory"); asm volatile("sync" : : : "memory"); } if (!cpu_callin_map[nr]) goto stuck; /* And we do the TB sync here too for standard dual CPU cards */ if (psurge_type == PSURGE_DUAL) { while(!tb_req) barrier(); tb_req = 0; mb(); timebase = get_tb(); mb(); while (timebase) barrier(); mb(); } stuck: /* now interrupt the secondary, restarting both TBs */ if (psurge_type == PSURGE_DUAL) psurge_set_ipi(1); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354); } static struct irqaction psurge_irqaction = { .handler = psurge_primary_intr, .flags = IRQF_DISABLED, .name = "primary IPI", }; static void __init smp_psurge_setup_cpu(int cpu_nr) { if (cpu_nr != 0) return; /* reset the entry point so if we get another intr we won't * try to startup again */ out_be32(psurge_start, 0x100); if (setup_irq(irq_create_mapping(NULL, 30), &psurge_irqaction)) printk(KERN_ERR "Couldn't get primary IPI interrupt"); } void __init smp_psurge_take_timebase(void) { if (psurge_type != PSURGE_DUAL) return; tb_req = 1; mb(); while (!timebase) barrier(); mb(); set_tb(timebase >> 32, timebase & 0xffffffff); timebase = 0; mb(); set_dec(tb_ticks_per_jiffy/2); } void __init smp_psurge_give_timebase(void) { /* Nothing to do here */ } /* PowerSurge-style Macs */ struct smp_ops_t psurge_smp_ops = { .message_pass = smp_psurge_message_pass, .probe = smp_psurge_probe, .kick_cpu = smp_psurge_kick_cpu, .setup_cpu = smp_psurge_setup_cpu, .give_timebase = smp_psurge_give_timebase, .take_timebase = smp_psurge_take_timebase, }; #endif /* CONFIG_PPC32 - actually powersurge support */ /* * Core 99 and later support */ static void smp_core99_give_timebase(void) { unsigned long flags; local_irq_save(flags); while(!tb_req) barrier(); tb_req = 0; (*pmac_tb_freeze)(1); mb(); timebase = get_tb(); mb(); while (timebase) barrier(); mb(); (*pmac_tb_freeze)(0); mb(); local_irq_restore(flags); } static void __devinit smp_core99_take_timebase(void) { unsigned long flags; local_irq_save(flags); tb_req = 1; mb(); while (!timebase) barrier(); mb(); set_tb(timebase >> 32, timebase & 0xffffffff); timebase = 0; mb(); local_irq_restore(flags); } #ifdef CONFIG_PPC64 /* * G5s enable/disable the timebase via an i2c-connected clock chip. */ static struct pmac_i2c_bus *pmac_tb_clock_chip_host; static u8 pmac_tb_pulsar_addr; static void smp_core99_cypress_tb_freeze(int freeze) { u8 data; int rc; /* Strangely, the device-tree says address is 0xd2, but darwin * accesses 0xd0 ... */ pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_combined); rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 0xd0 | pmac_i2c_read, 1, 0x81, &data, 1); if (rc != 0) goto bail; data = (data & 0xf3) | (freeze ? 0x00 : 0x0c); pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub); rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 0xd0 | pmac_i2c_write, 1, 0x81, &data, 1); bail: if (rc != 0) { printk("Cypress Timebase %s rc: %d\n", freeze ? "freeze" : "unfreeze", rc); panic("Timebase freeze failed !\n"); } } static void smp_core99_pulsar_tb_freeze(int freeze) { u8 data; int rc; pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_combined); rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, pmac_tb_pulsar_addr | pmac_i2c_read, 1, 0x2e, &data, 1); if (rc != 0) goto bail; data = (data & 0x88) | (freeze ? 0x11 : 0x22); pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub); rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, pmac_tb_pulsar_addr | pmac_i2c_write, 1, 0x2e, &data, 1); bail: if (rc != 0) { printk(KERN_ERR "Pulsar Timebase %s rc: %d\n", freeze ? "freeze" : "unfreeze", rc); panic("Timebase freeze failed !\n"); } } static void __init smp_core99_setup_i2c_hwsync(int ncpus) { struct device_node *cc = NULL; struct device_node *p; const char *name = NULL; const u32 *reg; int ok; /* Look for the clock chip */ while ((cc = of_find_node_by_name(cc, "i2c-hwclock")) != NULL) { p = of_get_parent(cc); ok = p && of_device_is_compatible(p, "uni-n-i2c"); of_node_put(p); if (!ok) continue; pmac_tb_clock_chip_host = pmac_i2c_find_bus(cc); if (pmac_tb_clock_chip_host == NULL) continue; reg = of_get_property(cc, "reg", NULL); if (reg == NULL) continue; switch (*reg) { case 0xd2: if (of_device_is_compatible(cc,"pulsar-legacy-slewing")) { pmac_tb_freeze = smp_core99_pulsar_tb_freeze; pmac_tb_pulsar_addr = 0xd2; name = "Pulsar"; } else if (of_device_is_compatible(cc, "cy28508")) { pmac_tb_freeze = smp_core99_cypress_tb_freeze; name = "Cypress"; } break; case 0xd4: pmac_tb_freeze = smp_core99_pulsar_tb_freeze; pmac_tb_pulsar_addr = 0xd4; name = "Pulsar"; break; } if (pmac_tb_freeze != NULL) break; } if (pmac_tb_freeze != NULL) { /* Open i2c bus for synchronous access */ if (pmac_i2c_open(pmac_tb_clock_chip_host, 1)) { printk(KERN_ERR "Failed top open i2c bus for clock" " sync, fallback to software sync !\n"); goto no_i2c_sync; } printk(KERN_INFO "Processor timebase sync using %s i2c clock\n", name); return; } no_i2c_sync: pmac_tb_freeze = NULL; pmac_tb_clock_chip_host = NULL; } /* * Newer G5s uses a platform function */ static void smp_core99_pfunc_tb_freeze(int freeze) { struct device_node *cpus; struct pmf_args args; cpus = of_find_node_by_path("/cpus"); BUG_ON(cpus == NULL); args.count = 1; args.u[0].v = !freeze; pmf_call_function(cpus, "cpu-timebase", &args); of_node_put(cpus); } #else /* CONFIG_PPC64 */ /* * SMP G4 use a GPIO to enable/disable the timebase. */ static unsigned int core99_tb_gpio; /* Timebase freeze GPIO */ static void smp_core99_gpio_tb_freeze(int freeze) { if (freeze) pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4); else pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0); pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); } #endif /* !CONFIG_PPC64 */ /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */ volatile static long int core99_l2_cache; volatile static long int core99_l3_cache; static void __devinit core99_init_caches(int cpu) { #ifndef CONFIG_PPC64 if (!cpu_has_feature(CPU_FTR_L2CR)) return; if (cpu == 0) { core99_l2_cache = _get_L2CR(); printk("CPU0: L2CR is %lx\n", core99_l2_cache); } else { printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR()); _set_L2CR(0); _set_L2CR(core99_l2_cache); printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache); } if (!cpu_has_feature(CPU_FTR_L3CR)) return; if (cpu == 0){ core99_l3_cache = _get_L3CR(); printk("CPU0: L3CR is %lx\n", core99_l3_cache); } else { printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR()); _set_L3CR(0); _set_L3CR(core99_l3_cache); printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache); } #endif /* !CONFIG_PPC64 */ } static void __init smp_core99_setup(int ncpus) { #ifdef CONFIG_PPC64 /* i2c based HW sync on some G5s */ if (of_machine_is_compatible("PowerMac7,2") || of_machine_is_compatible("PowerMac7,3") || of_machine_is_compatible("RackMac3,1")) smp_core99_setup_i2c_hwsync(ncpus); /* pfunc based HW sync on recent G5s */ if (pmac_tb_freeze == NULL) { struct device_node *cpus = of_find_node_by_path("/cpus"); if (cpus && of_get_property(cpus, "platform-cpu-timebase", NULL)) { pmac_tb_freeze = smp_core99_pfunc_tb_freeze; printk(KERN_INFO "Processor timebase sync using" " platform function\n"); } } #else /* CONFIG_PPC64 */ /* GPIO based HW sync on ppc32 Core99 */ if (pmac_tb_freeze == NULL && !of_machine_is_compatible("MacRISC4")) { struct device_node *cpu; const u32 *tbprop = NULL; core99_tb_gpio = KL_GPIO_TB_ENABLE; /* default value */ cpu = of_find_node_by_type(NULL, "cpu"); if (cpu != NULL) { tbprop = of_get_property(cpu, "timebase-enable", NULL); if (tbprop) core99_tb_gpio = *tbprop; of_node_put(cpu); } pmac_tb_freeze = smp_core99_gpio_tb_freeze; printk(KERN_INFO "Processor timebase sync using" " GPIO 0x%02x\n", core99_tb_gpio); } #endif /* CONFIG_PPC64 */ /* No timebase sync, fallback to software */ if (pmac_tb_freeze == NULL) { smp_ops->give_timebase = smp_generic_give_timebase; smp_ops->take_timebase = smp_generic_take_timebase; printk(KERN_INFO "Processor timebase sync using software\n"); } #ifndef CONFIG_PPC64 { int i; /* XXX should get this from reg properties */ for (i = 1; i < ncpus; ++i) set_hard_smp_processor_id(i, i); } #endif /* 32 bits SMP can't NAP */ if (!of_machine_is_compatible("MacRISC4")) powersave_nap = 0; } static int __init smp_core99_probe(void) { struct device_node *cpus; int ncpus = 0; if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345); /* Count CPUs in the device-tree */ for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;) ++ncpus; printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus); /* Nothing more to do if less than 2 of them */ if (ncpus <= 1) return 1; /* We need to perform some early initialisations before we can start * setting up SMP as we are running before initcalls */ pmac_pfunc_base_install(); pmac_i2c_init(); /* Setup various bits like timebase sync method, ability to nap, ... */ smp_core99_setup(ncpus); /* Install IPIs */ mpic_request_ipis(); /* Collect l2cr and l3cr values from CPU 0 */ core99_init_caches(0); return ncpus; } static void __devinit smp_core99_kick_cpu(int nr) { unsigned int save_vector; unsigned long target, flags; unsigned int *vector = (unsigned int *)(PAGE_OFFSET+0x100); if (nr < 0 || nr > 3) return; if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346); local_irq_save(flags); /* Save reset vector */ save_vector = *vector; /* Setup fake reset vector that does * b __secondary_start_pmac_0 + nr*8 */ target = (unsigned long) __secondary_start_pmac_0 + nr * 8; patch_branch(vector, target, BRANCH_SET_LINK); /* Put some life in our friend */ pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0); /* FIXME: We wait a bit for the CPU to take the exception, I should * instead wait for the entry code to set something for me. Well, * ideally, all that crap will be done in prom.c and the CPU left * in a RAM-based wait loop like CHRP. */ mdelay(1); /* Restore our exception vector */ *vector = save_vector; flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); local_irq_restore(flags); if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347); } static void __devinit smp_core99_setup_cpu(int cpu_nr) { /* Setup L2/L3 */ if (cpu_nr != 0) core99_init_caches(cpu_nr); /* Setup openpic */ mpic_setup_this_cpu(); } #ifdef CONFIG_HOTPLUG_CPU static int smp_core99_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int rc; switch(action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: /* Open i2c bus if it was used for tb sync */ if (pmac_tb_clock_chip_host) { rc = pmac_i2c_open(pmac_tb_clock_chip_host, 1); if (rc) { pr_err("Failed to open i2c bus for time sync\n"); return notifier_from_errno(rc); } } break; case CPU_ONLINE: case CPU_UP_CANCELED: /* Close i2c bus if it was used for tb sync */ if (pmac_tb_clock_chip_host) pmac_i2c_close(pmac_tb_clock_chip_host); break; default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata smp_core99_cpu_nb = { .notifier_call = smp_core99_cpu_notify, }; #endif /* CONFIG_HOTPLUG_CPU */ static void __init smp_core99_bringup_done(void) { #ifdef CONFIG_PPC64 extern void g5_phy_disable_cpu1(void); /* Close i2c bus if it was used for tb sync */ if (pmac_tb_clock_chip_host) pmac_i2c_close(pmac_tb_clock_chip_host); /* If we didn't start the second CPU, we must take * it off the bus. */ if (of_machine_is_compatible("MacRISC4") && num_online_cpus() < 2) { set_cpu_present(1, false); g5_phy_disable_cpu1(); } #endif /* CONFIG_PPC64 */ #ifdef CONFIG_HOTPLUG_CPU register_cpu_notifier(&smp_core99_cpu_nb); #endif if (ppc_md.progress) ppc_md.progress("smp_core99_bringup_done", 0x349); } #ifdef CONFIG_HOTPLUG_CPU static int smp_core99_cpu_disable(void) { int rc = generic_cpu_disable(); if (rc) return rc; mpic_cpu_set_priority(0xf); return 0; } #ifdef CONFIG_PPC32 static void pmac_cpu_die(void) { local_irq_disable(); idle_task_exit(); printk(KERN_DEBUG "CPU%d offline\n", smp_processor_id()); __get_cpu_var(cpu_state) = CPU_DEAD; smp_wmb(); mb(); low_cpu_die(); } #else /* CONFIG_PPC32 */ static void pmac_cpu_die(void) { local_irq_disable(); idle_task_exit(); /* * turn off as much as possible, we'll be * kicked out as this will only be invoked * on core99 platforms for now ... */ printk(KERN_INFO "CPU#%d offline\n", smp_processor_id()); __get_cpu_var(cpu_state) = CPU_DEAD; smp_wmb(); /* * during the path that leads here preemption is disabled, * reenable it now so that when coming up preempt count is * zero correctly */ preempt_enable(); /* * Re-enable interrupts. The NAP code needs to enable them * anyways, do it now so we deal with the case where one already * happened while soft-disabled. * We shouldn't get any external interrupts, only decrementer, and the * decrementer handler is safe for use on offline CPUs */ local_irq_enable(); while (1) { /* let's not take timer interrupts too often ... */ set_dec(0x7fffffff); /* Enter NAP mode */ power4_idle(); } } #endif /* else CONFIG_PPC32 */ #endif /* CONFIG_HOTPLUG_CPU */ /* Core99 Macs (dual G4s and G5s) */ struct smp_ops_t core99_smp_ops = { .message_pass = smp_mpic_message_pass, .probe = smp_core99_probe, .bringup_done = smp_core99_bringup_done, .kick_cpu = smp_core99_kick_cpu, .setup_cpu = smp_core99_setup_cpu, .give_timebase = smp_core99_give_timebase, .take_timebase = smp_core99_take_timebase, #if defined(CONFIG_HOTPLUG_CPU) .cpu_disable = smp_core99_cpu_disable, .cpu_die = generic_cpu_die, #endif }; void __init pmac_setup_smp(void) { struct device_node *np; /* Check for Core99 */ np = of_find_node_by_name(NULL, "uni-n"); if (!np) np = of_find_node_by_name(NULL, "u3"); if (!np) np = of_find_node_by_name(NULL, "u4"); if (np) { of_node_put(np); smp_ops = &core99_smp_ops; } #ifdef CONFIG_PPC32 else { /* We have to set bits in cpu_possible_mask here since the * secondary CPU(s) aren't in the device tree. Various * things won't be initialized for CPUs not in the possible * map, so we really need to fix it up here. */ int cpu; for (cpu = 1; cpu < 4 && cpu < NR_CPUS; ++cpu) set_cpu_possible(cpu, true); smp_ops = &psurge_smp_ops; } #endif /* CONFIG_PPC32 */ #ifdef CONFIG_HOTPLUG_CPU ppc_md.cpu_die = pmac_cpu_die; #endif }