/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_PKT_CLS_H #define __NET_PKT_CLS_H #include #include #include #include #include /* TC action not accessible from user space */ #define TC_ACT_REINSERT (TC_ACT_VALUE_MAX + 1) /* Basic packet classifier frontend definitions. */ struct tcf_walker { int stop; int skip; int count; unsigned long cookie; int (*fn)(struct tcf_proto *, void *node, struct tcf_walker *); }; int register_tcf_proto_ops(struct tcf_proto_ops *ops); int unregister_tcf_proto_ops(struct tcf_proto_ops *ops); enum tcf_block_binder_type { TCF_BLOCK_BINDER_TYPE_UNSPEC, TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS, TCF_BLOCK_BINDER_TYPE_CLSACT_EGRESS, }; struct tcf_block_ext_info { enum tcf_block_binder_type binder_type; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; u32 block_index; }; struct tcf_block_cb; bool tcf_queue_work(struct rcu_work *rwork, work_func_t func); #ifdef CONFIG_NET_CLS struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index); void tcf_chain_put_by_act(struct tcf_chain *chain); struct tcf_chain *tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain); struct tcf_proto *tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp); void tcf_block_netif_keep_dst(struct tcf_block *block); int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack); int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack); void tcf_block_put(struct tcf_block *block); void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei); static inline bool tcf_block_shared(struct tcf_block *block) { return block->index; } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { WARN_ON(tcf_block_shared(block)); return block->q; } void *tcf_block_cb_priv(struct tcf_block_cb *block_cb); struct tcf_block_cb *tcf_block_cb_lookup(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident); void tcf_block_cb_incref(struct tcf_block_cb *block_cb); unsigned int tcf_block_cb_decref(struct tcf_block_cb *block_cb); struct tcf_block_cb *__tcf_block_cb_register(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident, void *cb_priv, struct netlink_ext_ack *extack); int tcf_block_cb_register(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident, void *cb_priv, struct netlink_ext_ack *extack); void __tcf_block_cb_unregister(struct tcf_block *block, struct tcf_block_cb *block_cb); void tcf_block_cb_unregister(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident); int __tc_indr_block_cb_register(struct net_device *dev, void *cb_priv, tc_indr_block_bind_cb_t *cb, void *cb_ident); int tc_indr_block_cb_register(struct net_device *dev, void *cb_priv, tc_indr_block_bind_cb_t *cb, void *cb_ident); void __tc_indr_block_cb_unregister(struct net_device *dev, tc_indr_block_bind_cb_t *cb, void *cb_ident); void tc_indr_block_cb_unregister(struct net_device *dev, tc_indr_block_bind_cb_t *cb, void *cb_ident); int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); #else static inline int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { return 0; } static inline int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_block_put(struct tcf_block *block) { } static inline void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { return NULL; } static inline int tc_setup_cb_block_register(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_priv) { return 0; } static inline void tc_setup_cb_block_unregister(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_priv) { } static inline void *tcf_block_cb_priv(struct tcf_block_cb *block_cb) { return NULL; } static inline struct tcf_block_cb *tcf_block_cb_lookup(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident) { return NULL; } static inline void tcf_block_cb_incref(struct tcf_block_cb *block_cb) { } static inline unsigned int tcf_block_cb_decref(struct tcf_block_cb *block_cb) { return 0; } static inline struct tcf_block_cb *__tcf_block_cb_register(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident, void *cb_priv, struct netlink_ext_ack *extack) { return NULL; } static inline int tcf_block_cb_register(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident, void *cb_priv, struct netlink_ext_ack *extack) { return 0; } static inline void __tcf_block_cb_unregister(struct tcf_block *block, struct tcf_block_cb *block_cb) { } static inline void tcf_block_cb_unregister(struct tcf_block *block, tc_setup_cb_t *cb, void *cb_ident) { } static inline int __tc_indr_block_cb_register(struct net_device *dev, void *cb_priv, tc_indr_block_bind_cb_t *cb, void *cb_ident) { return 0; } static inline int tc_indr_block_cb_register(struct net_device *dev, void *cb_priv, tc_indr_block_bind_cb_t *cb, void *cb_ident) { return 0; } static inline void __tc_indr_block_cb_unregister(struct net_device *dev, tc_indr_block_bind_cb_t *cb, void *cb_ident) { } static inline void tc_indr_block_cb_unregister(struct net_device *dev, tc_indr_block_bind_cb_t *cb, void *cb_ident) { } static inline int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } #endif static inline unsigned long __cls_set_class(unsigned long *clp, unsigned long cl) { return xchg(clp, cl); } static inline unsigned long cls_set_class(struct Qdisc *q, unsigned long *clp, unsigned long cl) { unsigned long old_cl; sch_tree_lock(q); old_cl = __cls_set_class(clp, cl); sch_tree_unlock(q); return old_cl; } static inline void tcf_bind_filter(struct tcf_proto *tp, struct tcf_result *r, unsigned long base) { struct Qdisc *q = tp->chain->block->q; unsigned long cl; /* Check q as it is not set for shared blocks. In that case, * setting class is not supported. */ if (!q) return; cl = q->ops->cl_ops->bind_tcf(q, base, r->classid); cl = cls_set_class(q, &r->class, cl); if (cl) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_unbind_filter(struct tcf_proto *tp, struct tcf_result *r) { struct Qdisc *q = tp->chain->block->q; unsigned long cl; if (!q) return; if ((cl = __cls_set_class(&r->class, 0)) != 0) q->ops->cl_ops->unbind_tcf(q, cl); } struct tcf_exts { #ifdef CONFIG_NET_CLS_ACT __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ int nr_actions; struct tc_action **actions; struct net *net; #endif /* Map to export classifier specific extension TLV types to the * generic extensions API. Unsupported extensions must be set to 0. */ int action; int police; }; static inline int tcf_exts_init(struct tcf_exts *exts, int action, int police) { #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->net = NULL; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; return 0; } /* Return false if the netns is being destroyed in cleanup_net(). Callers * need to do cleanup synchronously in this case, otherwise may race with * tc_action_net_exit(). Return true for other cases. */ static inline bool tcf_exts_get_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT exts->net = maybe_get_net(exts->net); return exts->net != NULL; #else return true; #endif } static inline void tcf_exts_put_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT if (exts->net) put_net(exts->net); #endif } #ifdef CONFIG_NET_CLS_ACT #define tcf_exts_for_each_action(i, a, exts) \ for (i = 0; i < TCA_ACT_MAX_PRIO && ((a) = (exts)->actions[i]); i++) #else #define tcf_exts_for_each_action(i, a, exts) \ for (; 0; (void)(i), (void)(a), (void)(exts)) #endif static inline void tcf_exts_stats_update(const struct tcf_exts *exts, u64 bytes, u64 packets, u64 lastuse) { #ifdef CONFIG_NET_CLS_ACT int i; preempt_disable(); for (i = 0; i < exts->nr_actions; i++) { struct tc_action *a = exts->actions[i]; tcf_action_stats_update(a, bytes, packets, lastuse, true); } preempt_enable(); #endif } /** * tcf_exts_has_actions - check if at least one action is present * @exts: tc filter extensions handle * * Returns true if at least one action is present. */ static inline bool tcf_exts_has_actions(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions; #else return false; #endif } /** * tcf_exts_has_one_action - check if exactly one action is present * @exts: tc filter extensions handle * * Returns true if exactly one action is present. */ static inline bool tcf_exts_has_one_action(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions == 1; #else return false; #endif } static inline struct tc_action *tcf_exts_first_action(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->actions[0]; #else return NULL; #endif } /** * tcf_exts_exec - execute tc filter extensions * @skb: socket buffer * @exts: tc filter extensions handle * @res: desired result * * Executes all configured extensions. Returns TC_ACT_OK on a normal execution, * a negative number if the filter must be considered unmatched or * a positive action code (TC_ACT_*) which must be returned to the * underlying layer. */ static inline int tcf_exts_exec(struct sk_buff *skb, struct tcf_exts *exts, struct tcf_result *res) { #ifdef CONFIG_NET_CLS_ACT return tcf_action_exec(skb, exts->actions, exts->nr_actions, res); #endif return TC_ACT_OK; } int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, bool ovr, struct netlink_ext_ack *extack); void tcf_exts_destroy(struct tcf_exts *exts); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src); int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts); /** * struct tcf_pkt_info - packet information */ struct tcf_pkt_info { unsigned char * ptr; int nexthdr; }; #ifdef CONFIG_NET_EMATCH struct tcf_ematch_ops; /** * struct tcf_ematch - extended match (ematch) * * @matchid: identifier to allow userspace to reidentify a match * @flags: flags specifying attributes and the relation to other matches * @ops: the operations lookup table of the corresponding ematch module * @datalen: length of the ematch specific configuration data * @data: ematch specific data */ struct tcf_ematch { struct tcf_ematch_ops * ops; unsigned long data; unsigned int datalen; u16 matchid; u16 flags; struct net *net; }; static inline int tcf_em_is_container(struct tcf_ematch *em) { return !em->ops; } static inline int tcf_em_is_simple(struct tcf_ematch *em) { return em->flags & TCF_EM_SIMPLE; } static inline int tcf_em_is_inverted(struct tcf_ematch *em) { return em->flags & TCF_EM_INVERT; } static inline int tcf_em_last_match(struct tcf_ematch *em) { return (em->flags & TCF_EM_REL_MASK) == TCF_EM_REL_END; } static inline int tcf_em_early_end(struct tcf_ematch *em, int result) { if (tcf_em_last_match(em)) return 1; if (result == 0 && em->flags & TCF_EM_REL_AND) return 1; if (result != 0 && em->flags & TCF_EM_REL_OR) return 1; return 0; } /** * struct tcf_ematch_tree - ematch tree handle * * @hdr: ematch tree header supplied by userspace * @matches: array of ematches */ struct tcf_ematch_tree { struct tcf_ematch_tree_hdr hdr; struct tcf_ematch * matches; }; /** * struct tcf_ematch_ops - ematch module operations * * @kind: identifier (kind) of this ematch module * @datalen: length of expected configuration data (optional) * @change: called during validation (optional) * @match: called during ematch tree evaluation, must return 1/0 * @destroy: called during destroyage (optional) * @dump: called during dumping process (optional) * @owner: owner, must be set to THIS_MODULE * @link: link to previous/next ematch module (internal use) */ struct tcf_ematch_ops { int kind; int datalen; int (*change)(struct net *net, void *, int, struct tcf_ematch *); int (*match)(struct sk_buff *, struct tcf_ematch *, struct tcf_pkt_info *); void (*destroy)(struct tcf_ematch *); int (*dump)(struct sk_buff *, struct tcf_ematch *); struct module *owner; struct list_head link; }; int tcf_em_register(struct tcf_ematch_ops *); void tcf_em_unregister(struct tcf_ematch_ops *); int tcf_em_tree_validate(struct tcf_proto *, struct nlattr *, struct tcf_ematch_tree *); void tcf_em_tree_destroy(struct tcf_ematch_tree *); int tcf_em_tree_dump(struct sk_buff *, struct tcf_ematch_tree *, int); int __tcf_em_tree_match(struct sk_buff *, struct tcf_ematch_tree *, struct tcf_pkt_info *); /** * tcf_em_tree_match - evaulate an ematch tree * * @skb: socket buffer of the packet in question * @tree: ematch tree to be used for evaluation * @info: packet information examined by classifier * * This function matches @skb against the ematch tree in @tree by going * through all ematches respecting their logic relations returning * as soon as the result is obvious. * * Returns 1 if the ematch tree as-one matches, no ematches are configured * or ematch is not enabled in the kernel, otherwise 0 is returned. */ static inline int tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { if (tree->hdr.nmatches) return __tcf_em_tree_match(skb, tree, info); else return 1; } #define MODULE_ALIAS_TCF_EMATCH(kind) MODULE_ALIAS("ematch-kind-" __stringify(kind)) #else /* CONFIG_NET_EMATCH */ struct tcf_ematch_tree { }; #define tcf_em_tree_validate(tp, tb, t) ((void)(t), 0) #define tcf_em_tree_destroy(t) do { (void)(t); } while(0) #define tcf_em_tree_dump(skb, t, tlv) (0) #define tcf_em_tree_match(skb, t, info) ((void)(info), 1) #endif /* CONFIG_NET_EMATCH */ static inline unsigned char * tcf_get_base_ptr(struct sk_buff *skb, int layer) { switch (layer) { case TCF_LAYER_LINK: return skb_mac_header(skb); case TCF_LAYER_NETWORK: return skb_network_header(skb); case TCF_LAYER_TRANSPORT: return skb_transport_header(skb); } return NULL; } static inline int tcf_valid_offset(const struct sk_buff *skb, const unsigned char *ptr, const int len) { return likely((ptr + len) <= skb_tail_pointer(skb) && ptr >= skb->head && (ptr <= (ptr + len))); } #ifdef CONFIG_NET_CLS_IND #include static inline int tcf_change_indev(struct net *net, struct nlattr *indev_tlv, struct netlink_ext_ack *extack) { char indev[IFNAMSIZ]; struct net_device *dev; if (nla_strlcpy(indev, indev_tlv, IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG(extack, "Interface name too long"); return -EINVAL; } dev = __dev_get_by_name(net, indev); if (!dev) return -ENODEV; return dev->ifindex; } static inline bool tcf_match_indev(struct sk_buff *skb, int ifindex) { if (!ifindex) return true; if (!skb->skb_iif) return false; return ifindex == skb->skb_iif; } #endif /* CONFIG_NET_CLS_IND */ int tc_setup_flow_action(struct flow_action *flow_action, const struct tcf_exts *exts); int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop); unsigned int tcf_exts_num_actions(struct tcf_exts *exts); enum tc_block_command { TC_BLOCK_BIND, TC_BLOCK_UNBIND, }; struct tc_block_offload { enum tc_block_command command; enum tcf_block_binder_type binder_type; struct tcf_block *block; struct netlink_ext_ack *extack; }; struct tc_cls_common_offload { u32 chain_index; __be16 protocol; u32 prio; struct netlink_ext_ack *extack; }; struct tc_cls_u32_knode { struct tcf_exts *exts; struct tcf_result *res; struct tc_u32_sel *sel; u32 handle; u32 val; u32 mask; u32 link_handle; u8 fshift; }; struct tc_cls_u32_hnode { u32 handle; u32 prio; unsigned int divisor; }; enum tc_clsu32_command { TC_CLSU32_NEW_KNODE, TC_CLSU32_REPLACE_KNODE, TC_CLSU32_DELETE_KNODE, TC_CLSU32_NEW_HNODE, TC_CLSU32_REPLACE_HNODE, TC_CLSU32_DELETE_HNODE, }; struct tc_cls_u32_offload { struct tc_cls_common_offload common; /* knode values */ enum tc_clsu32_command command; union { struct tc_cls_u32_knode knode; struct tc_cls_u32_hnode hnode; }; }; static inline bool tc_can_offload(const struct net_device *dev) { return dev->features & NETIF_F_HW_TC; } static inline bool tc_can_offload_extack(const struct net_device *dev, struct netlink_ext_ack *extack) { bool can = tc_can_offload(dev); if (!can) NL_SET_ERR_MSG(extack, "TC offload is disabled on net device"); return can; } static inline bool tc_cls_can_offload_and_chain0(const struct net_device *dev, struct tc_cls_common_offload *common) { if (!tc_can_offload_extack(dev, common->extack)) return false; if (common->chain_index) { NL_SET_ERR_MSG(common->extack, "Driver supports only offload of chain 0"); return false; } return true; } static inline bool tc_skip_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_HW) ? true : false; } static inline bool tc_skip_sw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_SW) ? true : false; } /* SKIP_HW and SKIP_SW are mutually exclusive flags. */ static inline bool tc_flags_valid(u32 flags) { if (flags & ~(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW | TCA_CLS_FLAGS_VERBOSE)) return false; flags &= TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW; if (!(flags ^ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW))) return false; return true; } static inline bool tc_in_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_IN_HW) ? true : false; } static inline void tc_cls_common_offload_init(struct tc_cls_common_offload *cls_common, const struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { cls_common->chain_index = tp->chain->index; cls_common->protocol = tp->protocol; cls_common->prio = tp->prio; if (tc_skip_sw(flags) || flags & TCA_CLS_FLAGS_VERBOSE) cls_common->extack = extack; } enum tc_fl_command { TC_CLSFLOWER_REPLACE, TC_CLSFLOWER_DESTROY, TC_CLSFLOWER_STATS, TC_CLSFLOWER_TMPLT_CREATE, TC_CLSFLOWER_TMPLT_DESTROY, }; struct tc_cls_flower_offload { struct tc_cls_common_offload common; enum tc_fl_command command; unsigned long cookie; struct flow_rule *rule; struct flow_stats stats; u32 classid; }; static inline struct flow_rule * tc_cls_flower_offload_flow_rule(struct tc_cls_flower_offload *tc_flow_cmd) { return tc_flow_cmd->rule; } enum tc_matchall_command { TC_CLSMATCHALL_REPLACE, TC_CLSMATCHALL_DESTROY, }; struct tc_cls_matchall_offload { struct tc_cls_common_offload common; enum tc_matchall_command command; struct tcf_exts *exts; unsigned long cookie; }; enum tc_clsbpf_command { TC_CLSBPF_OFFLOAD, TC_CLSBPF_STATS, }; struct tc_cls_bpf_offload { struct tc_cls_common_offload common; enum tc_clsbpf_command command; struct tcf_exts *exts; struct bpf_prog *prog; struct bpf_prog *oldprog; const char *name; bool exts_integrated; }; struct tc_mqprio_qopt_offload { /* struct tc_mqprio_qopt must always be the first element */ struct tc_mqprio_qopt qopt; u16 mode; u16 shaper; u32 flags; u64 min_rate[TC_QOPT_MAX_QUEUE]; u64 max_rate[TC_QOPT_MAX_QUEUE]; }; /* This structure holds cookie structure that is passed from user * to the kernel for actions and classifiers */ struct tc_cookie { u8 *data; u32 len; struct rcu_head rcu; }; struct tc_qopt_offload_stats { struct gnet_stats_basic_packed *bstats; struct gnet_stats_queue *qstats; }; enum tc_mq_command { TC_MQ_CREATE, TC_MQ_DESTROY, TC_MQ_STATS, TC_MQ_GRAFT, }; struct tc_mq_opt_offload_graft_params { unsigned long queue; u32 child_handle; }; struct tc_mq_qopt_offload { enum tc_mq_command command; u32 handle; union { struct tc_qopt_offload_stats stats; struct tc_mq_opt_offload_graft_params graft_params; }; }; enum tc_red_command { TC_RED_REPLACE, TC_RED_DESTROY, TC_RED_STATS, TC_RED_XSTATS, TC_RED_GRAFT, }; struct tc_red_qopt_offload_params { u32 min; u32 max; u32 probability; u32 limit; bool is_ecn; bool is_harddrop; struct gnet_stats_queue *qstats; }; struct tc_red_qopt_offload { enum tc_red_command command; u32 handle; u32 parent; union { struct tc_red_qopt_offload_params set; struct tc_qopt_offload_stats stats; struct red_stats *xstats; u32 child_handle; }; }; enum tc_gred_command { TC_GRED_REPLACE, TC_GRED_DESTROY, TC_GRED_STATS, }; struct tc_gred_vq_qopt_offload_params { bool present; u32 limit; u32 prio; u32 min; u32 max; bool is_ecn; bool is_harddrop; u32 probability; /* Only need backlog, see struct tc_prio_qopt_offload_params */ u32 *backlog; }; struct tc_gred_qopt_offload_params { bool grio_on; bool wred_on; unsigned int dp_cnt; unsigned int dp_def; struct gnet_stats_queue *qstats; struct tc_gred_vq_qopt_offload_params tab[MAX_DPs]; }; struct tc_gred_qopt_offload_stats { struct gnet_stats_basic_packed bstats[MAX_DPs]; struct gnet_stats_queue qstats[MAX_DPs]; struct red_stats *xstats[MAX_DPs]; }; struct tc_gred_qopt_offload { enum tc_gred_command command; u32 handle; u32 parent; union { struct tc_gred_qopt_offload_params set; struct tc_gred_qopt_offload_stats stats; }; }; enum tc_prio_command { TC_PRIO_REPLACE, TC_PRIO_DESTROY, TC_PRIO_STATS, TC_PRIO_GRAFT, }; struct tc_prio_qopt_offload_params { int bands; u8 priomap[TC_PRIO_MAX + 1]; /* In case that a prio qdisc is offloaded and now is changed to a * non-offloadedable config, it needs to update the backlog & qlen * values to negate the HW backlog & qlen values (and only them). */ struct gnet_stats_queue *qstats; }; struct tc_prio_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_prio_qopt_offload { enum tc_prio_command command; u32 handle; u32 parent; union { struct tc_prio_qopt_offload_params replace_params; struct tc_qopt_offload_stats stats; struct tc_prio_qopt_offload_graft_params graft_params; }; }; enum tc_root_command { TC_ROOT_GRAFT, }; struct tc_root_qopt_offload { enum tc_root_command command; u32 handle; bool ingress; }; #endif