/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2007-2015 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_nvmet.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_version.h" #include "lpfc_compat.h" #include "lpfc_debugfs.h" #include "lpfc_bsg.h" #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /* * debugfs interface * * To access this interface the user should: * # mount -t debugfs none /sys/kernel/debug * * The lpfc debugfs directory hierarchy is: * /sys/kernel/debug/lpfc/fnX/vportY * where X is the lpfc hba function unique_id * where Y is the vport VPI on that hba * * Debugging services available per vport: * discovery_trace * This is an ACSII readable file that contains a trace of the last * lpfc_debugfs_max_disc_trc events that happened on a specific vport. * See lpfc_debugfs.h for different categories of discovery events. * To enable the discovery trace, the following module parameters must be set: * lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support * lpfc_debugfs_max_disc_trc=X Where X is the event trace depth for * EACH vport. X MUST also be a power of 2. * lpfc_debugfs_mask_disc_trc=Y Where Y is an event mask as defined in * lpfc_debugfs.h . * * slow_ring_trace * This is an ACSII readable file that contains a trace of the last * lpfc_debugfs_max_slow_ring_trc events that happened on a specific HBA. * To enable the slow ring trace, the following module parameters must be set: * lpfc_debugfs_enable=1 Turns on lpfc debugfs filesystem support * lpfc_debugfs_max_slow_ring_trc=X Where X is the event trace depth for * the HBA. X MUST also be a power of 2. */ static int lpfc_debugfs_enable = 1; module_param(lpfc_debugfs_enable, int, S_IRUGO); MODULE_PARM_DESC(lpfc_debugfs_enable, "Enable debugfs services"); /* This MUST be a power of 2 */ static int lpfc_debugfs_max_disc_trc; module_param(lpfc_debugfs_max_disc_trc, int, S_IRUGO); MODULE_PARM_DESC(lpfc_debugfs_max_disc_trc, "Set debugfs discovery trace depth"); /* This MUST be a power of 2 */ static int lpfc_debugfs_max_slow_ring_trc; module_param(lpfc_debugfs_max_slow_ring_trc, int, S_IRUGO); MODULE_PARM_DESC(lpfc_debugfs_max_slow_ring_trc, "Set debugfs slow ring trace depth"); /* This MUST be a power of 2 */ static int lpfc_debugfs_max_nvmeio_trc; module_param(lpfc_debugfs_max_nvmeio_trc, int, 0444); MODULE_PARM_DESC(lpfc_debugfs_max_nvmeio_trc, "Set debugfs NVME IO trace depth"); static int lpfc_debugfs_mask_disc_trc; module_param(lpfc_debugfs_mask_disc_trc, int, S_IRUGO); MODULE_PARM_DESC(lpfc_debugfs_mask_disc_trc, "Set debugfs discovery trace mask"); #include static atomic_t lpfc_debugfs_seq_trc_cnt = ATOMIC_INIT(0); static unsigned long lpfc_debugfs_start_time = 0L; /* iDiag */ static struct lpfc_idiag idiag; /** * lpfc_debugfs_disc_trc_data - Dump discovery logging to a buffer * @vport: The vport to gather the log info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine gathers the lpfc discovery debugfs data from the @vport and * dumps it to @buf up to @size number of bytes. It will start at the next entry * in the log and process the log until the end of the buffer. Then it will * gather from the beginning of the log and process until the current entry. * * Notes: * Discovery logging will be disabled while while this routine dumps the log. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_disc_trc_data(struct lpfc_vport *vport, char *buf, int size) { int i, index, len, enable; uint32_t ms; struct lpfc_debugfs_trc *dtp; char *buffer; buffer = kmalloc(LPFC_DEBUG_TRC_ENTRY_SIZE, GFP_KERNEL); if (!buffer) return 0; enable = lpfc_debugfs_enable; lpfc_debugfs_enable = 0; len = 0; index = (atomic_read(&vport->disc_trc_cnt) + 1) & (lpfc_debugfs_max_disc_trc - 1); for (i = index; i < lpfc_debugfs_max_disc_trc; i++) { dtp = vport->disc_trc + i; if (!dtp->fmt) continue; ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time); snprintf(buffer, LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n", dtp->seq_cnt, ms, dtp->fmt); len += snprintf(buf+len, size-len, buffer, dtp->data1, dtp->data2, dtp->data3); } for (i = 0; i < index; i++) { dtp = vport->disc_trc + i; if (!dtp->fmt) continue; ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time); snprintf(buffer, LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n", dtp->seq_cnt, ms, dtp->fmt); len += snprintf(buf+len, size-len, buffer, dtp->data1, dtp->data2, dtp->data3); } lpfc_debugfs_enable = enable; kfree(buffer); return len; } /** * lpfc_debugfs_slow_ring_trc_data - Dump slow ring logging to a buffer * @phba: The HBA to gather the log info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine gathers the lpfc slow ring debugfs data from the @phba and * dumps it to @buf up to @size number of bytes. It will start at the next entry * in the log and process the log until the end of the buffer. Then it will * gather from the beginning of the log and process until the current entry. * * Notes: * Slow ring logging will be disabled while while this routine dumps the log. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_slow_ring_trc_data(struct lpfc_hba *phba, char *buf, int size) { int i, index, len, enable; uint32_t ms; struct lpfc_debugfs_trc *dtp; char *buffer; buffer = kmalloc(LPFC_DEBUG_TRC_ENTRY_SIZE, GFP_KERNEL); if (!buffer) return 0; enable = lpfc_debugfs_enable; lpfc_debugfs_enable = 0; len = 0; index = (atomic_read(&phba->slow_ring_trc_cnt) + 1) & (lpfc_debugfs_max_slow_ring_trc - 1); for (i = index; i < lpfc_debugfs_max_slow_ring_trc; i++) { dtp = phba->slow_ring_trc + i; if (!dtp->fmt) continue; ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time); snprintf(buffer, LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n", dtp->seq_cnt, ms, dtp->fmt); len += snprintf(buf+len, size-len, buffer, dtp->data1, dtp->data2, dtp->data3); } for (i = 0; i < index; i++) { dtp = phba->slow_ring_trc + i; if (!dtp->fmt) continue; ms = jiffies_to_msecs(dtp->jif - lpfc_debugfs_start_time); snprintf(buffer, LPFC_DEBUG_TRC_ENTRY_SIZE, "%010d:%010d ms:%s\n", dtp->seq_cnt, ms, dtp->fmt); len += snprintf(buf+len, size-len, buffer, dtp->data1, dtp->data2, dtp->data3); } lpfc_debugfs_enable = enable; kfree(buffer); return len; } static int lpfc_debugfs_last_hbq = -1; /** * lpfc_debugfs_hbqinfo_data - Dump host buffer queue info to a buffer * @phba: The HBA to gather host buffer info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the host buffer queue info from the @phba to @buf up to * @size number of bytes. A header that describes the current hbq state will be * dumped to @buf first and then info on each hbq entry will be dumped to @buf * until @size bytes have been dumped or all the hbq info has been dumped. * * Notes: * This routine will rotate through each configured HBQ each time called. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_hbqinfo_data(struct lpfc_hba *phba, char *buf, int size) { int len = 0; int i, j, found, posted, low; uint32_t phys, raw_index, getidx; struct lpfc_hbq_init *hip; struct hbq_s *hbqs; struct lpfc_hbq_entry *hbqe; struct lpfc_dmabuf *d_buf; struct hbq_dmabuf *hbq_buf; if (phba->sli_rev != 3) return 0; spin_lock_irq(&phba->hbalock); /* toggle between multiple hbqs, if any */ i = lpfc_sli_hbq_count(); if (i > 1) { lpfc_debugfs_last_hbq++; if (lpfc_debugfs_last_hbq >= i) lpfc_debugfs_last_hbq = 0; } else lpfc_debugfs_last_hbq = 0; i = lpfc_debugfs_last_hbq; len += snprintf(buf+len, size-len, "HBQ %d Info\n", i); hbqs = &phba->hbqs[i]; posted = 0; list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list) posted++; hip = lpfc_hbq_defs[i]; len += snprintf(buf+len, size-len, "idx:%d prof:%d rn:%d bufcnt:%d icnt:%d acnt:%d posted %d\n", hip->hbq_index, hip->profile, hip->rn, hip->buffer_count, hip->init_count, hip->add_count, posted); raw_index = phba->hbq_get[i]; getidx = le32_to_cpu(raw_index); len += snprintf(buf+len, size-len, "entries:%d bufcnt:%d Put:%d nPut:%d localGet:%d hbaGet:%d\n", hbqs->entry_count, hbqs->buffer_count, hbqs->hbqPutIdx, hbqs->next_hbqPutIdx, hbqs->local_hbqGetIdx, getidx); hbqe = (struct lpfc_hbq_entry *) phba->hbqs[i].hbq_virt; for (j=0; jentry_count; j++) { len += snprintf(buf+len, size-len, "%03d: %08x %04x %05x ", j, le32_to_cpu(hbqe->bde.addrLow), le32_to_cpu(hbqe->bde.tus.w), le32_to_cpu(hbqe->buffer_tag)); i = 0; found = 0; /* First calculate if slot has an associated posted buffer */ low = hbqs->hbqPutIdx - posted; if (low >= 0) { if ((j >= hbqs->hbqPutIdx) || (j < low)) { len += snprintf(buf+len, size-len, "Unused\n"); goto skipit; } } else { if ((j >= hbqs->hbqPutIdx) && (j < (hbqs->entry_count+low))) { len += snprintf(buf+len, size-len, "Unused\n"); goto skipit; } } /* Get the Buffer info for the posted buffer */ list_for_each_entry(d_buf, &hbqs->hbq_buffer_list, list) { hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); phys = ((uint64_t)hbq_buf->dbuf.phys & 0xffffffff); if (phys == le32_to_cpu(hbqe->bde.addrLow)) { len += snprintf(buf+len, size-len, "Buf%d: %p %06x\n", i, hbq_buf->dbuf.virt, hbq_buf->tag); found = 1; break; } i++; } if (!found) { len += snprintf(buf+len, size-len, "No DMAinfo?\n"); } skipit: hbqe++; if (len > LPFC_HBQINFO_SIZE - 54) break; } spin_unlock_irq(&phba->hbalock); return len; } static int lpfc_debugfs_last_hba_slim_off; /** * lpfc_debugfs_dumpHBASlim_data - Dump HBA SLIM info to a buffer * @phba: The HBA to gather SLIM info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the current contents of HBA SLIM for the HBA associated * with @phba to @buf up to @size bytes of data. This is the raw HBA SLIM data. * * Notes: * This routine will only dump up to 1024 bytes of data each time called and * should be called multiple times to dump the entire HBA SLIM. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_dumpHBASlim_data(struct lpfc_hba *phba, char *buf, int size) { int len = 0; int i, off; uint32_t *ptr; char *buffer; buffer = kmalloc(1024, GFP_KERNEL); if (!buffer) return 0; off = 0; spin_lock_irq(&phba->hbalock); len += snprintf(buf+len, size-len, "HBA SLIM\n"); lpfc_memcpy_from_slim(buffer, phba->MBslimaddr + lpfc_debugfs_last_hba_slim_off, 1024); ptr = (uint32_t *)&buffer[0]; off = lpfc_debugfs_last_hba_slim_off; /* Set it up for the next time */ lpfc_debugfs_last_hba_slim_off += 1024; if (lpfc_debugfs_last_hba_slim_off >= 4096) lpfc_debugfs_last_hba_slim_off = 0; i = 1024; while (i > 0) { len += snprintf(buf+len, size-len, "%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n", off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5), *(ptr+6), *(ptr+7)); ptr += 8; i -= (8 * sizeof(uint32_t)); off += (8 * sizeof(uint32_t)); } spin_unlock_irq(&phba->hbalock); kfree(buffer); return len; } /** * lpfc_debugfs_dumpHostSlim_data - Dump host SLIM info to a buffer * @phba: The HBA to gather Host SLIM info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the current contents of host SLIM for the host associated * with @phba to @buf up to @size bytes of data. The dump will contain the * Mailbox, PCB, Rings, and Registers that are located in host memory. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_dumpHostSlim_data(struct lpfc_hba *phba, char *buf, int size) { int len = 0; int i, off; uint32_t word0, word1, word2, word3; uint32_t *ptr; struct lpfc_pgp *pgpp; struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; off = 0; spin_lock_irq(&phba->hbalock); len += snprintf(buf+len, size-len, "SLIM Mailbox\n"); ptr = (uint32_t *)phba->slim2p.virt; i = sizeof(MAILBOX_t); while (i > 0) { len += snprintf(buf+len, size-len, "%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n", off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5), *(ptr+6), *(ptr+7)); ptr += 8; i -= (8 * sizeof(uint32_t)); off += (8 * sizeof(uint32_t)); } len += snprintf(buf+len, size-len, "SLIM PCB\n"); ptr = (uint32_t *)phba->pcb; i = sizeof(PCB_t); while (i > 0) { len += snprintf(buf+len, size-len, "%08x: %08x %08x %08x %08x %08x %08x %08x %08x\n", off, *ptr, *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5), *(ptr+6), *(ptr+7)); ptr += 8; i -= (8 * sizeof(uint32_t)); off += (8 * sizeof(uint32_t)); } if (phba->sli_rev <= LPFC_SLI_REV3) { for (i = 0; i < 4; i++) { pgpp = &phba->port_gp[i]; pring = &psli->sli3_ring[i]; len += snprintf(buf+len, size-len, "Ring %d: CMD GetInx:%d " "(Max:%d Next:%d " "Local:%d flg:x%x) " "RSP PutInx:%d Max:%d\n", i, pgpp->cmdGetInx, pring->sli.sli3.numCiocb, pring->sli.sli3.next_cmdidx, pring->sli.sli3.local_getidx, pring->flag, pgpp->rspPutInx, pring->sli.sli3.numRiocb); } word0 = readl(phba->HAregaddr); word1 = readl(phba->CAregaddr); word2 = readl(phba->HSregaddr); word3 = readl(phba->HCregaddr); len += snprintf(buf+len, size-len, "HA:%08x CA:%08x HS:%08x " "HC:%08x\n", word0, word1, word2, word3); } spin_unlock_irq(&phba->hbalock); return len; } /** * lpfc_debugfs_nodelist_data - Dump target node list to a buffer * @vport: The vport to gather target node info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the current target node list associated with @vport to * @buf up to @size bytes of data. Each node entry in the dump will contain a * node state, DID, WWPN, WWNN, RPI, flags, type, and other useful fields. * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_nodelist_data(struct lpfc_vport *vport, char *buf, int size) { int len = 0; int i, iocnt, outio, cnt; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp; unsigned char *statep; struct nvme_fc_local_port *localport; struct nvme_fc_remote_port *nrport = NULL; struct lpfc_nvme_rport *rport; cnt = (LPFC_NODELIST_SIZE / LPFC_NODELIST_ENTRY_SIZE); outio = 0; len += snprintf(buf+len, size-len, "\nFCP Nodelist Entries ...\n"); spin_lock_irq(shost->host_lock); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { iocnt = 0; if (!cnt) { len += snprintf(buf+len, size-len, "Missing Nodelist Entries\n"); break; } cnt--; switch (ndlp->nlp_state) { case NLP_STE_UNUSED_NODE: statep = "UNUSED"; break; case NLP_STE_PLOGI_ISSUE: statep = "PLOGI "; break; case NLP_STE_ADISC_ISSUE: statep = "ADISC "; break; case NLP_STE_REG_LOGIN_ISSUE: statep = "REGLOG"; break; case NLP_STE_PRLI_ISSUE: statep = "PRLI "; break; case NLP_STE_LOGO_ISSUE: statep = "LOGO "; break; case NLP_STE_UNMAPPED_NODE: statep = "UNMAP "; iocnt = 1; break; case NLP_STE_MAPPED_NODE: statep = "MAPPED"; iocnt = 1; break; case NLP_STE_NPR_NODE: statep = "NPR "; break; default: statep = "UNKNOWN"; } len += snprintf(buf+len, size-len, "%s DID:x%06x ", statep, ndlp->nlp_DID); len += snprintf(buf+len, size-len, "WWPN x%llx ", wwn_to_u64(ndlp->nlp_portname.u.wwn)); len += snprintf(buf+len, size-len, "WWNN x%llx ", wwn_to_u64(ndlp->nlp_nodename.u.wwn)); if (ndlp->nlp_flag & NLP_RPI_REGISTERED) len += snprintf(buf+len, size-len, "RPI:%03d ", ndlp->nlp_rpi); else len += snprintf(buf+len, size-len, "RPI:none "); len += snprintf(buf+len, size-len, "flag:x%08x ", ndlp->nlp_flag); if (!ndlp->nlp_type) len += snprintf(buf+len, size-len, "UNKNOWN_TYPE "); if (ndlp->nlp_type & NLP_FC_NODE) len += snprintf(buf+len, size-len, "FC_NODE "); if (ndlp->nlp_type & NLP_FABRIC) { len += snprintf(buf+len, size-len, "FABRIC "); iocnt = 0; } if (ndlp->nlp_type & NLP_FCP_TARGET) len += snprintf(buf+len, size-len, "FCP_TGT sid:%d ", ndlp->nlp_sid); if (ndlp->nlp_type & NLP_FCP_INITIATOR) len += snprintf(buf+len, size-len, "FCP_INITIATOR "); if (ndlp->nlp_type & NLP_NVME_TARGET) len += snprintf(buf + len, size - len, "NVME_TGT sid:%d ", NLP_NO_SID); if (ndlp->nlp_type & NLP_NVME_INITIATOR) len += snprintf(buf + len, size - len, "NVME_INITIATOR "); len += snprintf(buf+len, size-len, "usgmap:%x ", ndlp->nlp_usg_map); len += snprintf(buf+len, size-len, "refcnt:%x", kref_read(&ndlp->kref)); if (iocnt) { i = atomic_read(&ndlp->cmd_pending); len += snprintf(buf + len, size - len, " OutIO:x%x Qdepth x%x", i, ndlp->cmd_qdepth); outio += i; } len += snprintf(buf + len, size - len, "defer:%x ", ndlp->nlp_defer_did); len += snprintf(buf+len, size-len, "\n"); } spin_unlock_irq(shost->host_lock); len += snprintf(buf + len, size - len, "\nOutstanding IO x%x\n", outio); if (phba->nvmet_support && phba->targetport && (vport == phba->pport)) { len += snprintf(buf + len, size - len, "\nNVME Targetport Entry ...\n"); /* Port state is only one of two values for now. */ if (phba->targetport->port_id) statep = "REGISTERED"; else statep = "INIT"; len += snprintf(buf + len, size - len, "TGT WWNN x%llx WWPN x%llx State %s\n", wwn_to_u64(vport->fc_nodename.u.wwn), wwn_to_u64(vport->fc_portname.u.wwn), statep); len += snprintf(buf + len, size - len, " Targetport DID x%06x\n", phba->targetport->port_id); goto out_exit; } len += snprintf(buf + len, size - len, "\nNVME Lport/Rport Entries ...\n"); localport = vport->localport; if (!localport) goto out_exit; spin_lock_irq(shost->host_lock); /* Port state is only one of two values for now. */ if (localport->port_id) statep = "ONLINE"; else statep = "UNKNOWN "; len += snprintf(buf + len, size - len, "Lport DID x%06x PortState %s\n", localport->port_id, statep); len += snprintf(buf + len, size - len, "\tRport List:\n"); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { /* local short-hand pointer. */ spin_lock(&phba->hbalock); rport = lpfc_ndlp_get_nrport(ndlp); if (rport) nrport = rport->remoteport; spin_unlock(&phba->hbalock); if (!nrport) continue; /* Port state is only one of two values for now. */ switch (nrport->port_state) { case FC_OBJSTATE_ONLINE: statep = "ONLINE"; break; case FC_OBJSTATE_UNKNOWN: statep = "UNKNOWN "; break; default: statep = "UNSUPPORTED"; break; } /* Tab in to show lport ownership. */ len += snprintf(buf + len, size - len, "\t%s Port ID:x%06x ", statep, nrport->port_id); len += snprintf(buf + len, size - len, "WWPN x%llx ", nrport->port_name); len += snprintf(buf + len, size - len, "WWNN x%llx ", nrport->node_name); /* An NVME rport can have multiple roles. */ if (nrport->port_role & FC_PORT_ROLE_NVME_INITIATOR) len += snprintf(buf + len, size - len, "INITIATOR "); if (nrport->port_role & FC_PORT_ROLE_NVME_TARGET) len += snprintf(buf + len, size - len, "TARGET "); if (nrport->port_role & FC_PORT_ROLE_NVME_DISCOVERY) len += snprintf(buf + len, size - len, "DISCSRVC "); if (nrport->port_role & ~(FC_PORT_ROLE_NVME_INITIATOR | FC_PORT_ROLE_NVME_TARGET | FC_PORT_ROLE_NVME_DISCOVERY)) len += snprintf(buf + len, size - len, "UNKNOWN ROLE x%x", nrport->port_role); /* Terminate the string. */ len += snprintf(buf + len, size - len, "\n"); } spin_unlock_irq(shost->host_lock); out_exit: return len; } /** * lpfc_debugfs_nvmestat_data - Dump target node list to a buffer * @vport: The vport to gather target node info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the NVME statistics associated with @vport * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_nvmestat_data(struct lpfc_vport *vport, char *buf, int size) { struct lpfc_hba *phba = vport->phba; struct lpfc_nvmet_tgtport *tgtp; struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; struct nvme_fc_local_port *localport; struct lpfc_nvme_ctrl_stat *cstat; struct lpfc_nvme_lport *lport; uint64_t data1, data2, data3; uint64_t tot, totin, totout; int cnt, i, maxch; int len = 0; if (phba->nvmet_support) { if (!phba->targetport) return len; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; len += snprintf(buf + len, size - len, "\nNVME Targetport Statistics\n"); len += snprintf(buf + len, size - len, "LS: Rcv %08x Drop %08x Abort %08x\n", atomic_read(&tgtp->rcv_ls_req_in), atomic_read(&tgtp->rcv_ls_req_drop), atomic_read(&tgtp->xmt_ls_abort)); if (atomic_read(&tgtp->rcv_ls_req_in) != atomic_read(&tgtp->rcv_ls_req_out)) { len += snprintf(buf + len, size - len, "Rcv LS: in %08x != out %08x\n", atomic_read(&tgtp->rcv_ls_req_in), atomic_read(&tgtp->rcv_ls_req_out)); } len += snprintf(buf + len, size - len, "LS: Xmt %08x Drop %08x Cmpl %08x\n", atomic_read(&tgtp->xmt_ls_rsp), atomic_read(&tgtp->xmt_ls_drop), atomic_read(&tgtp->xmt_ls_rsp_cmpl)); len += snprintf(buf + len, size - len, "LS: RSP Abort %08x xb %08x Err %08x\n", atomic_read(&tgtp->xmt_ls_rsp_aborted), atomic_read(&tgtp->xmt_ls_rsp_xb_set), atomic_read(&tgtp->xmt_ls_rsp_error)); len += snprintf(buf + len, size - len, "FCP: Rcv %08x Defer %08x Release %08x " "Drop %08x\n", atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_defer), atomic_read(&tgtp->xmt_fcp_release), atomic_read(&tgtp->rcv_fcp_cmd_drop)); if (atomic_read(&tgtp->rcv_fcp_cmd_in) != atomic_read(&tgtp->rcv_fcp_cmd_out)) { len += snprintf(buf + len, size - len, "Rcv FCP: in %08x != out %08x\n", atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_out)); } len += snprintf(buf + len, size - len, "FCP Rsp: read %08x readrsp %08x " "write %08x rsp %08x\n", atomic_read(&tgtp->xmt_fcp_read), atomic_read(&tgtp->xmt_fcp_read_rsp), atomic_read(&tgtp->xmt_fcp_write), atomic_read(&tgtp->xmt_fcp_rsp)); len += snprintf(buf + len, size - len, "FCP Rsp Cmpl: %08x err %08x drop %08x\n", atomic_read(&tgtp->xmt_fcp_rsp_cmpl), atomic_read(&tgtp->xmt_fcp_rsp_error), atomic_read(&tgtp->xmt_fcp_rsp_drop)); len += snprintf(buf + len, size - len, "FCP Rsp Abort: %08x xb %08x xricqe %08x\n", atomic_read(&tgtp->xmt_fcp_rsp_aborted), atomic_read(&tgtp->xmt_fcp_rsp_xb_set), atomic_read(&tgtp->xmt_fcp_xri_abort_cqe)); len += snprintf(buf + len, size - len, "ABORT: Xmt %08x Cmpl %08x\n", atomic_read(&tgtp->xmt_fcp_abort), atomic_read(&tgtp->xmt_fcp_abort_cmpl)); len += snprintf(buf + len, size - len, "ABORT: Sol %08x Usol %08x Err %08x Cmpl %08x", atomic_read(&tgtp->xmt_abort_sol), atomic_read(&tgtp->xmt_abort_unsol), atomic_read(&tgtp->xmt_abort_rsp), atomic_read(&tgtp->xmt_abort_rsp_error)); len += snprintf(buf + len, size - len, "\n"); cnt = 0; spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); list_for_each_entry_safe(ctxp, next_ctxp, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, list) { cnt++; } spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); if (cnt) { len += snprintf(buf + len, size - len, "ABORT: %d ctx entries\n", cnt); spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); list_for_each_entry_safe(ctxp, next_ctxp, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, list) { if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ)) break; len += snprintf(buf + len, size - len, "Entry: oxid %x state %x " "flag %x\n", ctxp->oxid, ctxp->state, ctxp->flag); } spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); } /* Calculate outstanding IOs */ tot = atomic_read(&tgtp->rcv_fcp_cmd_drop); tot += atomic_read(&tgtp->xmt_fcp_release); tot = atomic_read(&tgtp->rcv_fcp_cmd_in) - tot; len += snprintf(buf + len, size - len, "IO_CTX: %08x WAIT: cur %08x tot %08x\n" "CTX Outstanding %08llx\n", phba->sli4_hba.nvmet_xri_cnt, phba->sli4_hba.nvmet_io_wait_cnt, phba->sli4_hba.nvmet_io_wait_total, tot); } else { if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) return len; localport = vport->localport; if (!localport) return len; lport = (struct lpfc_nvme_lport *)localport->private; if (!lport) return len; len += snprintf(buf + len, size - len, "\nNVME Lport Statistics\n"); len += snprintf(buf + len, size - len, "LS: Xmt %016x Cmpl %016x\n", atomic_read(&lport->fc4NvmeLsRequests), atomic_read(&lport->fc4NvmeLsCmpls)); if (phba->cfg_nvme_io_channel < 32) maxch = phba->cfg_nvme_io_channel; else maxch = 32; totin = 0; totout = 0; for (i = 0; i < phba->cfg_nvme_io_channel; i++) { cstat = &lport->cstat[i]; tot = atomic_read(&cstat->fc4NvmeIoCmpls); totin += tot; data1 = atomic_read(&cstat->fc4NvmeInputRequests); data2 = atomic_read(&cstat->fc4NvmeOutputRequests); data3 = atomic_read(&cstat->fc4NvmeControlRequests); totout += (data1 + data2 + data3); /* Limit to 32, debugfs display buffer limitation */ if (i >= 32) continue; len += snprintf(buf + len, PAGE_SIZE - len, "FCP (%d): Rd %016llx Wr %016llx " "IO %016llx ", i, data1, data2, data3); len += snprintf(buf + len, PAGE_SIZE - len, "Cmpl %016llx OutIO %016llx\n", tot, ((data1 + data2 + data3) - tot)); } len += snprintf(buf + len, PAGE_SIZE - len, "Total FCP Cmpl %016llx Issue %016llx " "OutIO %016llx\n", totin, totout, totout - totin); len += snprintf(buf + len, size - len, "LS Xmt Err: Abrt %08x Err %08x " "Cmpl Err: xb %08x Err %08x\n", atomic_read(&lport->xmt_ls_abort), atomic_read(&lport->xmt_ls_err), atomic_read(&lport->cmpl_ls_xb), atomic_read(&lport->cmpl_ls_err)); len += snprintf(buf + len, size - len, "FCP Xmt Err: noxri %06x nondlp %06x " "qdepth %06x wqerr %06x err %06x Abrt %06x\n", atomic_read(&lport->xmt_fcp_noxri), atomic_read(&lport->xmt_fcp_bad_ndlp), atomic_read(&lport->xmt_fcp_qdepth), atomic_read(&lport->xmt_fcp_wqerr), atomic_read(&lport->xmt_fcp_err), atomic_read(&lport->xmt_fcp_abort)); len += snprintf(buf + len, size - len, "FCP Cmpl Err: xb %08x Err %08x\n", atomic_read(&lport->cmpl_fcp_xb), atomic_read(&lport->cmpl_fcp_err)); } return len; } /** * lpfc_debugfs_nvmektime_data - Dump target node list to a buffer * @vport: The vport to gather target node info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the NVME statistics associated with @vport * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_nvmektime_data(struct lpfc_vport *vport, char *buf, int size) { struct lpfc_hba *phba = vport->phba; int len = 0; if (phba->nvmet_support == 0) { /* NVME Initiator */ len += snprintf(buf + len, PAGE_SIZE - len, "ktime %s: Total Samples: %lld\n", (phba->ktime_on ? "Enabled" : "Disabled"), phba->ktime_data_samples); if (phba->ktime_data_samples == 0) return len; len += snprintf( buf + len, PAGE_SIZE - len, "Segment 1: Last NVME Cmd cmpl " "done -to- Start of next NVME cnd (in driver)\n"); len += snprintf( buf + len, PAGE_SIZE - len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg1_total, phba->ktime_data_samples), phba->ktime_seg1_min, phba->ktime_seg1_max); len += snprintf( buf + len, PAGE_SIZE - len, "Segment 2: Driver start of NVME cmd " "-to- Firmware WQ doorbell\n"); len += snprintf( buf + len, PAGE_SIZE - len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg2_total, phba->ktime_data_samples), phba->ktime_seg2_min, phba->ktime_seg2_max); len += snprintf( buf + len, PAGE_SIZE - len, "Segment 3: Firmware WQ doorbell -to- " "MSI-X ISR cmpl\n"); len += snprintf( buf + len, PAGE_SIZE - len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg3_total, phba->ktime_data_samples), phba->ktime_seg3_min, phba->ktime_seg3_max); len += snprintf( buf + len, PAGE_SIZE - len, "Segment 4: MSI-X ISR cmpl -to- " "NVME cmpl done\n"); len += snprintf( buf + len, PAGE_SIZE - len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg4_total, phba->ktime_data_samples), phba->ktime_seg4_min, phba->ktime_seg4_max); len += snprintf( buf + len, PAGE_SIZE - len, "Total IO avg time: %08lld\n", div_u64(phba->ktime_seg1_total + phba->ktime_seg2_total + phba->ktime_seg3_total + phba->ktime_seg4_total, phba->ktime_data_samples)); return len; } /* NVME Target */ len += snprintf(buf + len, PAGE_SIZE-len, "ktime %s: Total Samples: %lld %lld\n", (phba->ktime_on ? "Enabled" : "Disabled"), phba->ktime_data_samples, phba->ktime_status_samples); if (phba->ktime_data_samples == 0) return len; len += snprintf(buf + len, PAGE_SIZE-len, "Segment 1: MSI-X ISR Rcv cmd -to- " "cmd pass to NVME Layer\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg1_total, phba->ktime_data_samples), phba->ktime_seg1_min, phba->ktime_seg1_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 2: cmd pass to NVME Layer- " "-to- Driver rcv cmd OP (action)\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg2_total, phba->ktime_data_samples), phba->ktime_seg2_min, phba->ktime_seg2_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 3: Driver rcv cmd OP -to- " "Firmware WQ doorbell: cmd\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg3_total, phba->ktime_data_samples), phba->ktime_seg3_min, phba->ktime_seg3_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 4: Firmware WQ doorbell: cmd " "-to- MSI-X ISR for cmd cmpl\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg4_total, phba->ktime_data_samples), phba->ktime_seg4_min, phba->ktime_seg4_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 5: MSI-X ISR for cmd cmpl " "-to- NVME layer passed cmd done\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg5_total, phba->ktime_data_samples), phba->ktime_seg5_min, phba->ktime_seg5_max); if (phba->ktime_status_samples == 0) { len += snprintf(buf + len, PAGE_SIZE-len, "Total: cmd received by MSI-X ISR " "-to- cmd completed on wire\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld " "max %08lld\n", div_u64(phba->ktime_seg10_total, phba->ktime_data_samples), phba->ktime_seg10_min, phba->ktime_seg10_max); return len; } len += snprintf(buf + len, PAGE_SIZE-len, "Segment 6: NVME layer passed cmd done " "-to- Driver rcv rsp status OP\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg6_total, phba->ktime_status_samples), phba->ktime_seg6_min, phba->ktime_seg6_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 7: Driver rcv rsp status OP " "-to- Firmware WQ doorbell: status\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg7_total, phba->ktime_status_samples), phba->ktime_seg7_min, phba->ktime_seg7_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 8: Firmware WQ doorbell: status" " -to- MSI-X ISR for status cmpl\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg8_total, phba->ktime_status_samples), phba->ktime_seg8_min, phba->ktime_seg8_max); len += snprintf(buf + len, PAGE_SIZE-len, "Segment 9: MSI-X ISR for status cmpl " "-to- NVME layer passed status done\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg9_total, phba->ktime_status_samples), phba->ktime_seg9_min, phba->ktime_seg9_max); len += snprintf(buf + len, PAGE_SIZE-len, "Total: cmd received by MSI-X ISR -to- " "cmd completed on wire\n"); len += snprintf(buf + len, PAGE_SIZE-len, "avg:%08lld min:%08lld max %08lld\n", div_u64(phba->ktime_seg10_total, phba->ktime_status_samples), phba->ktime_seg10_min, phba->ktime_seg10_max); return len; } /** * lpfc_debugfs_nvmeio_trc_data - Dump NVME IO trace list to a buffer * @phba: The phba to gather target node info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the NVME IO trace associated with @phba * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_nvmeio_trc_data(struct lpfc_hba *phba, char *buf, int size) { struct lpfc_debugfs_nvmeio_trc *dtp; int i, state, index, skip; int len = 0; state = phba->nvmeio_trc_on; index = (atomic_read(&phba->nvmeio_trc_cnt) + 1) & (phba->nvmeio_trc_size - 1); skip = phba->nvmeio_trc_output_idx; len += snprintf(buf + len, size - len, "%s IO Trace %s: next_idx %d skip %d size %d\n", (phba->nvmet_support ? "NVME" : "NVMET"), (state ? "Enabled" : "Disabled"), index, skip, phba->nvmeio_trc_size); if (!phba->nvmeio_trc || state) return len; /* trace MUST bhe off to continue */ for (i = index; i < phba->nvmeio_trc_size; i++) { if (skip) { skip--; continue; } dtp = phba->nvmeio_trc + i; phba->nvmeio_trc_output_idx++; if (!dtp->fmt) continue; len += snprintf(buf + len, size - len, dtp->fmt, dtp->data1, dtp->data2, dtp->data3); if (phba->nvmeio_trc_output_idx >= phba->nvmeio_trc_size) { phba->nvmeio_trc_output_idx = 0; len += snprintf(buf + len, size - len, "Trace Complete\n"); goto out; } if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ)) { len += snprintf(buf + len, size - len, "Trace Continue (%d of %d)\n", phba->nvmeio_trc_output_idx, phba->nvmeio_trc_size); goto out; } } for (i = 0; i < index; i++) { if (skip) { skip--; continue; } dtp = phba->nvmeio_trc + i; phba->nvmeio_trc_output_idx++; if (!dtp->fmt) continue; len += snprintf(buf + len, size - len, dtp->fmt, dtp->data1, dtp->data2, dtp->data3); if (phba->nvmeio_trc_output_idx >= phba->nvmeio_trc_size) { phba->nvmeio_trc_output_idx = 0; len += snprintf(buf + len, size - len, "Trace Complete\n"); goto out; } if (len >= (size - LPFC_DEBUG_OUT_LINE_SZ)) { len += snprintf(buf + len, size - len, "Trace Continue (%d of %d)\n", phba->nvmeio_trc_output_idx, phba->nvmeio_trc_size); goto out; } } len += snprintf(buf + len, size - len, "Trace Done\n"); out: return len; } /** * lpfc_debugfs_cpucheck_data - Dump target node list to a buffer * @vport: The vport to gather target node info from. * @buf: The buffer to dump log into. * @size: The maximum amount of data to process. * * Description: * This routine dumps the NVME statistics associated with @vport * * Return Value: * This routine returns the amount of bytes that were dumped into @buf and will * not exceed @size. **/ static int lpfc_debugfs_cpucheck_data(struct lpfc_vport *vport, char *buf, int size) { struct lpfc_hba *phba = vport->phba; int i; int len = 0; uint32_t tot_xmt = 0; uint32_t tot_rcv = 0; uint32_t tot_cmpl = 0; uint32_t tot_ccmpl = 0; if (phba->nvmet_support == 0) { /* NVME Initiator */ len += snprintf(buf + len, PAGE_SIZE - len, "CPUcheck %s\n", (phba->cpucheck_on & LPFC_CHECK_NVME_IO ? "Enabled" : "Disabled")); for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { if (i >= LPFC_CHECK_CPU_CNT) break; len += snprintf(buf + len, PAGE_SIZE - len, "%02d: xmit x%08x cmpl x%08x\n", i, phba->cpucheck_xmt_io[i], phba->cpucheck_cmpl_io[i]); tot_xmt += phba->cpucheck_xmt_io[i]; tot_cmpl += phba->cpucheck_cmpl_io[i]; } len += snprintf(buf + len, PAGE_SIZE - len, "tot:xmit x%08x cmpl x%08x\n", tot_xmt, tot_cmpl); return len; } /* NVME Target */ len += snprintf(buf + len, PAGE_SIZE - len, "CPUcheck %s ", (phba->cpucheck_on & LPFC_CHECK_NVMET_IO ? "IO Enabled - " : "IO Disabled - ")); len += snprintf(buf + len, PAGE_SIZE - len, "%s\n", (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV ? "Rcv Enabled\n" : "Rcv Disabled\n")); for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { if (i >= LPFC_CHECK_CPU_CNT) break; len += snprintf(buf + len, PAGE_SIZE - len, "%02d: xmit x%08x ccmpl x%08x " "cmpl x%08x rcv x%08x\n", i, phba->cpucheck_xmt_io[i], phba->cpucheck_ccmpl_io[i], phba->cpucheck_cmpl_io[i], phba->cpucheck_rcv_io[i]); tot_xmt += phba->cpucheck_xmt_io[i]; tot_rcv += phba->cpucheck_rcv_io[i]; tot_cmpl += phba->cpucheck_cmpl_io[i]; tot_ccmpl += phba->cpucheck_ccmpl_io[i]; } len += snprintf(buf + len, PAGE_SIZE - len, "tot:xmit x%08x ccmpl x%08x cmpl x%08x rcv x%08x\n", tot_xmt, tot_ccmpl, tot_cmpl, tot_rcv); return len; } #endif /** * lpfc_debugfs_disc_trc - Store discovery trace log * @vport: The vport to associate this trace string with for retrieval. * @mask: Log entry classification. * @fmt: Format string to be displayed when dumping the log. * @data1: 1st data parameter to be applied to @fmt. * @data2: 2nd data parameter to be applied to @fmt. * @data3: 3rd data parameter to be applied to @fmt. * * Description: * This routine is used by the driver code to add a debugfs log entry to the * discovery trace buffer associated with @vport. Only entries with a @mask that * match the current debugfs discovery mask will be saved. Entries that do not * match will be thrown away. @fmt, @data1, @data2, and @data3 are used like * printf when displaying the log. **/ inline void lpfc_debugfs_disc_trc(struct lpfc_vport *vport, int mask, char *fmt, uint32_t data1, uint32_t data2, uint32_t data3) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_debugfs_trc *dtp; int index; if (!(lpfc_debugfs_mask_disc_trc & mask)) return; if (!lpfc_debugfs_enable || !lpfc_debugfs_max_disc_trc || !vport || !vport->disc_trc) return; index = atomic_inc_return(&vport->disc_trc_cnt) & (lpfc_debugfs_max_disc_trc - 1); dtp = vport->disc_trc + index; dtp->fmt = fmt; dtp->data1 = data1; dtp->data2 = data2; dtp->data3 = data3; dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt); dtp->jif = jiffies; #endif return; } /** * lpfc_debugfs_slow_ring_trc - Store slow ring trace log * @phba: The phba to associate this trace string with for retrieval. * @fmt: Format string to be displayed when dumping the log. * @data1: 1st data parameter to be applied to @fmt. * @data2: 2nd data parameter to be applied to @fmt. * @data3: 3rd data parameter to be applied to @fmt. * * Description: * This routine is used by the driver code to add a debugfs log entry to the * discovery trace buffer associated with @vport. @fmt, @data1, @data2, and * @data3 are used like printf when displaying the log. **/ inline void lpfc_debugfs_slow_ring_trc(struct lpfc_hba *phba, char *fmt, uint32_t data1, uint32_t data2, uint32_t data3) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_debugfs_trc *dtp; int index; if (!lpfc_debugfs_enable || !lpfc_debugfs_max_slow_ring_trc || !phba || !phba->slow_ring_trc) return; index = atomic_inc_return(&phba->slow_ring_trc_cnt) & (lpfc_debugfs_max_slow_ring_trc - 1); dtp = phba->slow_ring_trc + index; dtp->fmt = fmt; dtp->data1 = data1; dtp->data2 = data2; dtp->data3 = data3; dtp->seq_cnt = atomic_inc_return(&lpfc_debugfs_seq_trc_cnt); dtp->jif = jiffies; #endif return; } /** * lpfc_debugfs_nvme_trc - Store NVME/NVMET trace log * @phba: The phba to associate this trace string with for retrieval. * @fmt: Format string to be displayed when dumping the log. * @data1: 1st data parameter to be applied to @fmt. * @data2: 2nd data parameter to be applied to @fmt. * @data3: 3rd data parameter to be applied to @fmt. * * Description: * This routine is used by the driver code to add a debugfs log entry to the * nvme trace buffer associated with @phba. @fmt, @data1, @data2, and * @data3 are used like printf when displaying the log. **/ inline void lpfc_debugfs_nvme_trc(struct lpfc_hba *phba, char *fmt, uint16_t data1, uint16_t data2, uint32_t data3) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_debugfs_nvmeio_trc *dtp; int index; if (!phba->nvmeio_trc_on || !phba->nvmeio_trc) return; index = atomic_inc_return(&phba->nvmeio_trc_cnt) & (phba->nvmeio_trc_size - 1); dtp = phba->nvmeio_trc + index; dtp->fmt = fmt; dtp->data1 = data1; dtp->data2 = data2; dtp->data3 = data3; #endif } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /** * lpfc_debugfs_disc_trc_open - Open the discovery trace log * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_disc_trc_open(struct inode *inode, struct file *file) { struct lpfc_vport *vport = inode->i_private; struct lpfc_debug *debug; int size; int rc = -ENOMEM; if (!lpfc_debugfs_max_disc_trc) { rc = -ENOSPC; goto out; } debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ size = (lpfc_debugfs_max_disc_trc * LPFC_DEBUG_TRC_ENTRY_SIZE); size = PAGE_ALIGN(size); debug->buffer = kmalloc(size, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_disc_trc_data(vport, debug->buffer, size); file->private_data = debug; rc = 0; out: return rc; } /** * lpfc_debugfs_slow_ring_trc_open - Open the Slow Ring trace log * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_slow_ring_trc_open(struct inode *inode, struct file *file) { struct lpfc_hba *phba = inode->i_private; struct lpfc_debug *debug; int size; int rc = -ENOMEM; if (!lpfc_debugfs_max_slow_ring_trc) { rc = -ENOSPC; goto out; } debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ size = (lpfc_debugfs_max_slow_ring_trc * LPFC_DEBUG_TRC_ENTRY_SIZE); size = PAGE_ALIGN(size); debug->buffer = kmalloc(size, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_slow_ring_trc_data(phba, debug->buffer, size); file->private_data = debug; rc = 0; out: return rc; } /** * lpfc_debugfs_hbqinfo_open - Open the hbqinfo debugfs buffer * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_hbqinfo_open(struct inode *inode, struct file *file) { struct lpfc_hba *phba = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_HBQINFO_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_hbqinfo_data(phba, debug->buffer, LPFC_HBQINFO_SIZE); file->private_data = debug; rc = 0; out: return rc; } /** * lpfc_debugfs_dumpHBASlim_open - Open the Dump HBA SLIM debugfs buffer * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_dumpHBASlim_open(struct inode *inode, struct file *file) { struct lpfc_hba *phba = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_DUMPHBASLIM_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_dumpHBASlim_data(phba, debug->buffer, LPFC_DUMPHBASLIM_SIZE); file->private_data = debug; rc = 0; out: return rc; } /** * lpfc_debugfs_dumpHostSlim_open - Open the Dump Host SLIM debugfs buffer * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_dumpHostSlim_open(struct inode *inode, struct file *file) { struct lpfc_hba *phba = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_DUMPHOSTSLIM_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_dumpHostSlim_data(phba, debug->buffer, LPFC_DUMPHOSTSLIM_SIZE); file->private_data = debug; rc = 0; out: return rc; } static int lpfc_debugfs_dumpData_open(struct inode *inode, struct file *file) { struct lpfc_debug *debug; int rc = -ENOMEM; if (!_dump_buf_data) return -EBUSY; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ pr_err("9059 BLKGRD: %s: _dump_buf_data=0x%p\n", __func__, _dump_buf_data); debug->buffer = _dump_buf_data; if (!debug->buffer) { kfree(debug); goto out; } debug->len = (1 << _dump_buf_data_order) << PAGE_SHIFT; file->private_data = debug; rc = 0; out: return rc; } static int lpfc_debugfs_dumpDif_open(struct inode *inode, struct file *file) { struct lpfc_debug *debug; int rc = -ENOMEM; if (!_dump_buf_dif) return -EBUSY; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ pr_err("9060 BLKGRD: %s: _dump_buf_dif=0x%p file=%pD\n", __func__, _dump_buf_dif, file); debug->buffer = _dump_buf_dif; if (!debug->buffer) { kfree(debug); goto out; } debug->len = (1 << _dump_buf_dif_order) << PAGE_SHIFT; file->private_data = debug; rc = 0; out: return rc; } static ssize_t lpfc_debugfs_dumpDataDif_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { /* * The Data/DIF buffers only save one failing IO * The write op is used as a reset mechanism after an IO has * already been saved to the next one can be saved */ spin_lock(&_dump_buf_lock); memset((void *)_dump_buf_data, 0, ((1 << PAGE_SHIFT) << _dump_buf_data_order)); memset((void *)_dump_buf_dif, 0, ((1 << PAGE_SHIFT) << _dump_buf_dif_order)); _dump_buf_done = 0; spin_unlock(&_dump_buf_lock); return nbytes; } static ssize_t lpfc_debugfs_dif_err_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct dentry *dent = file->f_path.dentry; struct lpfc_hba *phba = file->private_data; char cbuf[32]; uint64_t tmp = 0; int cnt = 0; if (dent == phba->debug_writeGuard) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wgrd_cnt); else if (dent == phba->debug_writeApp) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wapp_cnt); else if (dent == phba->debug_writeRef) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_wref_cnt); else if (dent == phba->debug_readGuard) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rgrd_cnt); else if (dent == phba->debug_readApp) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rapp_cnt); else if (dent == phba->debug_readRef) cnt = snprintf(cbuf, 32, "%u\n", phba->lpfc_injerr_rref_cnt); else if (dent == phba->debug_InjErrNPortID) cnt = snprintf(cbuf, 32, "0x%06x\n", phba->lpfc_injerr_nportid); else if (dent == phba->debug_InjErrWWPN) { memcpy(&tmp, &phba->lpfc_injerr_wwpn, sizeof(struct lpfc_name)); tmp = cpu_to_be64(tmp); cnt = snprintf(cbuf, 32, "0x%016llx\n", tmp); } else if (dent == phba->debug_InjErrLBA) { if (phba->lpfc_injerr_lba == (sector_t)(-1)) cnt = snprintf(cbuf, 32, "off\n"); else cnt = snprintf(cbuf, 32, "0x%llx\n", (uint64_t) phba->lpfc_injerr_lba); } else lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0547 Unknown debugfs error injection entry\n"); return simple_read_from_buffer(buf, nbytes, ppos, &cbuf, cnt); } static ssize_t lpfc_debugfs_dif_err_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct dentry *dent = file->f_path.dentry; struct lpfc_hba *phba = file->private_data; char dstbuf[33]; uint64_t tmp = 0; int size; memset(dstbuf, 0, 33); size = (nbytes < 32) ? nbytes : 32; if (copy_from_user(dstbuf, buf, size)) return 0; if (dent == phba->debug_InjErrLBA) { if ((buf[0] == 'o') && (buf[1] == 'f') && (buf[2] == 'f')) tmp = (uint64_t)(-1); } if ((tmp == 0) && (kstrtoull(dstbuf, 0, &tmp))) return 0; if (dent == phba->debug_writeGuard) phba->lpfc_injerr_wgrd_cnt = (uint32_t)tmp; else if (dent == phba->debug_writeApp) phba->lpfc_injerr_wapp_cnt = (uint32_t)tmp; else if (dent == phba->debug_writeRef) phba->lpfc_injerr_wref_cnt = (uint32_t)tmp; else if (dent == phba->debug_readGuard) phba->lpfc_injerr_rgrd_cnt = (uint32_t)tmp; else if (dent == phba->debug_readApp) phba->lpfc_injerr_rapp_cnt = (uint32_t)tmp; else if (dent == phba->debug_readRef) phba->lpfc_injerr_rref_cnt = (uint32_t)tmp; else if (dent == phba->debug_InjErrLBA) phba->lpfc_injerr_lba = (sector_t)tmp; else if (dent == phba->debug_InjErrNPortID) phba->lpfc_injerr_nportid = (uint32_t)(tmp & Mask_DID); else if (dent == phba->debug_InjErrWWPN) { tmp = cpu_to_be64(tmp); memcpy(&phba->lpfc_injerr_wwpn, &tmp, sizeof(struct lpfc_name)); } else lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0548 Unknown debugfs error injection entry\n"); return nbytes; } static int lpfc_debugfs_dif_err_release(struct inode *inode, struct file *file) { return 0; } /** * lpfc_debugfs_nodelist_open - Open the nodelist debugfs file * @inode: The inode pointer that contains a vport pointer. * @file: The file pointer to attach the log output. * * Description: * This routine is the entry point for the debugfs open file operation. It gets * the vport from the i_private field in @inode, allocates the necessary buffer * for the log, fills the buffer from the in-memory log for this vport, and then * returns a pointer to that log in the private_data field in @file. * * Returns: * This function returns zero if successful. On error it will return a negative * error value. **/ static int lpfc_debugfs_nodelist_open(struct inode *inode, struct file *file) { struct lpfc_vport *vport = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_NODELIST_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_nodelist_data(vport, debug->buffer, LPFC_NODELIST_SIZE); file->private_data = debug; rc = 0; out: return rc; } /** * lpfc_debugfs_lseek - Seek through a debugfs file * @file: The file pointer to seek through. * @off: The offset to seek to or the amount to seek by. * @whence: Indicates how to seek. * * Description: * This routine is the entry point for the debugfs lseek file operation. The * @whence parameter indicates whether @off is the offset to directly seek to, * or if it is a value to seek forward or reverse by. This function figures out * what the new offset of the debugfs file will be and assigns that value to the * f_pos field of @file. * * Returns: * This function returns the new offset if successful and returns a negative * error if unable to process the seek. **/ static loff_t lpfc_debugfs_lseek(struct file *file, loff_t off, int whence) { struct lpfc_debug *debug = file->private_data; return fixed_size_llseek(file, off, whence, debug->len); } /** * lpfc_debugfs_read - Read a debugfs file * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from from the buffer indicated in the private_data * field of @file. It will start reading at @ppos and copy up to @nbytes of * data to @buf. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_debugfs_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; return simple_read_from_buffer(buf, nbytes, ppos, debug->buffer, debug->len); } /** * lpfc_debugfs_release - Release the buffer used to store debugfs file data * @inode: The inode pointer that contains a vport pointer. (unused) * @file: The file pointer that contains the buffer to release. * * Description: * This routine frees the buffer that was allocated when the debugfs file was * opened. * * Returns: * This function returns zero. **/ static int lpfc_debugfs_release(struct inode *inode, struct file *file) { struct lpfc_debug *debug = file->private_data; kfree(debug->buffer); kfree(debug); return 0; } static int lpfc_debugfs_dumpDataDif_release(struct inode *inode, struct file *file) { struct lpfc_debug *debug = file->private_data; debug->buffer = NULL; kfree(debug); return 0; } static int lpfc_debugfs_nvmestat_open(struct inode *inode, struct file *file) { struct lpfc_vport *vport = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_NVMESTAT_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_nvmestat_data(vport, debug->buffer, LPFC_NVMESTAT_SIZE); debug->i_private = inode->i_private; file->private_data = debug; rc = 0; out: return rc; } static ssize_t lpfc_debugfs_nvmestat_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private; struct lpfc_hba *phba = vport->phba; struct lpfc_nvmet_tgtport *tgtp; char mybuf[64]; char *pbuf; if (!phba->targetport) return -ENXIO; if (nbytes > 64) nbytes = 64; memset(mybuf, 0, sizeof(mybuf)); if (copy_from_user(mybuf, buf, nbytes)) return -EFAULT; pbuf = &mybuf[0]; tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; if ((strncmp(pbuf, "reset", strlen("reset")) == 0) || (strncmp(pbuf, "zero", strlen("zero")) == 0)) { atomic_set(&tgtp->rcv_ls_req_in, 0); atomic_set(&tgtp->rcv_ls_req_out, 0); atomic_set(&tgtp->rcv_ls_req_drop, 0); atomic_set(&tgtp->xmt_ls_abort, 0); atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); atomic_set(&tgtp->xmt_ls_rsp, 0); atomic_set(&tgtp->xmt_ls_drop, 0); atomic_set(&tgtp->xmt_ls_rsp_error, 0); atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); atomic_set(&tgtp->rcv_fcp_cmd_in, 0); atomic_set(&tgtp->rcv_fcp_cmd_out, 0); atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); atomic_set(&tgtp->xmt_fcp_drop, 0); atomic_set(&tgtp->xmt_fcp_read_rsp, 0); atomic_set(&tgtp->xmt_fcp_read, 0); atomic_set(&tgtp->xmt_fcp_write, 0); atomic_set(&tgtp->xmt_fcp_rsp, 0); atomic_set(&tgtp->xmt_fcp_release, 0); atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); atomic_set(&tgtp->xmt_fcp_rsp_error, 0); atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); atomic_set(&tgtp->xmt_fcp_abort, 0); atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); atomic_set(&tgtp->xmt_abort_sol, 0); atomic_set(&tgtp->xmt_abort_unsol, 0); atomic_set(&tgtp->xmt_abort_rsp, 0); atomic_set(&tgtp->xmt_abort_rsp_error, 0); } return nbytes; } static int lpfc_debugfs_nvmektime_open(struct inode *inode, struct file *file) { struct lpfc_vport *vport = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_NVMEKTIME_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_nvmektime_data(vport, debug->buffer, LPFC_NVMEKTIME_SIZE); debug->i_private = inode->i_private; file->private_data = debug; rc = 0; out: return rc; } static ssize_t lpfc_debugfs_nvmektime_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private; struct lpfc_hba *phba = vport->phba; char mybuf[64]; char *pbuf; if (nbytes > 64) nbytes = 64; memset(mybuf, 0, sizeof(mybuf)); if (copy_from_user(mybuf, buf, nbytes)) return -EFAULT; pbuf = &mybuf[0]; if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) { phba->ktime_data_samples = 0; phba->ktime_status_samples = 0; phba->ktime_seg1_total = 0; phba->ktime_seg1_max = 0; phba->ktime_seg1_min = 0xffffffff; phba->ktime_seg2_total = 0; phba->ktime_seg2_max = 0; phba->ktime_seg2_min = 0xffffffff; phba->ktime_seg3_total = 0; phba->ktime_seg3_max = 0; phba->ktime_seg3_min = 0xffffffff; phba->ktime_seg4_total = 0; phba->ktime_seg4_max = 0; phba->ktime_seg4_min = 0xffffffff; phba->ktime_seg5_total = 0; phba->ktime_seg5_max = 0; phba->ktime_seg5_min = 0xffffffff; phba->ktime_seg6_total = 0; phba->ktime_seg6_max = 0; phba->ktime_seg6_min = 0xffffffff; phba->ktime_seg7_total = 0; phba->ktime_seg7_max = 0; phba->ktime_seg7_min = 0xffffffff; phba->ktime_seg8_total = 0; phba->ktime_seg8_max = 0; phba->ktime_seg8_min = 0xffffffff; phba->ktime_seg9_total = 0; phba->ktime_seg9_max = 0; phba->ktime_seg9_min = 0xffffffff; phba->ktime_seg10_total = 0; phba->ktime_seg10_max = 0; phba->ktime_seg10_min = 0xffffffff; phba->ktime_on = 1; return strlen(pbuf); } else if ((strncmp(pbuf, "off", sizeof("off") - 1) == 0)) { phba->ktime_on = 0; return strlen(pbuf); } else if ((strncmp(pbuf, "zero", sizeof("zero") - 1) == 0)) { phba->ktime_data_samples = 0; phba->ktime_status_samples = 0; phba->ktime_seg1_total = 0; phba->ktime_seg1_max = 0; phba->ktime_seg1_min = 0xffffffff; phba->ktime_seg2_total = 0; phba->ktime_seg2_max = 0; phba->ktime_seg2_min = 0xffffffff; phba->ktime_seg3_total = 0; phba->ktime_seg3_max = 0; phba->ktime_seg3_min = 0xffffffff; phba->ktime_seg4_total = 0; phba->ktime_seg4_max = 0; phba->ktime_seg4_min = 0xffffffff; phba->ktime_seg5_total = 0; phba->ktime_seg5_max = 0; phba->ktime_seg5_min = 0xffffffff; phba->ktime_seg6_total = 0; phba->ktime_seg6_max = 0; phba->ktime_seg6_min = 0xffffffff; phba->ktime_seg7_total = 0; phba->ktime_seg7_max = 0; phba->ktime_seg7_min = 0xffffffff; phba->ktime_seg8_total = 0; phba->ktime_seg8_max = 0; phba->ktime_seg8_min = 0xffffffff; phba->ktime_seg9_total = 0; phba->ktime_seg9_max = 0; phba->ktime_seg9_min = 0xffffffff; phba->ktime_seg10_total = 0; phba->ktime_seg10_max = 0; phba->ktime_seg10_min = 0xffffffff; return strlen(pbuf); } return -EINVAL; } static int lpfc_debugfs_nvmeio_trc_open(struct inode *inode, struct file *file) { struct lpfc_hba *phba = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_NVMEIO_TRC_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_nvmeio_trc_data(phba, debug->buffer, LPFC_NVMEIO_TRC_SIZE); debug->i_private = inode->i_private; file->private_data = debug; rc = 0; out: return rc; } static ssize_t lpfc_debugfs_nvmeio_trc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; int i; unsigned long sz; char mybuf[64]; char *pbuf; if (nbytes > 64) nbytes = 64; memset(mybuf, 0, sizeof(mybuf)); if (copy_from_user(mybuf, buf, nbytes)) return -EFAULT; pbuf = &mybuf[0]; if ((strncmp(pbuf, "off", sizeof("off") - 1) == 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0570 nvmeio_trc_off\n"); phba->nvmeio_trc_output_idx = 0; phba->nvmeio_trc_on = 0; return strlen(pbuf); } else if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0571 nvmeio_trc_on\n"); phba->nvmeio_trc_output_idx = 0; phba->nvmeio_trc_on = 1; return strlen(pbuf); } /* We must be off to allocate the trace buffer */ if (phba->nvmeio_trc_on != 0) return -EINVAL; /* If not on or off, the parameter is the trace buffer size */ i = kstrtoul(pbuf, 0, &sz); if (i) return -EINVAL; phba->nvmeio_trc_size = (uint32_t)sz; /* It must be a power of 2 - round down */ i = 0; while (sz > 1) { sz = sz >> 1; i++; } sz = (1 << i); if (phba->nvmeio_trc_size != sz) lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0572 nvmeio_trc_size changed to %ld\n", sz); phba->nvmeio_trc_size = (uint32_t)sz; /* If one previously exists, free it */ kfree(phba->nvmeio_trc); /* Allocate new trace buffer and initialize */ phba->nvmeio_trc = kzalloc((sizeof(struct lpfc_debugfs_nvmeio_trc) * sz), GFP_KERNEL); if (!phba->nvmeio_trc) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0573 Cannot create debugfs " "nvmeio_trc buffer\n"); return -ENOMEM; } atomic_set(&phba->nvmeio_trc_cnt, 0); phba->nvmeio_trc_on = 0; phba->nvmeio_trc_output_idx = 0; return strlen(pbuf); } static int lpfc_debugfs_cpucheck_open(struct inode *inode, struct file *file) { struct lpfc_vport *vport = inode->i_private; struct lpfc_debug *debug; int rc = -ENOMEM; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) goto out; /* Round to page boundary */ debug->buffer = kmalloc(LPFC_CPUCHECK_SIZE, GFP_KERNEL); if (!debug->buffer) { kfree(debug); goto out; } debug->len = lpfc_debugfs_cpucheck_data(vport, debug->buffer, LPFC_NVMEKTIME_SIZE); debug->i_private = inode->i_private; file->private_data = debug; rc = 0; out: return rc; } static ssize_t lpfc_debugfs_cpucheck_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_vport *vport = (struct lpfc_vport *)debug->i_private; struct lpfc_hba *phba = vport->phba; char mybuf[64]; char *pbuf; int i; if (nbytes > 64) nbytes = 64; memset(mybuf, 0, sizeof(mybuf)); if (copy_from_user(mybuf, buf, nbytes)) return -EFAULT; pbuf = &mybuf[0]; if ((strncmp(pbuf, "on", sizeof("on") - 1) == 0)) { if (phba->nvmet_support) phba->cpucheck_on |= LPFC_CHECK_NVMET_IO; else phba->cpucheck_on |= LPFC_CHECK_NVME_IO; return strlen(pbuf); } else if ((strncmp(pbuf, "rcv", sizeof("rcv") - 1) == 0)) { if (phba->nvmet_support) phba->cpucheck_on |= LPFC_CHECK_NVMET_RCV; else return -EINVAL; return strlen(pbuf); } else if ((strncmp(pbuf, "off", sizeof("off") - 1) == 0)) { phba->cpucheck_on = LPFC_CHECK_OFF; return strlen(pbuf); } else if ((strncmp(pbuf, "zero", sizeof("zero") - 1) == 0)) { for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { if (i >= LPFC_CHECK_CPU_CNT) break; phba->cpucheck_rcv_io[i] = 0; phba->cpucheck_xmt_io[i] = 0; phba->cpucheck_cmpl_io[i] = 0; phba->cpucheck_ccmpl_io[i] = 0; } return strlen(pbuf); } return -EINVAL; } /* * --------------------------------- * iDiag debugfs file access methods * --------------------------------- * * All access methods are through the proper SLI4 PCI function's debugfs * iDiag directory: * * /sys/kernel/debug/lpfc/fn<#>/iDiag */ /** * lpfc_idiag_cmd_get - Get and parse idiag debugfs comands from user space * @buf: The pointer to the user space buffer. * @nbytes: The number of bytes in the user space buffer. * @idiag_cmd: pointer to the idiag command struct. * * This routine reads data from debugfs user space buffer and parses the * buffer for getting the idiag command and arguments. The while space in * between the set of data is used as the parsing separator. * * This routine returns 0 when successful, it returns proper error code * back to the user space in error conditions. */ static int lpfc_idiag_cmd_get(const char __user *buf, size_t nbytes, struct lpfc_idiag_cmd *idiag_cmd) { char mybuf[64]; char *pbuf, *step_str; int i; size_t bsize; memset(mybuf, 0, sizeof(mybuf)); memset(idiag_cmd, 0, sizeof(*idiag_cmd)); bsize = min(nbytes, (sizeof(mybuf)-1)); if (copy_from_user(mybuf, buf, bsize)) return -EFAULT; pbuf = &mybuf[0]; step_str = strsep(&pbuf, "\t "); /* The opcode must present */ if (!step_str) return -EINVAL; idiag_cmd->opcode = simple_strtol(step_str, NULL, 0); if (idiag_cmd->opcode == 0) return -EINVAL; for (i = 0; i < LPFC_IDIAG_CMD_DATA_SIZE; i++) { step_str = strsep(&pbuf, "\t "); if (!step_str) return i; idiag_cmd->data[i] = simple_strtol(step_str, NULL, 0); } return i; } /** * lpfc_idiag_open - idiag open debugfs * @inode: The inode pointer that contains a pointer to phba. * @file: The file pointer to attach the file operation. * * Description: * This routine is the entry point for the debugfs open file operation. It * gets the reference to phba from the i_private field in @inode, it then * allocates buffer for the file operation, performs the necessary PCI config * space read into the allocated buffer according to the idiag user command * setup, and then returns a pointer to buffer in the private_data field in * @file. * * Returns: * This function returns zero if successful. On error it will return an * negative error value. **/ static int lpfc_idiag_open(struct inode *inode, struct file *file) { struct lpfc_debug *debug; debug = kmalloc(sizeof(*debug), GFP_KERNEL); if (!debug) return -ENOMEM; debug->i_private = inode->i_private; debug->buffer = NULL; file->private_data = debug; return 0; } /** * lpfc_idiag_release - Release idiag access file operation * @inode: The inode pointer that contains a vport pointer. (unused) * @file: The file pointer that contains the buffer to release. * * Description: * This routine is the generic release routine for the idiag access file * operation, it frees the buffer that was allocated when the debugfs file * was opened. * * Returns: * This function returns zero. **/ static int lpfc_idiag_release(struct inode *inode, struct file *file) { struct lpfc_debug *debug = file->private_data; /* Free the buffers to the file operation */ kfree(debug->buffer); kfree(debug); return 0; } /** * lpfc_idiag_cmd_release - Release idiag cmd access file operation * @inode: The inode pointer that contains a vport pointer. (unused) * @file: The file pointer that contains the buffer to release. * * Description: * This routine frees the buffer that was allocated when the debugfs file * was opened. It also reset the fields in the idiag command struct in the * case of command for write operation. * * Returns: * This function returns zero. **/ static int lpfc_idiag_cmd_release(struct inode *inode, struct file *file) { struct lpfc_debug *debug = file->private_data; if (debug->op == LPFC_IDIAG_OP_WR) { switch (idiag.cmd.opcode) { case LPFC_IDIAG_CMD_PCICFG_WR: case LPFC_IDIAG_CMD_PCICFG_ST: case LPFC_IDIAG_CMD_PCICFG_CL: case LPFC_IDIAG_CMD_QUEACC_WR: case LPFC_IDIAG_CMD_QUEACC_ST: case LPFC_IDIAG_CMD_QUEACC_CL: memset(&idiag, 0, sizeof(idiag)); break; default: break; } } /* Free the buffers to the file operation */ kfree(debug->buffer); kfree(debug); return 0; } /** * lpfc_idiag_pcicfg_read - idiag debugfs read pcicfg * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba pci config space according to the * idiag command, and copies to user @buf. Depending on the PCI config space * read command setup, it does either a single register read of a byte * (8 bits), a word (16 bits), or a dword (32 bits) or browsing through all * registers from the 4K extended PCI config space. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_pcicfg_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; int offset_label, offset, len = 0, index = LPFC_PCI_CFG_RD_SIZE; int where, count; char *pbuffer; struct pci_dev *pdev; uint32_t u32val; uint16_t u16val; uint8_t u8val; pdev = phba->pcidev; if (!pdev) return 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_PCI_CFG_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) { where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX]; count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX]; } else return 0; /* Read single PCI config space register */ switch (count) { case SIZE_U8: /* byte (8 bits) */ pci_read_config_byte(pdev, where, &u8val); len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "%03x: %02x\n", where, u8val); break; case SIZE_U16: /* word (16 bits) */ pci_read_config_word(pdev, where, &u16val); len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "%03x: %04x\n", where, u16val); break; case SIZE_U32: /* double word (32 bits) */ pci_read_config_dword(pdev, where, &u32val); len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "%03x: %08x\n", where, u32val); break; case LPFC_PCI_CFG_BROWSE: /* browse all */ goto pcicfg_browse; break; default: /* illegal count */ len = 0; break; } return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); pcicfg_browse: /* Browse all PCI config space registers */ offset_label = idiag.offset.last_rd; offset = offset_label; /* Read PCI config space */ len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "%03x: ", offset_label); while (index > 0) { pci_read_config_dword(pdev, offset, &u32val); len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "%08x ", u32val); offset += sizeof(uint32_t); if (offset >= LPFC_PCI_CFG_SIZE) { len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "\n"); break; } index -= sizeof(uint32_t); if (!index) len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "\n"); else if (!(index % (8 * sizeof(uint32_t)))) { offset_label += (8 * sizeof(uint32_t)); len += snprintf(pbuffer+len, LPFC_PCI_CFG_SIZE-len, "\n%03x: ", offset_label); } } /* Set up the offset for next portion of pci cfg read */ if (index == 0) { idiag.offset.last_rd += LPFC_PCI_CFG_RD_SIZE; if (idiag.offset.last_rd >= LPFC_PCI_CFG_SIZE) idiag.offset.last_rd = 0; } else idiag.offset.last_rd = 0; return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_pcicfg_write - Syntax check and set up idiag pcicfg commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and * then perform the syntax check for PCI config space read or write command * accordingly. In the case of PCI config space read command, it sets up * the command in the idiag command struct for the debugfs read operation. * In the case of PCI config space write operation, it executes the write * operation into the PCI config space accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. */ static ssize_t lpfc_idiag_pcicfg_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t where, value, count; uint32_t u32val; uint16_t u16val; uint8_t u8val; struct pci_dev *pdev; int rc; pdev = phba->pcidev; if (!pdev) return -EFAULT; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_RD) { /* Sanity check on PCI config read command line arguments */ if (rc != LPFC_PCI_CFG_RD_CMD_ARG) goto error_out; /* Read command from PCI config space, set up command fields */ where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX]; count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX]; if (count == LPFC_PCI_CFG_BROWSE) { if (where % sizeof(uint32_t)) goto error_out; /* Starting offset to browse */ idiag.offset.last_rd = where; } else if ((count != sizeof(uint8_t)) && (count != sizeof(uint16_t)) && (count != sizeof(uint32_t))) goto error_out; if (count == sizeof(uint8_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t)) goto error_out; if (where % sizeof(uint8_t)) goto error_out; } if (count == sizeof(uint16_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t)) goto error_out; if (where % sizeof(uint16_t)) goto error_out; } if (count == sizeof(uint32_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t)) goto error_out; if (where % sizeof(uint32_t)) goto error_out; } } else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) { /* Sanity check on PCI config write command line arguments */ if (rc != LPFC_PCI_CFG_WR_CMD_ARG) goto error_out; /* Write command to PCI config space, read-modify-write */ where = idiag.cmd.data[IDIAG_PCICFG_WHERE_INDX]; count = idiag.cmd.data[IDIAG_PCICFG_COUNT_INDX]; value = idiag.cmd.data[IDIAG_PCICFG_VALUE_INDX]; /* Sanity checks */ if ((count != sizeof(uint8_t)) && (count != sizeof(uint16_t)) && (count != sizeof(uint32_t))) goto error_out; if (count == sizeof(uint8_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint8_t)) goto error_out; if (where % sizeof(uint8_t)) goto error_out; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR) pci_write_config_byte(pdev, where, (uint8_t)value); if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) { rc = pci_read_config_byte(pdev, where, &u8val); if (!rc) { u8val |= (uint8_t)value; pci_write_config_byte(pdev, where, u8val); } } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) { rc = pci_read_config_byte(pdev, where, &u8val); if (!rc) { u8val &= (uint8_t)(~value); pci_write_config_byte(pdev, where, u8val); } } } if (count == sizeof(uint16_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint16_t)) goto error_out; if (where % sizeof(uint16_t)) goto error_out; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR) pci_write_config_word(pdev, where, (uint16_t)value); if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) { rc = pci_read_config_word(pdev, where, &u16val); if (!rc) { u16val |= (uint16_t)value; pci_write_config_word(pdev, where, u16val); } } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) { rc = pci_read_config_word(pdev, where, &u16val); if (!rc) { u16val &= (uint16_t)(~value); pci_write_config_word(pdev, where, u16val); } } } if (count == sizeof(uint32_t)) { if (where > LPFC_PCI_CFG_SIZE - sizeof(uint32_t)) goto error_out; if (where % sizeof(uint32_t)) goto error_out; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_WR) pci_write_config_dword(pdev, where, value); if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_ST) { rc = pci_read_config_dword(pdev, where, &u32val); if (!rc) { u32val |= value; pci_write_config_dword(pdev, where, u32val); } } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_PCICFG_CL) { rc = pci_read_config_dword(pdev, where, &u32val); if (!rc) { u32val &= ~value; pci_write_config_dword(pdev, where, u32val); } } } } else /* All other opecodes are illegal for now */ goto error_out; return nbytes; error_out: memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_baracc_read - idiag debugfs pci bar access read * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba pci bar memory mapped space * according to the idiag command, and copies to user @buf. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_baracc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; int offset_label, offset, offset_run, len = 0, index; int bar_num, acc_range, bar_size; char *pbuffer; void __iomem *mem_mapped_bar; uint32_t if_type; struct pci_dev *pdev; uint32_t u32val; pdev = phba->pcidev; if (!pdev) return 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_PCI_BAR_RD_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_RD) { bar_num = idiag.cmd.data[IDIAG_BARACC_BAR_NUM_INDX]; offset = idiag.cmd.data[IDIAG_BARACC_OFF_SET_INDX]; acc_range = idiag.cmd.data[IDIAG_BARACC_ACC_MOD_INDX]; bar_size = idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX]; } else return 0; if (acc_range == 0) return 0; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { if (bar_num == IDIAG_BARACC_BAR_0) mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p; else if (bar_num == IDIAG_BARACC_BAR_1) mem_mapped_bar = phba->sli4_hba.ctrl_regs_memmap_p; else if (bar_num == IDIAG_BARACC_BAR_2) mem_mapped_bar = phba->sli4_hba.drbl_regs_memmap_p; else return 0; } else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { if (bar_num == IDIAG_BARACC_BAR_0) mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p; else return 0; } else return 0; /* Read single PCI bar space register */ if (acc_range == SINGLE_WORD) { offset_run = offset; u32val = readl(mem_mapped_bar + offset_run); len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "%05x: %08x\n", offset_run, u32val); } else goto baracc_browse; return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); baracc_browse: /* Browse all PCI bar space registers */ offset_label = idiag.offset.last_rd; offset_run = offset_label; /* Read PCI bar memory mapped space */ len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "%05x: ", offset_label); index = LPFC_PCI_BAR_RD_SIZE; while (index > 0) { u32val = readl(mem_mapped_bar + offset_run); len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "%08x ", u32val); offset_run += sizeof(uint32_t); if (acc_range == LPFC_PCI_BAR_BROWSE) { if (offset_run >= bar_size) { len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n"); break; } } else { if (offset_run >= offset + (acc_range * sizeof(uint32_t))) { len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n"); break; } } index -= sizeof(uint32_t); if (!index) len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n"); else if (!(index % (8 * sizeof(uint32_t)))) { offset_label += (8 * sizeof(uint32_t)); len += snprintf(pbuffer+len, LPFC_PCI_BAR_RD_BUF_SIZE-len, "\n%05x: ", offset_label); } } /* Set up the offset for next portion of pci bar read */ if (index == 0) { idiag.offset.last_rd += LPFC_PCI_BAR_RD_SIZE; if (acc_range == LPFC_PCI_BAR_BROWSE) { if (idiag.offset.last_rd >= bar_size) idiag.offset.last_rd = 0; } else { if (offset_run >= offset + (acc_range * sizeof(uint32_t))) idiag.offset.last_rd = offset; } } else { if (acc_range == LPFC_PCI_BAR_BROWSE) idiag.offset.last_rd = 0; else idiag.offset.last_rd = offset; } return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_baracc_write - Syntax check and set up idiag bar access commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and * then perform the syntax check for PCI bar memory mapped space read or * write command accordingly. In the case of PCI bar memory mapped space * read command, it sets up the command in the idiag command struct for * the debugfs read operation. In the case of PCI bar memorpy mapped space * write operation, it executes the write operation into the PCI bar memory * mapped space accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. */ static ssize_t lpfc_idiag_baracc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t bar_num, bar_size, offset, value, acc_range; struct pci_dev *pdev; void __iomem *mem_mapped_bar; uint32_t if_type; uint32_t u32val; int rc; pdev = phba->pcidev; if (!pdev) return -EFAULT; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); bar_num = idiag.cmd.data[IDIAG_BARACC_BAR_NUM_INDX]; if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { if ((bar_num != IDIAG_BARACC_BAR_0) && (bar_num != IDIAG_BARACC_BAR_1) && (bar_num != IDIAG_BARACC_BAR_2)) goto error_out; } else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { if (bar_num != IDIAG_BARACC_BAR_0) goto error_out; } else goto error_out; if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { if (bar_num == IDIAG_BARACC_BAR_0) { idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] = LPFC_PCI_IF0_BAR0_SIZE; mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p; } else if (bar_num == IDIAG_BARACC_BAR_1) { idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] = LPFC_PCI_IF0_BAR1_SIZE; mem_mapped_bar = phba->sli4_hba.ctrl_regs_memmap_p; } else if (bar_num == IDIAG_BARACC_BAR_2) { idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] = LPFC_PCI_IF0_BAR2_SIZE; mem_mapped_bar = phba->sli4_hba.drbl_regs_memmap_p; } else goto error_out; } else if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { if (bar_num == IDIAG_BARACC_BAR_0) { idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX] = LPFC_PCI_IF2_BAR0_SIZE; mem_mapped_bar = phba->sli4_hba.conf_regs_memmap_p; } else goto error_out; } else goto error_out; offset = idiag.cmd.data[IDIAG_BARACC_OFF_SET_INDX]; if (offset % sizeof(uint32_t)) goto error_out; bar_size = idiag.cmd.data[IDIAG_BARACC_BAR_SZE_INDX]; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_RD) { /* Sanity check on PCI config read command line arguments */ if (rc != LPFC_PCI_BAR_RD_CMD_ARG) goto error_out; acc_range = idiag.cmd.data[IDIAG_BARACC_ACC_MOD_INDX]; if (acc_range == LPFC_PCI_BAR_BROWSE) { if (offset > bar_size - sizeof(uint32_t)) goto error_out; /* Starting offset to browse */ idiag.offset.last_rd = offset; } else if (acc_range > SINGLE_WORD) { if (offset + acc_range * sizeof(uint32_t) > bar_size) goto error_out; /* Starting offset to browse */ idiag.offset.last_rd = offset; } else if (acc_range != SINGLE_WORD) goto error_out; } else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_CL) { /* Sanity check on PCI bar write command line arguments */ if (rc != LPFC_PCI_BAR_WR_CMD_ARG) goto error_out; /* Write command to PCI bar space, read-modify-write */ acc_range = SINGLE_WORD; value = idiag.cmd.data[IDIAG_BARACC_REG_VAL_INDX]; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_WR) { writel(value, mem_mapped_bar + offset); readl(mem_mapped_bar + offset); } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_ST) { u32val = readl(mem_mapped_bar + offset); u32val |= value; writel(u32val, mem_mapped_bar + offset); readl(mem_mapped_bar + offset); } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_BARACC_CL) { u32val = readl(mem_mapped_bar + offset); u32val &= ~value; writel(u32val, mem_mapped_bar + offset); readl(mem_mapped_bar + offset); } } else /* All other opecodes are illegal for now */ goto error_out; return nbytes; error_out: memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } static int __lpfc_idiag_print_wq(struct lpfc_queue *qp, char *wqtype, char *pbuffer, int len) { if (!qp) return len; len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t\t%s WQ info: ", wqtype); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "AssocCQID[%04d]: WQ-STAT[oflow:x%x posted:x%llx]\n", qp->assoc_qid, qp->q_cnt_1, (unsigned long long)qp->q_cnt_4); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t\tWQID[%02d], QE-CNT[%04d], QE-SZ[%04d], " "HST-IDX[%04d], PRT-IDX[%04d], PST[%03d]", qp->queue_id, qp->entry_count, qp->entry_size, qp->host_index, qp->hba_index, qp->entry_repost); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\n"); return len; } static int lpfc_idiag_wqs_for_cq(struct lpfc_hba *phba, char *wqtype, char *pbuffer, int *len, int max_cnt, int cq_id) { struct lpfc_queue *qp; int qidx; for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) { qp = phba->sli4_hba.fcp_wq[qidx]; if (qp->assoc_qid != cq_id) continue; *len = __lpfc_idiag_print_wq(qp, wqtype, pbuffer, *len); if (*len >= max_cnt) return 1; } for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { qp = phba->sli4_hba.nvme_wq[qidx]; if (qp->assoc_qid != cq_id) continue; *len = __lpfc_idiag_print_wq(qp, wqtype, pbuffer, *len); if (*len >= max_cnt) return 1; } return 0; } static int __lpfc_idiag_print_cq(struct lpfc_queue *qp, char *cqtype, char *pbuffer, int len) { if (!qp) return len; len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t%s CQ info: ", cqtype); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "AssocEQID[%02d]: CQ STAT[max:x%x relw:x%x " "xabt:x%x wq:x%llx]\n", qp->assoc_qid, qp->q_cnt_1, qp->q_cnt_2, qp->q_cnt_3, (unsigned long long)qp->q_cnt_4); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\tCQID[%02d], QE-CNT[%04d], QE-SZ[%04d], " "HST-IDX[%04d], PRT-IDX[%04d], PST[%03d]", qp->queue_id, qp->entry_count, qp->entry_size, qp->host_index, qp->hba_index, qp->entry_repost); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\n"); return len; } static int __lpfc_idiag_print_rqpair(struct lpfc_queue *qp, struct lpfc_queue *datqp, char *rqtype, char *pbuffer, int len) { if (!qp || !datqp) return len; len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t\t%s RQ info: ", rqtype); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "AssocCQID[%02d]: RQ-STAT[nopost:x%x nobuf:x%x " "posted:x%x rcv:x%llx]\n", qp->assoc_qid, qp->q_cnt_1, qp->q_cnt_2, qp->q_cnt_3, (unsigned long long)qp->q_cnt_4); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t\tHQID[%02d], QE-CNT[%04d], QE-SZ[%04d], " "HST-IDX[%04d], PRT-IDX[%04d], PST[%03d]\n", qp->queue_id, qp->entry_count, qp->entry_size, qp->host_index, qp->hba_index, qp->entry_repost); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\t\tDQID[%02d], QE-CNT[%04d], QE-SZ[%04d], " "HST-IDX[%04d], PRT-IDX[%04d], PST[%03d]\n", datqp->queue_id, datqp->entry_count, datqp->entry_size, datqp->host_index, datqp->hba_index, datqp->entry_repost); return len; } static int lpfc_idiag_cqs_for_eq(struct lpfc_hba *phba, char *pbuffer, int *len, int max_cnt, int eqidx, int eq_id) { struct lpfc_queue *qp; int qidx, rc; for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) { qp = phba->sli4_hba.fcp_cq[qidx]; if (qp->assoc_qid != eq_id) continue; *len = __lpfc_idiag_print_cq(qp, "FCP", pbuffer, *len); /* Reset max counter */ qp->CQ_max_cqe = 0; if (*len >= max_cnt) return 1; rc = lpfc_idiag_wqs_for_cq(phba, "FCP", pbuffer, len, max_cnt, qp->queue_id); if (rc) return 1; } for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { qp = phba->sli4_hba.nvme_cq[qidx]; if (qp->assoc_qid != eq_id) continue; *len = __lpfc_idiag_print_cq(qp, "NVME", pbuffer, *len); /* Reset max counter */ qp->CQ_max_cqe = 0; if (*len >= max_cnt) return 1; rc = lpfc_idiag_wqs_for_cq(phba, "NVME", pbuffer, len, max_cnt, qp->queue_id); if (rc) return 1; } if ((eqidx < phba->cfg_nvmet_mrq) && phba->nvmet_support) { /* NVMET CQset */ qp = phba->sli4_hba.nvmet_cqset[eqidx]; *len = __lpfc_idiag_print_cq(qp, "NVMET CQset", pbuffer, *len); /* Reset max counter */ qp->CQ_max_cqe = 0; if (*len >= max_cnt) return 1; /* RQ header */ qp = phba->sli4_hba.nvmet_mrq_hdr[eqidx]; *len = __lpfc_idiag_print_rqpair(qp, phba->sli4_hba.nvmet_mrq_data[eqidx], "NVMET MRQ", pbuffer, *len); if (*len >= max_cnt) return 1; } return 0; } static int __lpfc_idiag_print_eq(struct lpfc_queue *qp, char *eqtype, char *pbuffer, int len) { if (!qp) return len; len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\n%s EQ info: EQ-STAT[max:x%x noE:x%x " "cqe_proc:x%x eqe_proc:x%llx eqd %d]\n", eqtype, qp->q_cnt_1, qp->q_cnt_2, qp->q_cnt_3, (unsigned long long)qp->q_cnt_4, qp->q_mode); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "EQID[%02d], QE-CNT[%04d], QE-SZ[%04d], " "HST-IDX[%04d], PRT-IDX[%04d], PST[%03d]", qp->queue_id, qp->entry_count, qp->entry_size, qp->host_index, qp->hba_index, qp->entry_repost); len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "\n"); return len; } /** * lpfc_idiag_queinfo_read - idiag debugfs read queue information * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba SLI4 PCI function queue information, * and copies to user @buf. * This routine only returns 1 EQs worth of information. It remembers the last * EQ read and jumps to the next EQ. Thus subsequent calls to queInfo will * retrieve all EQs allocated for the phba. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_queinfo_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; char *pbuffer; int max_cnt, rc, x, len = 0; struct lpfc_queue *qp = NULL; if (!debug->buffer) debug->buffer = kmalloc(LPFC_QUE_INFO_GET_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; max_cnt = LPFC_QUE_INFO_GET_BUF_SIZE - 256; if (*ppos) return 0; spin_lock_irq(&phba->hbalock); /* Fast-path event queue */ if (phba->sli4_hba.hba_eq && phba->io_channel_irqs) { x = phba->lpfc_idiag_last_eq; if (phba->cfg_fof && (x >= phba->io_channel_irqs)) { phba->lpfc_idiag_last_eq = 0; goto fof; } phba->lpfc_idiag_last_eq++; if (phba->lpfc_idiag_last_eq >= phba->io_channel_irqs) if (phba->cfg_fof == 0) phba->lpfc_idiag_last_eq = 0; len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "EQ %d out of %d HBA EQs\n", x, phba->io_channel_irqs); /* Fast-path EQ */ qp = phba->sli4_hba.hba_eq[x]; if (!qp) goto out; len = __lpfc_idiag_print_eq(qp, "HBA", pbuffer, len); /* Reset max counter */ qp->EQ_max_eqe = 0; if (len >= max_cnt) goto too_big; /* will dump both fcp and nvme cqs/wqs for the eq */ rc = lpfc_idiag_cqs_for_eq(phba, pbuffer, &len, max_cnt, x, qp->queue_id); if (rc) goto too_big; /* Only EQ 0 has slow path CQs configured */ if (x) goto out; /* Slow-path mailbox CQ */ qp = phba->sli4_hba.mbx_cq; len = __lpfc_idiag_print_cq(qp, "MBX", pbuffer, len); if (len >= max_cnt) goto too_big; /* Slow-path MBOX MQ */ qp = phba->sli4_hba.mbx_wq; len = __lpfc_idiag_print_wq(qp, "MBX", pbuffer, len); if (len >= max_cnt) goto too_big; /* Slow-path ELS response CQ */ qp = phba->sli4_hba.els_cq; len = __lpfc_idiag_print_cq(qp, "ELS", pbuffer, len); /* Reset max counter */ if (qp) qp->CQ_max_cqe = 0; if (len >= max_cnt) goto too_big; /* Slow-path ELS WQ */ qp = phba->sli4_hba.els_wq; len = __lpfc_idiag_print_wq(qp, "ELS", pbuffer, len); if (len >= max_cnt) goto too_big; qp = phba->sli4_hba.hdr_rq; len = __lpfc_idiag_print_rqpair(qp, phba->sli4_hba.dat_rq, "ELS RQpair", pbuffer, len); if (len >= max_cnt) goto too_big; /* Slow-path NVME LS response CQ */ qp = phba->sli4_hba.nvmels_cq; len = __lpfc_idiag_print_cq(qp, "NVME LS", pbuffer, len); /* Reset max counter */ if (qp) qp->CQ_max_cqe = 0; if (len >= max_cnt) goto too_big; /* Slow-path NVME LS WQ */ qp = phba->sli4_hba.nvmels_wq; len = __lpfc_idiag_print_wq(qp, "NVME LS", pbuffer, len); if (len >= max_cnt) goto too_big; goto out; } fof: if (phba->cfg_fof) { /* FOF EQ */ qp = phba->sli4_hba.fof_eq; len = __lpfc_idiag_print_eq(qp, "FOF", pbuffer, len); /* Reset max counter */ if (qp) qp->EQ_max_eqe = 0; if (len >= max_cnt) goto too_big; /* OAS CQ */ qp = phba->sli4_hba.oas_cq; len = __lpfc_idiag_print_cq(qp, "OAS", pbuffer, len); /* Reset max counter */ if (qp) qp->CQ_max_cqe = 0; if (len >= max_cnt) goto too_big; /* OAS WQ */ qp = phba->sli4_hba.oas_wq; len = __lpfc_idiag_print_wq(qp, "OAS", pbuffer, len); if (len >= max_cnt) goto too_big; } spin_unlock_irq(&phba->hbalock); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); too_big: len += snprintf(pbuffer + len, LPFC_QUE_INFO_GET_BUF_SIZE - len, "Truncated ...\n"); out: spin_unlock_irq(&phba->hbalock); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_que_param_check - queue access command parameter sanity check * @q: The pointer to queue structure. * @index: The index into a queue entry. * @count: The number of queue entries to access. * * Description: * The routine performs sanity check on device queue access method commands. * * Returns: * This function returns -EINVAL when fails the sanity check, otherwise, it * returns 0. **/ static int lpfc_idiag_que_param_check(struct lpfc_queue *q, int index, int count) { /* Only support single entry read or browsing */ if ((count != 1) && (count != LPFC_QUE_ACC_BROWSE)) return -EINVAL; if (index > q->entry_count - 1) return -EINVAL; return 0; } /** * lpfc_idiag_queacc_read_qe - read a single entry from the given queue index * @pbuffer: The pointer to buffer to copy the read data into. * @pque: The pointer to the queue to be read. * @index: The index into the queue entry. * * Description: * This routine reads out a single entry from the given queue's index location * and copies it into the buffer provided. * * Returns: * This function returns 0 when it fails, otherwise, it returns the length of * the data read into the buffer provided. **/ static int lpfc_idiag_queacc_read_qe(char *pbuffer, int len, struct lpfc_queue *pque, uint32_t index) { int offset, esize; uint32_t *pentry; if (!pbuffer || !pque) return 0; esize = pque->entry_size; len += snprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len, "QE-INDEX[%04d]:\n", index); offset = 0; pentry = pque->qe[index].address; while (esize > 0) { len += snprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len, "%08x ", *pentry); pentry++; offset += sizeof(uint32_t); esize -= sizeof(uint32_t); if (esize > 0 && !(offset % (4 * sizeof(uint32_t)))) len += snprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len, "\n"); } len += snprintf(pbuffer+len, LPFC_QUE_ACC_BUF_SIZE-len, "\n"); return len; } /** * lpfc_idiag_queacc_read - idiag debugfs read port queue * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba device queue memory according to the * idiag command, and copies to user @buf. Depending on the queue dump read * command setup, it does either a single queue entry read or browing through * all entries of the queue. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_queacc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; uint32_t last_index, index, count; struct lpfc_queue *pque = NULL; char *pbuffer; int len = 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_QUE_ACC_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) { index = idiag.cmd.data[IDIAG_QUEACC_INDEX_INDX]; count = idiag.cmd.data[IDIAG_QUEACC_COUNT_INDX]; pque = (struct lpfc_queue *)idiag.ptr_private; } else return 0; /* Browse the queue starting from index */ if (count == LPFC_QUE_ACC_BROWSE) goto que_browse; /* Read a single entry from the queue */ len = lpfc_idiag_queacc_read_qe(pbuffer, len, pque, index); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); que_browse: /* Browse all entries from the queue */ last_index = idiag.offset.last_rd; index = last_index; while (len < LPFC_QUE_ACC_SIZE - pque->entry_size) { len = lpfc_idiag_queacc_read_qe(pbuffer, len, pque, index); index++; if (index > pque->entry_count - 1) break; } /* Set up the offset for next portion of pci cfg read */ if (index > pque->entry_count - 1) index = 0; idiag.offset.last_rd = index; return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_queacc_write - Syntax check and set up idiag queacc commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and then * perform the syntax check for port queue read (dump) or write (set) command * accordingly. In the case of port queue read command, it sets up the command * in the idiag command struct for the following debugfs read operation. In * the case of port queue write operation, it executes the write operation * into the port queue entry accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. **/ static ssize_t lpfc_idiag_queacc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t qidx, quetp, queid, index, count, offset, value; uint32_t *pentry; struct lpfc_queue *pque, *qp; int rc; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; /* Get and sanity check on command feilds */ quetp = idiag.cmd.data[IDIAG_QUEACC_QUETP_INDX]; queid = idiag.cmd.data[IDIAG_QUEACC_QUEID_INDX]; index = idiag.cmd.data[IDIAG_QUEACC_INDEX_INDX]; count = idiag.cmd.data[IDIAG_QUEACC_COUNT_INDX]; offset = idiag.cmd.data[IDIAG_QUEACC_OFFST_INDX]; value = idiag.cmd.data[IDIAG_QUEACC_VALUE_INDX]; /* Sanity check on command line arguments */ if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL) { if (rc != LPFC_QUE_ACC_WR_CMD_ARG) goto error_out; if (count != 1) goto error_out; } else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) { if (rc != LPFC_QUE_ACC_RD_CMD_ARG) goto error_out; } else goto error_out; switch (quetp) { case LPFC_IDIAG_EQ: /* HBA event queue */ if (phba->sli4_hba.hba_eq) { for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { qp = phba->sli4_hba.hba_eq[qidx]; if (qp && qp->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check(qp, index, count); if (rc) goto error_out; idiag.ptr_private = qp; goto pass_check; } } } goto error_out; break; case LPFC_IDIAG_CQ: /* MBX complete queue */ if (phba->sli4_hba.mbx_cq && phba->sli4_hba.mbx_cq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.mbx_cq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.mbx_cq; goto pass_check; } /* ELS complete queue */ if (phba->sli4_hba.els_cq && phba->sli4_hba.els_cq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.els_cq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.els_cq; goto pass_check; } /* NVME LS complete queue */ if (phba->sli4_hba.nvmels_cq && phba->sli4_hba.nvmels_cq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.nvmels_cq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.nvmels_cq; goto pass_check; } /* FCP complete queue */ if (phba->sli4_hba.fcp_cq) { for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) { qp = phba->sli4_hba.fcp_cq[qidx]; if (qp && qp->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( qp, index, count); if (rc) goto error_out; idiag.ptr_private = qp; goto pass_check; } } } /* NVME complete queue */ if (phba->sli4_hba.nvme_cq) { qidx = 0; do { if (phba->sli4_hba.nvme_cq[qidx] && phba->sli4_hba.nvme_cq[qidx]->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.nvme_cq[qidx], index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.nvme_cq[qidx]; goto pass_check; } } while (++qidx < phba->cfg_nvme_io_channel); } goto error_out; break; case LPFC_IDIAG_MQ: /* MBX work queue */ if (phba->sli4_hba.mbx_wq && phba->sli4_hba.mbx_wq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.mbx_wq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.mbx_wq; goto pass_check; } goto error_out; break; case LPFC_IDIAG_WQ: /* ELS work queue */ if (phba->sli4_hba.els_wq && phba->sli4_hba.els_wq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.els_wq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.els_wq; goto pass_check; } /* NVME LS work queue */ if (phba->sli4_hba.nvmels_wq && phba->sli4_hba.nvmels_wq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.nvmels_wq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.nvmels_wq; goto pass_check; } /* FCP work queue */ if (phba->sli4_hba.fcp_wq) { for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) { qp = phba->sli4_hba.fcp_wq[qidx]; if (qp && qp->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( qp, index, count); if (rc) goto error_out; idiag.ptr_private = qp; goto pass_check; } } } /* NVME work queue */ if (phba->sli4_hba.nvme_wq) { for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { qp = phba->sli4_hba.nvme_wq[qidx]; if (qp && qp->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( qp, index, count); if (rc) goto error_out; idiag.ptr_private = qp; goto pass_check; } } } /* NVME work queues */ if (phba->sli4_hba.nvme_wq) { for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { if (!phba->sli4_hba.nvme_wq[qidx]) continue; if (phba->sli4_hba.nvme_wq[qidx]->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.nvme_wq[qidx], index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.nvme_wq[qidx]; goto pass_check; } } } goto error_out; break; case LPFC_IDIAG_RQ: /* HDR queue */ if (phba->sli4_hba.hdr_rq && phba->sli4_hba.hdr_rq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.hdr_rq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.hdr_rq; goto pass_check; } /* DAT queue */ if (phba->sli4_hba.dat_rq && phba->sli4_hba.dat_rq->queue_id == queid) { /* Sanity check */ rc = lpfc_idiag_que_param_check( phba->sli4_hba.dat_rq, index, count); if (rc) goto error_out; idiag.ptr_private = phba->sli4_hba.dat_rq; goto pass_check; } goto error_out; break; default: goto error_out; break; } pass_check: if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_RD) { if (count == LPFC_QUE_ACC_BROWSE) idiag.offset.last_rd = index; } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL) { /* Additional sanity checks on write operation */ pque = (struct lpfc_queue *)idiag.ptr_private; if (offset > pque->entry_size/sizeof(uint32_t) - 1) goto error_out; pentry = pque->qe[index].address; pentry += offset; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_WR) *pentry = value; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_ST) *pentry |= value; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_QUEACC_CL) *pentry &= ~value; } return nbytes; error_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_drbacc_read_reg - idiag debugfs read a doorbell register * @phba: The pointer to hba structure. * @pbuffer: The pointer to the buffer to copy the data to. * @len: The lenght of bytes to copied. * @drbregid: The id to doorbell registers. * * Description: * This routine reads a doorbell register and copies its content to the * user buffer pointed to by @pbuffer. * * Returns: * This function returns the amount of data that was copied into @pbuffer. **/ static int lpfc_idiag_drbacc_read_reg(struct lpfc_hba *phba, char *pbuffer, int len, uint32_t drbregid) { if (!pbuffer) return 0; switch (drbregid) { case LPFC_DRB_EQ: len += snprintf(pbuffer + len, LPFC_DRB_ACC_BUF_SIZE-len, "EQ-DRB-REG: 0x%08x\n", readl(phba->sli4_hba.EQDBregaddr)); break; case LPFC_DRB_CQ: len += snprintf(pbuffer + len, LPFC_DRB_ACC_BUF_SIZE - len, "CQ-DRB-REG: 0x%08x\n", readl(phba->sli4_hba.CQDBregaddr)); break; case LPFC_DRB_MQ: len += snprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len, "MQ-DRB-REG: 0x%08x\n", readl(phba->sli4_hba.MQDBregaddr)); break; case LPFC_DRB_WQ: len += snprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len, "WQ-DRB-REG: 0x%08x\n", readl(phba->sli4_hba.WQDBregaddr)); break; case LPFC_DRB_RQ: len += snprintf(pbuffer+len, LPFC_DRB_ACC_BUF_SIZE-len, "RQ-DRB-REG: 0x%08x\n", readl(phba->sli4_hba.RQDBregaddr)); break; default: break; } return len; } /** * lpfc_idiag_drbacc_read - idiag debugfs read port doorbell * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba device doorbell register according * to the idiag command, and copies to user @buf. Depending on the doorbell * register read command setup, it does either a single doorbell register * read or dump all doorbell registers. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_drbacc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t drb_reg_id, i; char *pbuffer; int len = 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_DRB_ACC_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_RD) drb_reg_id = idiag.cmd.data[IDIAG_DRBACC_REGID_INDX]; else return 0; if (drb_reg_id == LPFC_DRB_ACC_ALL) for (i = 1; i <= LPFC_DRB_MAX; i++) len = lpfc_idiag_drbacc_read_reg(phba, pbuffer, len, i); else len = lpfc_idiag_drbacc_read_reg(phba, pbuffer, len, drb_reg_id); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_drbacc_write - Syntax check and set up idiag drbacc commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and then * perform the syntax check for port doorbell register read (dump) or write * (set) command accordingly. In the case of port queue read command, it sets * up the command in the idiag command struct for the following debugfs read * operation. In the case of port doorbell register write operation, it * executes the write operation into the port doorbell register accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. **/ static ssize_t lpfc_idiag_drbacc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t drb_reg_id, value, reg_val = 0; void __iomem *drb_reg; int rc; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; /* Sanity check on command line arguments */ drb_reg_id = idiag.cmd.data[IDIAG_DRBACC_REGID_INDX]; value = idiag.cmd.data[IDIAG_DRBACC_VALUE_INDX]; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) { if (rc != LPFC_DRB_ACC_WR_CMD_ARG) goto error_out; if (drb_reg_id > LPFC_DRB_MAX) goto error_out; } else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_RD) { if (rc != LPFC_DRB_ACC_RD_CMD_ARG) goto error_out; if ((drb_reg_id > LPFC_DRB_MAX) && (drb_reg_id != LPFC_DRB_ACC_ALL)) goto error_out; } else goto error_out; /* Perform the write access operation */ if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) { switch (drb_reg_id) { case LPFC_DRB_EQ: drb_reg = phba->sli4_hba.EQDBregaddr; break; case LPFC_DRB_CQ: drb_reg = phba->sli4_hba.CQDBregaddr; break; case LPFC_DRB_MQ: drb_reg = phba->sli4_hba.MQDBregaddr; break; case LPFC_DRB_WQ: drb_reg = phba->sli4_hba.WQDBregaddr; break; case LPFC_DRB_RQ: drb_reg = phba->sli4_hba.RQDBregaddr; break; default: goto error_out; } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_WR) reg_val = value; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_ST) { reg_val = readl(drb_reg); reg_val |= value; } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_DRBACC_CL) { reg_val = readl(drb_reg); reg_val &= ~value; } writel(reg_val, drb_reg); readl(drb_reg); /* flush */ } return nbytes; error_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_ctlacc_read_reg - idiag debugfs read a control registers * @phba: The pointer to hba structure. * @pbuffer: The pointer to the buffer to copy the data to. * @len: The lenght of bytes to copied. * @drbregid: The id to doorbell registers. * * Description: * This routine reads a control register and copies its content to the * user buffer pointed to by @pbuffer. * * Returns: * This function returns the amount of data that was copied into @pbuffer. **/ static int lpfc_idiag_ctlacc_read_reg(struct lpfc_hba *phba, char *pbuffer, int len, uint32_t ctlregid) { if (!pbuffer) return 0; switch (ctlregid) { case LPFC_CTL_PORT_SEM: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "Port SemReg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_SEM_OFFSET)); break; case LPFC_CTL_PORT_STA: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "Port StaReg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_STA_OFFSET)); break; case LPFC_CTL_PORT_CTL: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "Port CtlReg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_CTL_OFFSET)); break; case LPFC_CTL_PORT_ER1: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "Port Er1Reg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER1_OFFSET)); break; case LPFC_CTL_PORT_ER2: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "Port Er2Reg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER2_OFFSET)); break; case LPFC_CTL_PDEV_CTL: len += snprintf(pbuffer+len, LPFC_CTL_ACC_BUF_SIZE-len, "PDev CtlReg: 0x%08x\n", readl(phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET)); break; default: break; } return len; } /** * lpfc_idiag_ctlacc_read - idiag debugfs read port and device control register * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba port and device registers according * to the idiag command, and copies to user @buf. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_ctlacc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t ctl_reg_id, i; char *pbuffer; int len = 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_CTL_ACC_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_RD) ctl_reg_id = idiag.cmd.data[IDIAG_CTLACC_REGID_INDX]; else return 0; if (ctl_reg_id == LPFC_CTL_ACC_ALL) for (i = 1; i <= LPFC_CTL_MAX; i++) len = lpfc_idiag_ctlacc_read_reg(phba, pbuffer, len, i); else len = lpfc_idiag_ctlacc_read_reg(phba, pbuffer, len, ctl_reg_id); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_ctlacc_write - Syntax check and set up idiag ctlacc commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and then * perform the syntax check for port and device control register read (dump) * or write (set) command accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. **/ static ssize_t lpfc_idiag_ctlacc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; uint32_t ctl_reg_id, value, reg_val = 0; void __iomem *ctl_reg; int rc; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; /* Sanity check on command line arguments */ ctl_reg_id = idiag.cmd.data[IDIAG_CTLACC_REGID_INDX]; value = idiag.cmd.data[IDIAG_CTLACC_VALUE_INDX]; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) { if (rc != LPFC_CTL_ACC_WR_CMD_ARG) goto error_out; if (ctl_reg_id > LPFC_CTL_MAX) goto error_out; } else if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_RD) { if (rc != LPFC_CTL_ACC_RD_CMD_ARG) goto error_out; if ((ctl_reg_id > LPFC_CTL_MAX) && (ctl_reg_id != LPFC_CTL_ACC_ALL)) goto error_out; } else goto error_out; /* Perform the write access operation */ if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR || idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST || idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) { switch (ctl_reg_id) { case LPFC_CTL_PORT_SEM: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_SEM_OFFSET; break; case LPFC_CTL_PORT_STA: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_STA_OFFSET; break; case LPFC_CTL_PORT_CTL: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_CTL_OFFSET; break; case LPFC_CTL_PORT_ER1: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER1_OFFSET; break; case LPFC_CTL_PORT_ER2: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER2_OFFSET; break; case LPFC_CTL_PDEV_CTL: ctl_reg = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET; break; default: goto error_out; } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_WR) reg_val = value; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_ST) { reg_val = readl(ctl_reg); reg_val |= value; } if (idiag.cmd.opcode == LPFC_IDIAG_CMD_CTLACC_CL) { reg_val = readl(ctl_reg); reg_val &= ~value; } writel(reg_val, ctl_reg); readl(ctl_reg); /* flush */ } return nbytes; error_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_mbxacc_get_setup - idiag debugfs get mailbox access setup * @phba: Pointer to HBA context object. * @pbuffer: Pointer to data buffer. * * Description: * This routine gets the driver mailbox access debugfs setup information. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static int lpfc_idiag_mbxacc_get_setup(struct lpfc_hba *phba, char *pbuffer) { uint32_t mbx_dump_map, mbx_dump_cnt, mbx_word_cnt, mbx_mbox_cmd; int len = 0; mbx_mbox_cmd = idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX]; mbx_dump_map = idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX]; mbx_dump_cnt = idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX]; mbx_word_cnt = idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX]; len += snprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len, "mbx_dump_map: 0x%08x\n", mbx_dump_map); len += snprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len, "mbx_dump_cnt: %04d\n", mbx_dump_cnt); len += snprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len, "mbx_word_cnt: %04d\n", mbx_word_cnt); len += snprintf(pbuffer+len, LPFC_MBX_ACC_BUF_SIZE-len, "mbx_mbox_cmd: 0x%02x\n", mbx_mbox_cmd); return len; } /** * lpfc_idiag_mbxacc_read - idiag debugfs read on mailbox access * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the @phba driver mailbox access debugfs setup * information. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_mbxacc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; char *pbuffer; int len = 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_MBX_ACC_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if ((idiag.cmd.opcode != LPFC_IDIAG_CMD_MBXACC_DP) && (idiag.cmd.opcode != LPFC_IDIAG_BSG_MBXACC_DP)) return 0; len = lpfc_idiag_mbxacc_get_setup(phba, pbuffer); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } /** * lpfc_idiag_mbxacc_write - Syntax check and set up idiag mbxacc commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and then * perform the syntax check for driver mailbox command (dump) and sets up the * necessary states in the idiag command struct accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. **/ static ssize_t lpfc_idiag_mbxacc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; uint32_t mbx_dump_map, mbx_dump_cnt, mbx_word_cnt, mbx_mbox_cmd; int rc; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; /* Sanity check on command line arguments */ mbx_mbox_cmd = idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX]; mbx_dump_map = idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX]; mbx_dump_cnt = idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX]; mbx_word_cnt = idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX]; if (idiag.cmd.opcode == LPFC_IDIAG_CMD_MBXACC_DP) { if (!(mbx_dump_map & LPFC_MBX_DMP_MBX_ALL)) goto error_out; if ((mbx_dump_map & ~LPFC_MBX_DMP_MBX_ALL) && (mbx_dump_map != LPFC_MBX_DMP_ALL)) goto error_out; if (mbx_word_cnt > sizeof(MAILBOX_t)) goto error_out; } else if (idiag.cmd.opcode == LPFC_IDIAG_BSG_MBXACC_DP) { if (!(mbx_dump_map & LPFC_BSG_DMP_MBX_ALL)) goto error_out; if ((mbx_dump_map & ~LPFC_BSG_DMP_MBX_ALL) && (mbx_dump_map != LPFC_MBX_DMP_ALL)) goto error_out; if (mbx_word_cnt > (BSG_MBOX_SIZE)/4) goto error_out; if (mbx_mbox_cmd != 0x9b) goto error_out; } else goto error_out; if (mbx_word_cnt == 0) goto error_out; if (rc != LPFC_MBX_DMP_ARG) goto error_out; if (mbx_mbox_cmd & ~0xff) goto error_out; /* condition for stop mailbox dump */ if (mbx_dump_cnt == 0) goto reset_out; return nbytes; reset_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return nbytes; error_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_extacc_avail_get - get the available extents information * @phba: pointer to lpfc hba data structure. * @pbuffer: pointer to internal buffer. * @len: length into the internal buffer data has been copied. * * Description: * This routine is to get the available extent information. * * Returns: * overall lenth of the data read into the internal buffer. **/ static int lpfc_idiag_extacc_avail_get(struct lpfc_hba *phba, char *pbuffer, int len) { uint16_t ext_cnt, ext_size; len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\nAvailable Extents Information:\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tPort Available VPI extents: "); lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VPI, &ext_cnt, &ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Count %3d, Size %3d\n", ext_cnt, ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tPort Available VFI extents: "); lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VFI, &ext_cnt, &ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Count %3d, Size %3d\n", ext_cnt, ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tPort Available RPI extents: "); lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_RPI, &ext_cnt, &ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Count %3d, Size %3d\n", ext_cnt, ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tPort Available XRI extents: "); lpfc_sli4_get_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_XRI, &ext_cnt, &ext_size); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Count %3d, Size %3d\n", ext_cnt, ext_size); return len; } /** * lpfc_idiag_extacc_alloc_get - get the allocated extents information * @phba: pointer to lpfc hba data structure. * @pbuffer: pointer to internal buffer. * @len: length into the internal buffer data has been copied. * * Description: * This routine is to get the allocated extent information. * * Returns: * overall lenth of the data read into the internal buffer. **/ static int lpfc_idiag_extacc_alloc_get(struct lpfc_hba *phba, char *pbuffer, int len) { uint16_t ext_cnt, ext_size; int rc; len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\nAllocated Extents Information:\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tHost Allocated VPI extents: "); rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_VPI, &ext_cnt, &ext_size); if (!rc) len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Port %d Extent %3d, Size %3d\n", phba->brd_no, ext_cnt, ext_size); else len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "N/A\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tHost Allocated VFI extents: "); rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_VFI, &ext_cnt, &ext_size); if (!rc) len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Port %d Extent %3d, Size %3d\n", phba->brd_no, ext_cnt, ext_size); else len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "N/A\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tHost Allocated RPI extents: "); rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_RPI, &ext_cnt, &ext_size); if (!rc) len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Port %d Extent %3d, Size %3d\n", phba->brd_no, ext_cnt, ext_size); else len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "N/A\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tHost Allocated XRI extents: "); rc = lpfc_sli4_get_allocated_extnts(phba, LPFC_RSC_TYPE_FCOE_XRI, &ext_cnt, &ext_size); if (!rc) len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "Port %d Extent %3d, Size %3d\n", phba->brd_no, ext_cnt, ext_size); else len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "N/A\n"); return len; } /** * lpfc_idiag_extacc_drivr_get - get driver extent information * @phba: pointer to lpfc hba data structure. * @pbuffer: pointer to internal buffer. * @len: length into the internal buffer data has been copied. * * Description: * This routine is to get the driver extent information. * * Returns: * overall lenth of the data read into the internal buffer. **/ static int lpfc_idiag_extacc_drivr_get(struct lpfc_hba *phba, char *pbuffer, int len) { struct lpfc_rsrc_blks *rsrc_blks; int index; len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\nDriver Extents Information:\n"); len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tVPI extents:\n"); index = 0; list_for_each_entry(rsrc_blks, &phba->lpfc_vpi_blk_list, list) { len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\t\tBlock %3d: Start %4d, Count %4d\n", index, rsrc_blks->rsrc_start, rsrc_blks->rsrc_size); index++; } len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tVFI extents:\n"); index = 0; list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_vfi_blk_list, list) { len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\t\tBlock %3d: Start %4d, Count %4d\n", index, rsrc_blks->rsrc_start, rsrc_blks->rsrc_size); index++; } len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tRPI extents:\n"); index = 0; list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_rpi_blk_list, list) { len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\t\tBlock %3d: Start %4d, Count %4d\n", index, rsrc_blks->rsrc_start, rsrc_blks->rsrc_size); index++; } len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\tXRI extents:\n"); index = 0; list_for_each_entry(rsrc_blks, &phba->sli4_hba.lpfc_xri_blk_list, list) { len += snprintf(pbuffer+len, LPFC_EXT_ACC_BUF_SIZE-len, "\t\tBlock %3d: Start %4d, Count %4d\n", index, rsrc_blks->rsrc_start, rsrc_blks->rsrc_size); index++; } return len; } /** * lpfc_idiag_extacc_write - Syntax check and set up idiag extacc commands * @file: The file pointer to read from. * @buf: The buffer to copy the user data from. * @nbytes: The number of bytes to get. * @ppos: The position in the file to start reading from. * * This routine get the debugfs idiag command struct from user space and then * perform the syntax check for extent information access commands and sets * up the necessary states in the idiag command struct accordingly. * * It returns the @nbytges passing in from debugfs user space when successful. * In case of error conditions, it returns proper error code back to the user * space. **/ static ssize_t lpfc_idiag_extacc_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; uint32_t ext_map; int rc; /* This is a user write operation */ debug->op = LPFC_IDIAG_OP_WR; rc = lpfc_idiag_cmd_get(buf, nbytes, &idiag.cmd); if (rc < 0) return rc; ext_map = idiag.cmd.data[IDIAG_EXTACC_EXMAP_INDX]; if (idiag.cmd.opcode != LPFC_IDIAG_CMD_EXTACC_RD) goto error_out; if (rc != LPFC_EXT_ACC_CMD_ARG) goto error_out; if (!(ext_map & LPFC_EXT_ACC_ALL)) goto error_out; return nbytes; error_out: /* Clean out command structure on command error out */ memset(&idiag, 0, sizeof(idiag)); return -EINVAL; } /** * lpfc_idiag_extacc_read - idiag debugfs read access to extent information * @file: The file pointer to read from. * @buf: The buffer to copy the data to. * @nbytes: The number of bytes to read. * @ppos: The position in the file to start reading from. * * Description: * This routine reads data from the proper extent information according to * the idiag command, and copies to user @buf. * * Returns: * This function returns the amount of data that was read (this could be less * than @nbytes if the end of the file was reached) or a negative error value. **/ static ssize_t lpfc_idiag_extacc_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct lpfc_debug *debug = file->private_data; struct lpfc_hba *phba = (struct lpfc_hba *)debug->i_private; char *pbuffer; uint32_t ext_map; int len = 0; /* This is a user read operation */ debug->op = LPFC_IDIAG_OP_RD; if (!debug->buffer) debug->buffer = kmalloc(LPFC_EXT_ACC_BUF_SIZE, GFP_KERNEL); if (!debug->buffer) return 0; pbuffer = debug->buffer; if (*ppos) return 0; if (idiag.cmd.opcode != LPFC_IDIAG_CMD_EXTACC_RD) return 0; ext_map = idiag.cmd.data[IDIAG_EXTACC_EXMAP_INDX]; if (ext_map & LPFC_EXT_ACC_AVAIL) len = lpfc_idiag_extacc_avail_get(phba, pbuffer, len); if (ext_map & LPFC_EXT_ACC_ALLOC) len = lpfc_idiag_extacc_alloc_get(phba, pbuffer, len); if (ext_map & LPFC_EXT_ACC_DRIVR) len = lpfc_idiag_extacc_drivr_get(phba, pbuffer, len); return simple_read_from_buffer(buf, nbytes, ppos, pbuffer, len); } #undef lpfc_debugfs_op_disc_trc static const struct file_operations lpfc_debugfs_op_disc_trc = { .owner = THIS_MODULE, .open = lpfc_debugfs_disc_trc_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_nodelist static const struct file_operations lpfc_debugfs_op_nodelist = { .owner = THIS_MODULE, .open = lpfc_debugfs_nodelist_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_hbqinfo static const struct file_operations lpfc_debugfs_op_hbqinfo = { .owner = THIS_MODULE, .open = lpfc_debugfs_hbqinfo_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_dumpHBASlim static const struct file_operations lpfc_debugfs_op_dumpHBASlim = { .owner = THIS_MODULE, .open = lpfc_debugfs_dumpHBASlim_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_dumpHostSlim static const struct file_operations lpfc_debugfs_op_dumpHostSlim = { .owner = THIS_MODULE, .open = lpfc_debugfs_dumpHostSlim_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_nvmestat static const struct file_operations lpfc_debugfs_op_nvmestat = { .owner = THIS_MODULE, .open = lpfc_debugfs_nvmestat_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_nvmestat_write, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_nvmektime static const struct file_operations lpfc_debugfs_op_nvmektime = { .owner = THIS_MODULE, .open = lpfc_debugfs_nvmektime_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_nvmektime_write, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_nvmeio_trc static const struct file_operations lpfc_debugfs_op_nvmeio_trc = { .owner = THIS_MODULE, .open = lpfc_debugfs_nvmeio_trc_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_nvmeio_trc_write, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_cpucheck static const struct file_operations lpfc_debugfs_op_cpucheck = { .owner = THIS_MODULE, .open = lpfc_debugfs_cpucheck_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_cpucheck_write, .release = lpfc_debugfs_release, }; #undef lpfc_debugfs_op_dumpData static const struct file_operations lpfc_debugfs_op_dumpData = { .owner = THIS_MODULE, .open = lpfc_debugfs_dumpData_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_dumpDataDif_write, .release = lpfc_debugfs_dumpDataDif_release, }; #undef lpfc_debugfs_op_dumpDif static const struct file_operations lpfc_debugfs_op_dumpDif = { .owner = THIS_MODULE, .open = lpfc_debugfs_dumpDif_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .write = lpfc_debugfs_dumpDataDif_write, .release = lpfc_debugfs_dumpDataDif_release, }; #undef lpfc_debugfs_op_dif_err static const struct file_operations lpfc_debugfs_op_dif_err = { .owner = THIS_MODULE, .open = simple_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_dif_err_read, .write = lpfc_debugfs_dif_err_write, .release = lpfc_debugfs_dif_err_release, }; #undef lpfc_debugfs_op_slow_ring_trc static const struct file_operations lpfc_debugfs_op_slow_ring_trc = { .owner = THIS_MODULE, .open = lpfc_debugfs_slow_ring_trc_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_debugfs_read, .release = lpfc_debugfs_release, }; static struct dentry *lpfc_debugfs_root = NULL; static atomic_t lpfc_debugfs_hba_count; /* * File operations for the iDiag debugfs */ #undef lpfc_idiag_op_pciCfg static const struct file_operations lpfc_idiag_op_pciCfg = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_pcicfg_read, .write = lpfc_idiag_pcicfg_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_barAcc static const struct file_operations lpfc_idiag_op_barAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_baracc_read, .write = lpfc_idiag_baracc_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_queInfo static const struct file_operations lpfc_idiag_op_queInfo = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .read = lpfc_idiag_queinfo_read, .release = lpfc_idiag_release, }; #undef lpfc_idiag_op_queAcc static const struct file_operations lpfc_idiag_op_queAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_queacc_read, .write = lpfc_idiag_queacc_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_drbAcc static const struct file_operations lpfc_idiag_op_drbAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_drbacc_read, .write = lpfc_idiag_drbacc_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_ctlAcc static const struct file_operations lpfc_idiag_op_ctlAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_ctlacc_read, .write = lpfc_idiag_ctlacc_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_mbxAcc static const struct file_operations lpfc_idiag_op_mbxAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_mbxacc_read, .write = lpfc_idiag_mbxacc_write, .release = lpfc_idiag_cmd_release, }; #undef lpfc_idiag_op_extAcc static const struct file_operations lpfc_idiag_op_extAcc = { .owner = THIS_MODULE, .open = lpfc_idiag_open, .llseek = lpfc_debugfs_lseek, .read = lpfc_idiag_extacc_read, .write = lpfc_idiag_extacc_write, .release = lpfc_idiag_cmd_release, }; #endif /* lpfc_idiag_mbxacc_dump_bsg_mbox - idiag debugfs dump bsg mailbox command * @phba: Pointer to HBA context object. * @dmabuf: Pointer to a DMA buffer descriptor. * * Description: * This routine dump a bsg pass-through non-embedded mailbox command with * external buffer. **/ void lpfc_idiag_mbxacc_dump_bsg_mbox(struct lpfc_hba *phba, enum nemb_type nemb_tp, enum mbox_type mbox_tp, enum dma_type dma_tp, enum sta_type sta_tp, struct lpfc_dmabuf *dmabuf, uint32_t ext_buf) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t *mbx_mbox_cmd, *mbx_dump_map, *mbx_dump_cnt, *mbx_word_cnt; char line_buf[LPFC_MBX_ACC_LBUF_SZ]; int len = 0; uint32_t do_dump = 0; uint32_t *pword; uint32_t i; if (idiag.cmd.opcode != LPFC_IDIAG_BSG_MBXACC_DP) return; mbx_mbox_cmd = &idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX]; mbx_dump_map = &idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX]; mbx_dump_cnt = &idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX]; mbx_word_cnt = &idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX]; if (!(*mbx_dump_map & LPFC_MBX_DMP_ALL) || (*mbx_dump_cnt == 0) || (*mbx_word_cnt == 0)) return; if (*mbx_mbox_cmd != 0x9B) return; if ((mbox_tp == mbox_rd) && (dma_tp == dma_mbox)) { if (*mbx_dump_map & LPFC_BSG_DMP_MBX_RD_MBX) { do_dump |= LPFC_BSG_DMP_MBX_RD_MBX; pr_err("\nRead mbox command (x%x), " "nemb:0x%x, extbuf_cnt:%d:\n", sta_tp, nemb_tp, ext_buf); } } if ((mbox_tp == mbox_rd) && (dma_tp == dma_ebuf)) { if (*mbx_dump_map & LPFC_BSG_DMP_MBX_RD_BUF) { do_dump |= LPFC_BSG_DMP_MBX_RD_BUF; pr_err("\nRead mbox buffer (x%x), " "nemb:0x%x, extbuf_seq:%d:\n", sta_tp, nemb_tp, ext_buf); } } if ((mbox_tp == mbox_wr) && (dma_tp == dma_mbox)) { if (*mbx_dump_map & LPFC_BSG_DMP_MBX_WR_MBX) { do_dump |= LPFC_BSG_DMP_MBX_WR_MBX; pr_err("\nWrite mbox command (x%x), " "nemb:0x%x, extbuf_cnt:%d:\n", sta_tp, nemb_tp, ext_buf); } } if ((mbox_tp == mbox_wr) && (dma_tp == dma_ebuf)) { if (*mbx_dump_map & LPFC_BSG_DMP_MBX_WR_BUF) { do_dump |= LPFC_BSG_DMP_MBX_WR_BUF; pr_err("\nWrite mbox buffer (x%x), " "nemb:0x%x, extbuf_seq:%d:\n", sta_tp, nemb_tp, ext_buf); } } /* dump buffer content */ if (do_dump) { pword = (uint32_t *)dmabuf->virt; for (i = 0; i < *mbx_word_cnt; i++) { if (!(i % 8)) { if (i != 0) pr_err("%s\n", line_buf); len = 0; len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%03d: ", i); } len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%08x ", (uint32_t)*pword); pword++; } if ((i - 1) % 8) pr_err("%s\n", line_buf); (*mbx_dump_cnt)--; } /* Clean out command structure on reaching dump count */ if (*mbx_dump_cnt == 0) memset(&idiag, 0, sizeof(idiag)); return; #endif } /* lpfc_idiag_mbxacc_dump_issue_mbox - idiag debugfs dump issue mailbox command * @phba: Pointer to HBA context object. * @dmabuf: Pointer to a DMA buffer descriptor. * * Description: * This routine dump a pass-through non-embedded mailbox command from issue * mailbox command. **/ void lpfc_idiag_mbxacc_dump_issue_mbox(struct lpfc_hba *phba, MAILBOX_t *pmbox) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint32_t *mbx_dump_map, *mbx_dump_cnt, *mbx_word_cnt, *mbx_mbox_cmd; char line_buf[LPFC_MBX_ACC_LBUF_SZ]; int len = 0; uint32_t *pword; uint8_t *pbyte; uint32_t i, j; if (idiag.cmd.opcode != LPFC_IDIAG_CMD_MBXACC_DP) return; mbx_mbox_cmd = &idiag.cmd.data[IDIAG_MBXACC_MBCMD_INDX]; mbx_dump_map = &idiag.cmd.data[IDIAG_MBXACC_DPMAP_INDX]; mbx_dump_cnt = &idiag.cmd.data[IDIAG_MBXACC_DPCNT_INDX]; mbx_word_cnt = &idiag.cmd.data[IDIAG_MBXACC_WDCNT_INDX]; if (!(*mbx_dump_map & LPFC_MBX_DMP_MBX_ALL) || (*mbx_dump_cnt == 0) || (*mbx_word_cnt == 0)) return; if ((*mbx_mbox_cmd != LPFC_MBX_ALL_CMD) && (*mbx_mbox_cmd != pmbox->mbxCommand)) return; /* dump buffer content */ if (*mbx_dump_map & LPFC_MBX_DMP_MBX_WORD) { pr_err("Mailbox command:0x%x dump by word:\n", pmbox->mbxCommand); pword = (uint32_t *)pmbox; for (i = 0; i < *mbx_word_cnt; i++) { if (!(i % 8)) { if (i != 0) pr_err("%s\n", line_buf); len = 0; memset(line_buf, 0, LPFC_MBX_ACC_LBUF_SZ); len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%03d: ", i); } len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%08x ", ((uint32_t)*pword) & 0xffffffff); pword++; } if ((i - 1) % 8) pr_err("%s\n", line_buf); pr_err("\n"); } if (*mbx_dump_map & LPFC_MBX_DMP_MBX_BYTE) { pr_err("Mailbox command:0x%x dump by byte:\n", pmbox->mbxCommand); pbyte = (uint8_t *)pmbox; for (i = 0; i < *mbx_word_cnt; i++) { if (!(i % 8)) { if (i != 0) pr_err("%s\n", line_buf); len = 0; memset(line_buf, 0, LPFC_MBX_ACC_LBUF_SZ); len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%03d: ", i); } for (j = 0; j < 4; j++) { len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, "%02x", ((uint8_t)*pbyte) & 0xff); pbyte++; } len += snprintf(line_buf+len, LPFC_MBX_ACC_LBUF_SZ-len, " "); } if ((i - 1) % 8) pr_err("%s\n", line_buf); pr_err("\n"); } (*mbx_dump_cnt)--; /* Clean out command structure on reaching dump count */ if (*mbx_dump_cnt == 0) memset(&idiag, 0, sizeof(idiag)); return; #endif } /** * lpfc_debugfs_initialize - Initialize debugfs for a vport * @vport: The vport pointer to initialize. * * Description: * When Debugfs is configured this routine sets up the lpfc debugfs file system. * If not already created, this routine will create the lpfc directory, and * lpfcX directory (for this HBA), and vportX directory for this vport. It will * also create each file used to access lpfc specific debugfs information. **/ inline void lpfc_debugfs_initialize(struct lpfc_vport *vport) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_hba *phba = vport->phba; char name[64]; uint32_t num, i; bool pport_setup = false; if (!lpfc_debugfs_enable) return; /* Setup lpfc root directory */ if (!lpfc_debugfs_root) { lpfc_debugfs_root = debugfs_create_dir("lpfc", NULL); atomic_set(&lpfc_debugfs_hba_count, 0); if (!lpfc_debugfs_root) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0408 Cannot create debugfs root\n"); goto debug_failed; } } if (!lpfc_debugfs_start_time) lpfc_debugfs_start_time = jiffies; /* Setup funcX directory for specific HBA PCI function */ snprintf(name, sizeof(name), "fn%d", phba->brd_no); if (!phba->hba_debugfs_root) { pport_setup = true; phba->hba_debugfs_root = debugfs_create_dir(name, lpfc_debugfs_root); if (!phba->hba_debugfs_root) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0412 Cannot create debugfs hba\n"); goto debug_failed; } atomic_inc(&lpfc_debugfs_hba_count); atomic_set(&phba->debugfs_vport_count, 0); /* Setup hbqinfo */ snprintf(name, sizeof(name), "hbqinfo"); phba->debug_hbqinfo = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_hbqinfo); if (!phba->debug_hbqinfo) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0411 Cannot create debugfs hbqinfo\n"); goto debug_failed; } /* Setup dumpHBASlim */ if (phba->sli_rev < LPFC_SLI_REV4) { snprintf(name, sizeof(name), "dumpHBASlim"); phba->debug_dumpHBASlim = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dumpHBASlim); if (!phba->debug_dumpHBASlim) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0413 Cannot create debugfs " "dumpHBASlim\n"); goto debug_failed; } } else phba->debug_dumpHBASlim = NULL; /* Setup dumpHostSlim */ if (phba->sli_rev < LPFC_SLI_REV4) { snprintf(name, sizeof(name), "dumpHostSlim"); phba->debug_dumpHostSlim = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dumpHostSlim); if (!phba->debug_dumpHostSlim) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0414 Cannot create debugfs " "dumpHostSlim\n"); goto debug_failed; } } else phba->debug_dumpHostSlim = NULL; /* Setup dumpData */ snprintf(name, sizeof(name), "dumpData"); phba->debug_dumpData = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dumpData); if (!phba->debug_dumpData) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0800 Cannot create debugfs dumpData\n"); goto debug_failed; } /* Setup dumpDif */ snprintf(name, sizeof(name), "dumpDif"); phba->debug_dumpDif = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dumpDif); if (!phba->debug_dumpDif) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0801 Cannot create debugfs dumpDif\n"); goto debug_failed; } /* Setup DIF Error Injections */ snprintf(name, sizeof(name), "InjErrLBA"); phba->debug_InjErrLBA = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_InjErrLBA) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0807 Cannot create debugfs InjErrLBA\n"); goto debug_failed; } phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; snprintf(name, sizeof(name), "InjErrNPortID"); phba->debug_InjErrNPortID = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_InjErrNPortID) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0809 Cannot create debugfs InjErrNPortID\n"); goto debug_failed; } snprintf(name, sizeof(name), "InjErrWWPN"); phba->debug_InjErrWWPN = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_InjErrWWPN) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0810 Cannot create debugfs InjErrWWPN\n"); goto debug_failed; } snprintf(name, sizeof(name), "writeGuardInjErr"); phba->debug_writeGuard = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_writeGuard) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0802 Cannot create debugfs writeGuard\n"); goto debug_failed; } snprintf(name, sizeof(name), "writeAppInjErr"); phba->debug_writeApp = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_writeApp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0803 Cannot create debugfs writeApp\n"); goto debug_failed; } snprintf(name, sizeof(name), "writeRefInjErr"); phba->debug_writeRef = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_writeRef) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0804 Cannot create debugfs writeRef\n"); goto debug_failed; } snprintf(name, sizeof(name), "readGuardInjErr"); phba->debug_readGuard = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_readGuard) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0808 Cannot create debugfs readGuard\n"); goto debug_failed; } snprintf(name, sizeof(name), "readAppInjErr"); phba->debug_readApp = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_readApp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0805 Cannot create debugfs readApp\n"); goto debug_failed; } snprintf(name, sizeof(name), "readRefInjErr"); phba->debug_readRef = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_dif_err); if (!phba->debug_readRef) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0806 Cannot create debugfs readApp\n"); goto debug_failed; } /* Setup slow ring trace */ if (lpfc_debugfs_max_slow_ring_trc) { num = lpfc_debugfs_max_slow_ring_trc - 1; if (num & lpfc_debugfs_max_slow_ring_trc) { /* Change to be a power of 2 */ num = lpfc_debugfs_max_slow_ring_trc; i = 0; while (num > 1) { num = num >> 1; i++; } lpfc_debugfs_max_slow_ring_trc = (1 << i); pr_err("lpfc_debugfs_max_disc_trc changed to " "%d\n", lpfc_debugfs_max_disc_trc); } } snprintf(name, sizeof(name), "slow_ring_trace"); phba->debug_slow_ring_trc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_slow_ring_trc); if (!phba->debug_slow_ring_trc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0415 Cannot create debugfs " "slow_ring_trace\n"); goto debug_failed; } if (!phba->slow_ring_trc) { phba->slow_ring_trc = kmalloc( (sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_slow_ring_trc), GFP_KERNEL); if (!phba->slow_ring_trc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0416 Cannot create debugfs " "slow_ring buffer\n"); goto debug_failed; } atomic_set(&phba->slow_ring_trc_cnt, 0); memset(phba->slow_ring_trc, 0, (sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_slow_ring_trc)); } snprintf(name, sizeof(name), "nvmeio_trc"); phba->debug_nvmeio_trc = debugfs_create_file(name, 0644, phba->hba_debugfs_root, phba, &lpfc_debugfs_op_nvmeio_trc); if (!phba->debug_nvmeio_trc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0574 No create debugfs nvmeio_trc\n"); goto debug_failed; } atomic_set(&phba->nvmeio_trc_cnt, 0); if (lpfc_debugfs_max_nvmeio_trc) { num = lpfc_debugfs_max_nvmeio_trc - 1; if (num & lpfc_debugfs_max_disc_trc) { /* Change to be a power of 2 */ num = lpfc_debugfs_max_nvmeio_trc; i = 0; while (num > 1) { num = num >> 1; i++; } lpfc_debugfs_max_nvmeio_trc = (1 << i); lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0575 lpfc_debugfs_max_nvmeio_trc " "changed to %d\n", lpfc_debugfs_max_nvmeio_trc); } phba->nvmeio_trc_size = lpfc_debugfs_max_nvmeio_trc; /* Allocate trace buffer and initialize */ phba->nvmeio_trc = kzalloc( (sizeof(struct lpfc_debugfs_nvmeio_trc) * phba->nvmeio_trc_size), GFP_KERNEL); if (!phba->nvmeio_trc) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0576 Cannot create debugfs " "nvmeio_trc buffer\n"); goto nvmeio_off; } phba->nvmeio_trc_on = 1; phba->nvmeio_trc_output_idx = 0; phba->nvmeio_trc = NULL; } else { nvmeio_off: phba->nvmeio_trc_size = 0; phba->nvmeio_trc_on = 0; phba->nvmeio_trc_output_idx = 0; phba->nvmeio_trc = NULL; } } snprintf(name, sizeof(name), "vport%d", vport->vpi); if (!vport->vport_debugfs_root) { vport->vport_debugfs_root = debugfs_create_dir(name, phba->hba_debugfs_root); if (!vport->vport_debugfs_root) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0417 Can't create debugfs\n"); goto debug_failed; } atomic_inc(&phba->debugfs_vport_count); } if (lpfc_debugfs_max_disc_trc) { num = lpfc_debugfs_max_disc_trc - 1; if (num & lpfc_debugfs_max_disc_trc) { /* Change to be a power of 2 */ num = lpfc_debugfs_max_disc_trc; i = 0; while (num > 1) { num = num >> 1; i++; } lpfc_debugfs_max_disc_trc = (1 << i); pr_err("lpfc_debugfs_max_disc_trc changed to %d\n", lpfc_debugfs_max_disc_trc); } } vport->disc_trc = kzalloc( (sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_disc_trc), GFP_KERNEL); if (!vport->disc_trc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0418 Cannot create debugfs disc trace " "buffer\n"); goto debug_failed; } atomic_set(&vport->disc_trc_cnt, 0); snprintf(name, sizeof(name), "discovery_trace"); vport->debug_disc_trc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, vport->vport_debugfs_root, vport, &lpfc_debugfs_op_disc_trc); if (!vport->debug_disc_trc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0419 Cannot create debugfs " "discovery_trace\n"); goto debug_failed; } snprintf(name, sizeof(name), "nodelist"); vport->debug_nodelist = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, vport->vport_debugfs_root, vport, &lpfc_debugfs_op_nodelist); if (!vport->debug_nodelist) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2985 Can't create debugfs nodelist\n"); goto debug_failed; } snprintf(name, sizeof(name), "nvmestat"); vport->debug_nvmestat = debugfs_create_file(name, 0644, vport->vport_debugfs_root, vport, &lpfc_debugfs_op_nvmestat); if (!vport->debug_nvmestat) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0811 Cannot create debugfs nvmestat\n"); goto debug_failed; } snprintf(name, sizeof(name), "nvmektime"); vport->debug_nvmektime = debugfs_create_file(name, 0644, vport->vport_debugfs_root, vport, &lpfc_debugfs_op_nvmektime); if (!vport->debug_nvmektime) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0815 Cannot create debugfs nvmektime\n"); goto debug_failed; } snprintf(name, sizeof(name), "cpucheck"); vport->debug_cpucheck = debugfs_create_file(name, 0644, vport->vport_debugfs_root, vport, &lpfc_debugfs_op_cpucheck); if (!vport->debug_cpucheck) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "0819 Cannot create debugfs cpucheck\n"); goto debug_failed; } /* * The following section is for additional directories/files for the * physical port. */ if (!pport_setup) goto debug_failed; /* * iDiag debugfs root entry points for SLI4 device only */ if (phba->sli_rev < LPFC_SLI_REV4) goto debug_failed; snprintf(name, sizeof(name), "iDiag"); if (!phba->idiag_root) { phba->idiag_root = debugfs_create_dir(name, phba->hba_debugfs_root); if (!phba->idiag_root) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2922 Can't create idiag debugfs\n"); goto debug_failed; } /* Initialize iDiag data structure */ memset(&idiag, 0, sizeof(idiag)); } /* iDiag read PCI config space */ snprintf(name, sizeof(name), "pciCfg"); if (!phba->idiag_pci_cfg) { phba->idiag_pci_cfg = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_pciCfg); if (!phba->idiag_pci_cfg) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2923 Can't create idiag debugfs\n"); goto debug_failed; } idiag.offset.last_rd = 0; } /* iDiag PCI BAR access */ snprintf(name, sizeof(name), "barAcc"); if (!phba->idiag_bar_acc) { phba->idiag_bar_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_barAcc); if (!phba->idiag_bar_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "3056 Can't create idiag debugfs\n"); goto debug_failed; } idiag.offset.last_rd = 0; } /* iDiag get PCI function queue information */ snprintf(name, sizeof(name), "queInfo"); if (!phba->idiag_que_info) { phba->idiag_que_info = debugfs_create_file(name, S_IFREG|S_IRUGO, phba->idiag_root, phba, &lpfc_idiag_op_queInfo); if (!phba->idiag_que_info) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2924 Can't create idiag debugfs\n"); goto debug_failed; } } /* iDiag access PCI function queue */ snprintf(name, sizeof(name), "queAcc"); if (!phba->idiag_que_acc) { phba->idiag_que_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_queAcc); if (!phba->idiag_que_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2926 Can't create idiag debugfs\n"); goto debug_failed; } } /* iDiag access PCI function doorbell registers */ snprintf(name, sizeof(name), "drbAcc"); if (!phba->idiag_drb_acc) { phba->idiag_drb_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_drbAcc); if (!phba->idiag_drb_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2927 Can't create idiag debugfs\n"); goto debug_failed; } } /* iDiag access PCI function control registers */ snprintf(name, sizeof(name), "ctlAcc"); if (!phba->idiag_ctl_acc) { phba->idiag_ctl_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_ctlAcc); if (!phba->idiag_ctl_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2981 Can't create idiag debugfs\n"); goto debug_failed; } } /* iDiag access mbox commands */ snprintf(name, sizeof(name), "mbxAcc"); if (!phba->idiag_mbx_acc) { phba->idiag_mbx_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_mbxAcc); if (!phba->idiag_mbx_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2980 Can't create idiag debugfs\n"); goto debug_failed; } } /* iDiag extents access commands */ if (phba->sli4_hba.extents_in_use) { snprintf(name, sizeof(name), "extAcc"); if (!phba->idiag_ext_acc) { phba->idiag_ext_acc = debugfs_create_file(name, S_IFREG|S_IRUGO|S_IWUSR, phba->idiag_root, phba, &lpfc_idiag_op_extAcc); if (!phba->idiag_ext_acc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_INIT, "2986 Cant create " "idiag debugfs\n"); goto debug_failed; } } } debug_failed: return; #endif } /** * lpfc_debugfs_terminate - Tear down debugfs infrastructure for this vport * @vport: The vport pointer to remove from debugfs. * * Description: * When Debugfs is configured this routine removes debugfs file system elements * that are specific to this vport. It also checks to see if there are any * users left for the debugfs directories associated with the HBA and driver. If * this is the last user of the HBA directory or driver directory then it will * remove those from the debugfs infrastructure as well. **/ inline void lpfc_debugfs_terminate(struct lpfc_vport *vport) { #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_hba *phba = vport->phba; kfree(vport->disc_trc); vport->disc_trc = NULL; debugfs_remove(vport->debug_disc_trc); /* discovery_trace */ vport->debug_disc_trc = NULL; debugfs_remove(vport->debug_nodelist); /* nodelist */ vport->debug_nodelist = NULL; debugfs_remove(vport->debug_nvmestat); /* nvmestat */ vport->debug_nvmestat = NULL; debugfs_remove(vport->debug_nvmektime); /* nvmektime */ vport->debug_nvmektime = NULL; debugfs_remove(vport->debug_cpucheck); /* cpucheck */ vport->debug_cpucheck = NULL; if (vport->vport_debugfs_root) { debugfs_remove(vport->vport_debugfs_root); /* vportX */ vport->vport_debugfs_root = NULL; atomic_dec(&phba->debugfs_vport_count); } if (atomic_read(&phba->debugfs_vport_count) == 0) { debugfs_remove(phba->debug_hbqinfo); /* hbqinfo */ phba->debug_hbqinfo = NULL; debugfs_remove(phba->debug_dumpHBASlim); /* HBASlim */ phba->debug_dumpHBASlim = NULL; debugfs_remove(phba->debug_dumpHostSlim); /* HostSlim */ phba->debug_dumpHostSlim = NULL; debugfs_remove(phba->debug_dumpData); /* dumpData */ phba->debug_dumpData = NULL; debugfs_remove(phba->debug_dumpDif); /* dumpDif */ phba->debug_dumpDif = NULL; debugfs_remove(phba->debug_InjErrLBA); /* InjErrLBA */ phba->debug_InjErrLBA = NULL; debugfs_remove(phba->debug_InjErrNPortID); phba->debug_InjErrNPortID = NULL; debugfs_remove(phba->debug_InjErrWWPN); /* InjErrWWPN */ phba->debug_InjErrWWPN = NULL; debugfs_remove(phba->debug_writeGuard); /* writeGuard */ phba->debug_writeGuard = NULL; debugfs_remove(phba->debug_writeApp); /* writeApp */ phba->debug_writeApp = NULL; debugfs_remove(phba->debug_writeRef); /* writeRef */ phba->debug_writeRef = NULL; debugfs_remove(phba->debug_readGuard); /* readGuard */ phba->debug_readGuard = NULL; debugfs_remove(phba->debug_readApp); /* readApp */ phba->debug_readApp = NULL; debugfs_remove(phba->debug_readRef); /* readRef */ phba->debug_readRef = NULL; kfree(phba->slow_ring_trc); phba->slow_ring_trc = NULL; /* slow_ring_trace */ debugfs_remove(phba->debug_slow_ring_trc); phba->debug_slow_ring_trc = NULL; debugfs_remove(phba->debug_nvmeio_trc); phba->debug_nvmeio_trc = NULL; kfree(phba->nvmeio_trc); phba->nvmeio_trc = NULL; /* * iDiag release */ if (phba->sli_rev == LPFC_SLI_REV4) { /* iDiag extAcc */ debugfs_remove(phba->idiag_ext_acc); phba->idiag_ext_acc = NULL; /* iDiag mbxAcc */ debugfs_remove(phba->idiag_mbx_acc); phba->idiag_mbx_acc = NULL; /* iDiag ctlAcc */ debugfs_remove(phba->idiag_ctl_acc); phba->idiag_ctl_acc = NULL; /* iDiag drbAcc */ debugfs_remove(phba->idiag_drb_acc); phba->idiag_drb_acc = NULL; /* iDiag queAcc */ debugfs_remove(phba->idiag_que_acc); phba->idiag_que_acc = NULL; /* iDiag queInfo */ debugfs_remove(phba->idiag_que_info); phba->idiag_que_info = NULL; /* iDiag barAcc */ debugfs_remove(phba->idiag_bar_acc); phba->idiag_bar_acc = NULL; /* iDiag pciCfg */ debugfs_remove(phba->idiag_pci_cfg); phba->idiag_pci_cfg = NULL; /* Finally remove the iDiag debugfs root */ debugfs_remove(phba->idiag_root); phba->idiag_root = NULL; } if (phba->hba_debugfs_root) { debugfs_remove(phba->hba_debugfs_root); /* fnX */ phba->hba_debugfs_root = NULL; atomic_dec(&lpfc_debugfs_hba_count); } if (atomic_read(&lpfc_debugfs_hba_count) == 0) { debugfs_remove(lpfc_debugfs_root); /* lpfc */ lpfc_debugfs_root = NULL; } } #endif return; } /* * Driver debug utility routines outside of debugfs. The debug utility * routines implemented here is intended to be used in the instrumented * debug driver for debugging host or port issues. */ /** * lpfc_debug_dump_all_queues - dump all the queues with a hba * @phba: Pointer to HBA context object. * * This function dumps entries of all the queues asociated with the @phba. **/ void lpfc_debug_dump_all_queues(struct lpfc_hba *phba) { int idx; /* * Dump Work Queues (WQs) */ lpfc_debug_dump_wq(phba, DUMP_MBX, 0); lpfc_debug_dump_wq(phba, DUMP_ELS, 0); lpfc_debug_dump_wq(phba, DUMP_NVMELS, 0); for (idx = 0; idx < phba->cfg_fcp_io_channel; idx++) lpfc_debug_dump_wq(phba, DUMP_FCP, idx); for (idx = 0; idx < phba->cfg_nvme_io_channel; idx++) lpfc_debug_dump_wq(phba, DUMP_NVME, idx); lpfc_debug_dump_hdr_rq(phba); lpfc_debug_dump_dat_rq(phba); /* * Dump Complete Queues (CQs) */ lpfc_debug_dump_cq(phba, DUMP_MBX, 0); lpfc_debug_dump_cq(phba, DUMP_ELS, 0); lpfc_debug_dump_cq(phba, DUMP_NVMELS, 0); for (idx = 0; idx < phba->cfg_fcp_io_channel; idx++) lpfc_debug_dump_cq(phba, DUMP_FCP, idx); for (idx = 0; idx < phba->cfg_nvme_io_channel; idx++) lpfc_debug_dump_cq(phba, DUMP_NVME, idx); /* * Dump Event Queues (EQs) */ for (idx = 0; idx < phba->io_channel_irqs; idx++) lpfc_debug_dump_hba_eq(phba, idx); }