// SPDX-License-Identifier: GPL-2.0 /* * Greybus interface code * * Copyright 2014 Google Inc. * Copyright 2014 Linaro Ltd. */ #include <linux/delay.h> #include <linux/greybus.h> #include "greybus_trace.h" #define GB_INTERFACE_MODE_SWITCH_TIMEOUT 2000 #define GB_INTERFACE_DEVICE_ID_BAD 0xff #define GB_INTERFACE_AUTOSUSPEND_MS 3000 /* Time required for interface to enter standby before disabling REFCLK */ #define GB_INTERFACE_SUSPEND_HIBERNATE_DELAY_MS 20 /* Don't-care selector index */ #define DME_SELECTOR_INDEX_NULL 0 /* DME attributes */ /* FIXME: remove ES2 support and DME_T_TST_SRC_INCREMENT */ #define DME_T_TST_SRC_INCREMENT 0x4083 #define DME_DDBL1_MANUFACTURERID 0x5003 #define DME_DDBL1_PRODUCTID 0x5004 #define DME_TOSHIBA_GMP_VID 0x6000 #define DME_TOSHIBA_GMP_PID 0x6001 #define DME_TOSHIBA_GMP_SN0 0x6002 #define DME_TOSHIBA_GMP_SN1 0x6003 #define DME_TOSHIBA_GMP_INIT_STATUS 0x6101 /* DDBL1 Manufacturer and Product ids */ #define TOSHIBA_DMID 0x0126 #define TOSHIBA_ES2_BRIDGE_DPID 0x1000 #define TOSHIBA_ES3_APBRIDGE_DPID 0x1001 #define TOSHIBA_ES3_GBPHY_DPID 0x1002 static int gb_interface_hibernate_link(struct gb_interface *intf); static int gb_interface_refclk_set(struct gb_interface *intf, bool enable); static int gb_interface_dme_attr_get(struct gb_interface *intf, u16 attr, u32 *val) { return gb_svc_dme_peer_get(intf->hd->svc, intf->interface_id, attr, DME_SELECTOR_INDEX_NULL, val); } static int gb_interface_read_ara_dme(struct gb_interface *intf) { u32 sn0, sn1; int ret; /* * Unless this is a Toshiba bridge, bail out until we have defined * standard GMP attributes. */ if (intf->ddbl1_manufacturer_id != TOSHIBA_DMID) { dev_err(&intf->dev, "unknown manufacturer %08x\n", intf->ddbl1_manufacturer_id); return -ENODEV; } ret = gb_interface_dme_attr_get(intf, DME_TOSHIBA_GMP_VID, &intf->vendor_id); if (ret) return ret; ret = gb_interface_dme_attr_get(intf, DME_TOSHIBA_GMP_PID, &intf->product_id); if (ret) return ret; ret = gb_interface_dme_attr_get(intf, DME_TOSHIBA_GMP_SN0, &sn0); if (ret) return ret; ret = gb_interface_dme_attr_get(intf, DME_TOSHIBA_GMP_SN1, &sn1); if (ret) return ret; intf->serial_number = (u64)sn1 << 32 | sn0; return 0; } static int gb_interface_read_dme(struct gb_interface *intf) { int ret; /* DME attributes have already been read */ if (intf->dme_read) return 0; ret = gb_interface_dme_attr_get(intf, DME_DDBL1_MANUFACTURERID, &intf->ddbl1_manufacturer_id); if (ret) return ret; ret = gb_interface_dme_attr_get(intf, DME_DDBL1_PRODUCTID, &intf->ddbl1_product_id); if (ret) return ret; if (intf->ddbl1_manufacturer_id == TOSHIBA_DMID && intf->ddbl1_product_id == TOSHIBA_ES2_BRIDGE_DPID) { intf->quirks |= GB_INTERFACE_QUIRK_NO_GMP_IDS; intf->quirks |= GB_INTERFACE_QUIRK_NO_INIT_STATUS; } ret = gb_interface_read_ara_dme(intf); if (ret) return ret; intf->dme_read = true; return 0; } static int gb_interface_route_create(struct gb_interface *intf) { struct gb_svc *svc = intf->hd->svc; u8 intf_id = intf->interface_id; u8 device_id; int ret; /* Allocate an interface device id. */ ret = ida_simple_get(&svc->device_id_map, GB_SVC_DEVICE_ID_MIN, GB_SVC_DEVICE_ID_MAX + 1, GFP_KERNEL); if (ret < 0) { dev_err(&intf->dev, "failed to allocate device id: %d\n", ret); return ret; } device_id = ret; ret = gb_svc_intf_device_id(svc, intf_id, device_id); if (ret) { dev_err(&intf->dev, "failed to set device id %u: %d\n", device_id, ret); goto err_ida_remove; } /* FIXME: Hard-coded AP device id. */ ret = gb_svc_route_create(svc, svc->ap_intf_id, GB_SVC_DEVICE_ID_AP, intf_id, device_id); if (ret) { dev_err(&intf->dev, "failed to create route: %d\n", ret); goto err_svc_id_free; } intf->device_id = device_id; return 0; err_svc_id_free: /* * XXX Should we tell SVC that this id doesn't belong to interface * XXX anymore. */ err_ida_remove: ida_simple_remove(&svc->device_id_map, device_id); return ret; } static void gb_interface_route_destroy(struct gb_interface *intf) { struct gb_svc *svc = intf->hd->svc; if (intf->device_id == GB_INTERFACE_DEVICE_ID_BAD) return; gb_svc_route_destroy(svc, svc->ap_intf_id, intf->interface_id); ida_simple_remove(&svc->device_id_map, intf->device_id); intf->device_id = GB_INTERFACE_DEVICE_ID_BAD; } /* Locking: Caller holds the interface mutex. */ static int gb_interface_legacy_mode_switch(struct gb_interface *intf) { int ret; dev_info(&intf->dev, "legacy mode switch detected\n"); /* Mark as disconnected to prevent I/O during disable. */ intf->disconnected = true; gb_interface_disable(intf); intf->disconnected = false; ret = gb_interface_enable(intf); if (ret) { dev_err(&intf->dev, "failed to re-enable interface: %d\n", ret); gb_interface_deactivate(intf); } return ret; } void gb_interface_mailbox_event(struct gb_interface *intf, u16 result, u32 mailbox) { mutex_lock(&intf->mutex); if (result) { dev_warn(&intf->dev, "mailbox event with UniPro error: 0x%04x\n", result); goto err_disable; } if (mailbox != GB_SVC_INTF_MAILBOX_GREYBUS) { dev_warn(&intf->dev, "mailbox event with unexpected value: 0x%08x\n", mailbox); goto err_disable; } if (intf->quirks & GB_INTERFACE_QUIRK_LEGACY_MODE_SWITCH) { gb_interface_legacy_mode_switch(intf); goto out_unlock; } if (!intf->mode_switch) { dev_warn(&intf->dev, "unexpected mailbox event: 0x%08x\n", mailbox); goto err_disable; } dev_info(&intf->dev, "mode switch detected\n"); complete(&intf->mode_switch_completion); out_unlock: mutex_unlock(&intf->mutex); return; err_disable: gb_interface_disable(intf); gb_interface_deactivate(intf); mutex_unlock(&intf->mutex); } static void gb_interface_mode_switch_work(struct work_struct *work) { struct gb_interface *intf; struct gb_control *control; unsigned long timeout; int ret; intf = container_of(work, struct gb_interface, mode_switch_work); mutex_lock(&intf->mutex); /* Make sure interface is still enabled. */ if (!intf->enabled) { dev_dbg(&intf->dev, "mode switch aborted\n"); intf->mode_switch = false; mutex_unlock(&intf->mutex); goto out_interface_put; } /* * Prepare the control device for mode switch and make sure to get an * extra reference before it goes away during interface disable. */ control = gb_control_get(intf->control); gb_control_mode_switch_prepare(control); gb_interface_disable(intf); mutex_unlock(&intf->mutex); timeout = msecs_to_jiffies(GB_INTERFACE_MODE_SWITCH_TIMEOUT); ret = wait_for_completion_interruptible_timeout( &intf->mode_switch_completion, timeout); /* Finalise control-connection mode switch. */ gb_control_mode_switch_complete(control); gb_control_put(control); if (ret < 0) { dev_err(&intf->dev, "mode switch interrupted\n"); goto err_deactivate; } else if (ret == 0) { dev_err(&intf->dev, "mode switch timed out\n"); goto err_deactivate; } /* Re-enable (re-enumerate) interface if still active. */ mutex_lock(&intf->mutex); intf->mode_switch = false; if (intf->active) { ret = gb_interface_enable(intf); if (ret) { dev_err(&intf->dev, "failed to re-enable interface: %d\n", ret); gb_interface_deactivate(intf); } } mutex_unlock(&intf->mutex); out_interface_put: gb_interface_put(intf); return; err_deactivate: mutex_lock(&intf->mutex); intf->mode_switch = false; gb_interface_deactivate(intf); mutex_unlock(&intf->mutex); gb_interface_put(intf); } int gb_interface_request_mode_switch(struct gb_interface *intf) { int ret = 0; mutex_lock(&intf->mutex); if (intf->mode_switch) { ret = -EBUSY; goto out_unlock; } intf->mode_switch = true; reinit_completion(&intf->mode_switch_completion); /* * Get a reference to the interface device, which will be put once the * mode switch is complete. */ get_device(&intf->dev); if (!queue_work(system_long_wq, &intf->mode_switch_work)) { put_device(&intf->dev); ret = -EBUSY; goto out_unlock; } out_unlock: mutex_unlock(&intf->mutex); return ret; } EXPORT_SYMBOL_GPL(gb_interface_request_mode_switch); /* * T_TstSrcIncrement is written by the module on ES2 as a stand-in for the * init-status attribute DME_TOSHIBA_INIT_STATUS. The AP needs to read and * clear it after reading a non-zero value from it. * * FIXME: This is module-hardware dependent and needs to be extended for every * type of module we want to support. */ static int gb_interface_read_and_clear_init_status(struct gb_interface *intf) { struct gb_host_device *hd = intf->hd; unsigned long bootrom_quirks; unsigned long s2l_quirks; int ret; u32 value; u16 attr; u8 init_status; /* * ES2 bridges use T_TstSrcIncrement for the init status. * * FIXME: Remove ES2 support */ if (intf->quirks & GB_INTERFACE_QUIRK_NO_INIT_STATUS) attr = DME_T_TST_SRC_INCREMENT; else attr = DME_TOSHIBA_GMP_INIT_STATUS; ret = gb_svc_dme_peer_get(hd->svc, intf->interface_id, attr, DME_SELECTOR_INDEX_NULL, &value); if (ret) return ret; /* * A nonzero init status indicates the module has finished * initializing. */ if (!value) { dev_err(&intf->dev, "invalid init status\n"); return -ENODEV; } /* * Extract the init status. * * For ES2: We need to check lowest 8 bits of 'value'. * For ES3: We need to check highest 8 bits out of 32 of 'value'. * * FIXME: Remove ES2 support */ if (intf->quirks & GB_INTERFACE_QUIRK_NO_INIT_STATUS) init_status = value & 0xff; else init_status = value >> 24; /* * Check if the interface is executing the quirky ES3 bootrom that, * for example, requires E2EFC, CSD and CSV to be disabled. */ bootrom_quirks = GB_INTERFACE_QUIRK_NO_CPORT_FEATURES | GB_INTERFACE_QUIRK_FORCED_DISABLE | GB_INTERFACE_QUIRK_LEGACY_MODE_SWITCH | GB_INTERFACE_QUIRK_NO_BUNDLE_ACTIVATE; s2l_quirks = GB_INTERFACE_QUIRK_NO_PM; switch (init_status) { case GB_INIT_BOOTROM_UNIPRO_BOOT_STARTED: case GB_INIT_BOOTROM_FALLBACK_UNIPRO_BOOT_STARTED: intf->quirks |= bootrom_quirks; break; case GB_INIT_S2_LOADER_BOOT_STARTED: /* S2 Loader doesn't support runtime PM */ intf->quirks &= ~bootrom_quirks; intf->quirks |= s2l_quirks; break; default: intf->quirks &= ~bootrom_quirks; intf->quirks &= ~s2l_quirks; } /* Clear the init status. */ return gb_svc_dme_peer_set(hd->svc, intf->interface_id, attr, DME_SELECTOR_INDEX_NULL, 0); } /* interface sysfs attributes */ #define gb_interface_attr(field, type) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct gb_interface *intf = to_gb_interface(dev); \ return scnprintf(buf, PAGE_SIZE, type"\n", intf->field); \ } \ static DEVICE_ATTR_RO(field) gb_interface_attr(ddbl1_manufacturer_id, "0x%08x"); gb_interface_attr(ddbl1_product_id, "0x%08x"); gb_interface_attr(interface_id, "%u"); gb_interface_attr(vendor_id, "0x%08x"); gb_interface_attr(product_id, "0x%08x"); gb_interface_attr(serial_number, "0x%016llx"); static ssize_t voltage_now_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_interface *intf = to_gb_interface(dev); int ret; u32 measurement; ret = gb_svc_pwrmon_intf_sample_get(intf->hd->svc, intf->interface_id, GB_SVC_PWRMON_TYPE_VOL, &measurement); if (ret) { dev_err(&intf->dev, "failed to get voltage sample (%d)\n", ret); return ret; } return sprintf(buf, "%u\n", measurement); } static DEVICE_ATTR_RO(voltage_now); static ssize_t current_now_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_interface *intf = to_gb_interface(dev); int ret; u32 measurement; ret = gb_svc_pwrmon_intf_sample_get(intf->hd->svc, intf->interface_id, GB_SVC_PWRMON_TYPE_CURR, &measurement); if (ret) { dev_err(&intf->dev, "failed to get current sample (%d)\n", ret); return ret; } return sprintf(buf, "%u\n", measurement); } static DEVICE_ATTR_RO(current_now); static ssize_t power_now_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_interface *intf = to_gb_interface(dev); int ret; u32 measurement; ret = gb_svc_pwrmon_intf_sample_get(intf->hd->svc, intf->interface_id, GB_SVC_PWRMON_TYPE_PWR, &measurement); if (ret) { dev_err(&intf->dev, "failed to get power sample (%d)\n", ret); return ret; } return sprintf(buf, "%u\n", measurement); } static DEVICE_ATTR_RO(power_now); static ssize_t power_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_interface *intf = to_gb_interface(dev); if (intf->active) return scnprintf(buf, PAGE_SIZE, "on\n"); else return scnprintf(buf, PAGE_SIZE, "off\n"); } static ssize_t power_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct gb_interface *intf = to_gb_interface(dev); bool activate; int ret = 0; if (kstrtobool(buf, &activate)) return -EINVAL; mutex_lock(&intf->mutex); if (activate == intf->active) goto unlock; if (activate) { ret = gb_interface_activate(intf); if (ret) { dev_err(&intf->dev, "failed to activate interface: %d\n", ret); goto unlock; } ret = gb_interface_enable(intf); if (ret) { dev_err(&intf->dev, "failed to enable interface: %d\n", ret); gb_interface_deactivate(intf); goto unlock; } } else { gb_interface_disable(intf); gb_interface_deactivate(intf); } unlock: mutex_unlock(&intf->mutex); if (ret) return ret; return len; } static DEVICE_ATTR_RW(power_state); static const char *gb_interface_type_string(struct gb_interface *intf) { static const char * const types[] = { [GB_INTERFACE_TYPE_INVALID] = "invalid", [GB_INTERFACE_TYPE_UNKNOWN] = "unknown", [GB_INTERFACE_TYPE_DUMMY] = "dummy", [GB_INTERFACE_TYPE_UNIPRO] = "unipro", [GB_INTERFACE_TYPE_GREYBUS] = "greybus", }; return types[intf->type]; } static ssize_t interface_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct gb_interface *intf = to_gb_interface(dev); return sprintf(buf, "%s\n", gb_interface_type_string(intf)); } static DEVICE_ATTR_RO(interface_type); static struct attribute *interface_unipro_attrs[] = { &dev_attr_ddbl1_manufacturer_id.attr, &dev_attr_ddbl1_product_id.attr, NULL }; static struct attribute *interface_greybus_attrs[] = { &dev_attr_vendor_id.attr, &dev_attr_product_id.attr, &dev_attr_serial_number.attr, NULL }; static struct attribute *interface_power_attrs[] = { &dev_attr_voltage_now.attr, &dev_attr_current_now.attr, &dev_attr_power_now.attr, &dev_attr_power_state.attr, NULL }; static struct attribute *interface_common_attrs[] = { &dev_attr_interface_id.attr, &dev_attr_interface_type.attr, NULL }; static umode_t interface_unipro_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct gb_interface *intf = to_gb_interface(dev); switch (intf->type) { case GB_INTERFACE_TYPE_UNIPRO: case GB_INTERFACE_TYPE_GREYBUS: return attr->mode; default: return 0; } } static umode_t interface_greybus_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct gb_interface *intf = to_gb_interface(dev); switch (intf->type) { case GB_INTERFACE_TYPE_GREYBUS: return attr->mode; default: return 0; } } static umode_t interface_power_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct gb_interface *intf = to_gb_interface(dev); switch (intf->type) { case GB_INTERFACE_TYPE_UNIPRO: case GB_INTERFACE_TYPE_GREYBUS: return attr->mode; default: return 0; } } static const struct attribute_group interface_unipro_group = { .is_visible = interface_unipro_is_visible, .attrs = interface_unipro_attrs, }; static const struct attribute_group interface_greybus_group = { .is_visible = interface_greybus_is_visible, .attrs = interface_greybus_attrs, }; static const struct attribute_group interface_power_group = { .is_visible = interface_power_is_visible, .attrs = interface_power_attrs, }; static const struct attribute_group interface_common_group = { .attrs = interface_common_attrs, }; static const struct attribute_group *interface_groups[] = { &interface_unipro_group, &interface_greybus_group, &interface_power_group, &interface_common_group, NULL }; static void gb_interface_release(struct device *dev) { struct gb_interface *intf = to_gb_interface(dev); trace_gb_interface_release(intf); kfree(intf); } #ifdef CONFIG_PM static int gb_interface_suspend(struct device *dev) { struct gb_interface *intf = to_gb_interface(dev); int ret; ret = gb_control_interface_suspend_prepare(intf->control); if (ret) return ret; ret = gb_control_suspend(intf->control); if (ret) goto err_hibernate_abort; ret = gb_interface_hibernate_link(intf); if (ret) return ret; /* Delay to allow interface to enter standby before disabling refclk */ msleep(GB_INTERFACE_SUSPEND_HIBERNATE_DELAY_MS); ret = gb_interface_refclk_set(intf, false); if (ret) return ret; return 0; err_hibernate_abort: gb_control_interface_hibernate_abort(intf->control); return ret; } static int gb_interface_resume(struct device *dev) { struct gb_interface *intf = to_gb_interface(dev); struct gb_svc *svc = intf->hd->svc; int ret; ret = gb_interface_refclk_set(intf, true); if (ret) return ret; ret = gb_svc_intf_resume(svc, intf->interface_id); if (ret) return ret; ret = gb_control_resume(intf->control); if (ret) return ret; return 0; } static int gb_interface_runtime_idle(struct device *dev) { pm_runtime_mark_last_busy(dev); pm_request_autosuspend(dev); return 0; } #endif static const struct dev_pm_ops gb_interface_pm_ops = { SET_RUNTIME_PM_OPS(gb_interface_suspend, gb_interface_resume, gb_interface_runtime_idle) }; struct device_type greybus_interface_type = { .name = "greybus_interface", .release = gb_interface_release, .pm = &gb_interface_pm_ops, }; /* * A Greybus module represents a user-replaceable component on a GMP * phone. An interface is the physical connection on that module. A * module may have more than one interface. * * Create a gb_interface structure to represent a discovered interface. * The position of interface within the Endo is encoded in "interface_id" * argument. * * Returns a pointer to the new interfce or a null pointer if a * failure occurs due to memory exhaustion. */ struct gb_interface *gb_interface_create(struct gb_module *module, u8 interface_id) { struct gb_host_device *hd = module->hd; struct gb_interface *intf; intf = kzalloc(sizeof(*intf), GFP_KERNEL); if (!intf) return NULL; intf->hd = hd; /* XXX refcount? */ intf->module = module; intf->interface_id = interface_id; INIT_LIST_HEAD(&intf->bundles); INIT_LIST_HEAD(&intf->manifest_descs); mutex_init(&intf->mutex); INIT_WORK(&intf->mode_switch_work, gb_interface_mode_switch_work); init_completion(&intf->mode_switch_completion); /* Invalid device id to start with */ intf->device_id = GB_INTERFACE_DEVICE_ID_BAD; intf->dev.parent = &module->dev; intf->dev.bus = &greybus_bus_type; intf->dev.type = &greybus_interface_type; intf->dev.groups = interface_groups; intf->dev.dma_mask = module->dev.dma_mask; device_initialize(&intf->dev); dev_set_name(&intf->dev, "%s.%u", dev_name(&module->dev), interface_id); pm_runtime_set_autosuspend_delay(&intf->dev, GB_INTERFACE_AUTOSUSPEND_MS); trace_gb_interface_create(intf); return intf; } static int gb_interface_vsys_set(struct gb_interface *intf, bool enable) { struct gb_svc *svc = intf->hd->svc; int ret; dev_dbg(&intf->dev, "%s - %d\n", __func__, enable); ret = gb_svc_intf_vsys_set(svc, intf->interface_id, enable); if (ret) { dev_err(&intf->dev, "failed to set v_sys: %d\n", ret); return ret; } return 0; } static int gb_interface_refclk_set(struct gb_interface *intf, bool enable) { struct gb_svc *svc = intf->hd->svc; int ret; dev_dbg(&intf->dev, "%s - %d\n", __func__, enable); ret = gb_svc_intf_refclk_set(svc, intf->interface_id, enable); if (ret) { dev_err(&intf->dev, "failed to set refclk: %d\n", ret); return ret; } return 0; } static int gb_interface_unipro_set(struct gb_interface *intf, bool enable) { struct gb_svc *svc = intf->hd->svc; int ret; dev_dbg(&intf->dev, "%s - %d\n", __func__, enable); ret = gb_svc_intf_unipro_set(svc, intf->interface_id, enable); if (ret) { dev_err(&intf->dev, "failed to set UniPro: %d\n", ret); return ret; } return 0; } static int gb_interface_activate_operation(struct gb_interface *intf, enum gb_interface_type *intf_type) { struct gb_svc *svc = intf->hd->svc; u8 type; int ret; dev_dbg(&intf->dev, "%s\n", __func__); ret = gb_svc_intf_activate(svc, intf->interface_id, &type); if (ret) { dev_err(&intf->dev, "failed to activate: %d\n", ret); return ret; } switch (type) { case GB_SVC_INTF_TYPE_DUMMY: *intf_type = GB_INTERFACE_TYPE_DUMMY; /* FIXME: handle as an error for now */ return -ENODEV; case GB_SVC_INTF_TYPE_UNIPRO: *intf_type = GB_INTERFACE_TYPE_UNIPRO; dev_err(&intf->dev, "interface type UniPro not supported\n"); /* FIXME: handle as an error for now */ return -ENODEV; case GB_SVC_INTF_TYPE_GREYBUS: *intf_type = GB_INTERFACE_TYPE_GREYBUS; break; default: dev_err(&intf->dev, "unknown interface type: %u\n", type); *intf_type = GB_INTERFACE_TYPE_UNKNOWN; return -ENODEV; } return 0; } static int gb_interface_hibernate_link(struct gb_interface *intf) { struct gb_svc *svc = intf->hd->svc; return gb_svc_intf_set_power_mode_hibernate(svc, intf->interface_id); } static int _gb_interface_activate(struct gb_interface *intf, enum gb_interface_type *type) { int ret; *type = GB_INTERFACE_TYPE_UNKNOWN; if (intf->ejected || intf->removed) return -ENODEV; ret = gb_interface_vsys_set(intf, true); if (ret) return ret; ret = gb_interface_refclk_set(intf, true); if (ret) goto err_vsys_disable; ret = gb_interface_unipro_set(intf, true); if (ret) goto err_refclk_disable; ret = gb_interface_activate_operation(intf, type); if (ret) { switch (*type) { case GB_INTERFACE_TYPE_UNIPRO: case GB_INTERFACE_TYPE_GREYBUS: goto err_hibernate_link; default: goto err_unipro_disable; } } ret = gb_interface_read_dme(intf); if (ret) goto err_hibernate_link; ret = gb_interface_route_create(intf); if (ret) goto err_hibernate_link; intf->active = true; trace_gb_interface_activate(intf); return 0; err_hibernate_link: gb_interface_hibernate_link(intf); err_unipro_disable: gb_interface_unipro_set(intf, false); err_refclk_disable: gb_interface_refclk_set(intf, false); err_vsys_disable: gb_interface_vsys_set(intf, false); return ret; } /* * At present, we assume a UniPro-only module to be a Greybus module that * failed to send its mailbox poke. There is some reason to believe that this * is because of a bug in the ES3 bootrom. * * FIXME: Check if this is a Toshiba bridge before retrying? */ static int _gb_interface_activate_es3_hack(struct gb_interface *intf, enum gb_interface_type *type) { int retries = 3; int ret; while (retries--) { ret = _gb_interface_activate(intf, type); if (ret == -ENODEV && *type == GB_INTERFACE_TYPE_UNIPRO) continue; break; } return ret; } /* * Activate an interface. * * Locking: Caller holds the interface mutex. */ int gb_interface_activate(struct gb_interface *intf) { enum gb_interface_type type; int ret; switch (intf->type) { case GB_INTERFACE_TYPE_INVALID: case GB_INTERFACE_TYPE_GREYBUS: ret = _gb_interface_activate_es3_hack(intf, &type); break; default: ret = _gb_interface_activate(intf, &type); } /* Make sure type is detected correctly during reactivation. */ if (intf->type != GB_INTERFACE_TYPE_INVALID) { if (type != intf->type) { dev_err(&intf->dev, "failed to detect interface type\n"); if (!ret) gb_interface_deactivate(intf); return -EIO; } } else { intf->type = type; } return ret; } /* * Deactivate an interface. * * Locking: Caller holds the interface mutex. */ void gb_interface_deactivate(struct gb_interface *intf) { if (!intf->active) return; trace_gb_interface_deactivate(intf); /* Abort any ongoing mode switch. */ if (intf->mode_switch) complete(&intf->mode_switch_completion); gb_interface_route_destroy(intf); gb_interface_hibernate_link(intf); gb_interface_unipro_set(intf, false); gb_interface_refclk_set(intf, false); gb_interface_vsys_set(intf, false); intf->active = false; } /* * Enable an interface by enabling its control connection, fetching the * manifest and other information over it, and finally registering its child * devices. * * Locking: Caller holds the interface mutex. */ int gb_interface_enable(struct gb_interface *intf) { struct gb_control *control; struct gb_bundle *bundle, *tmp; int ret, size; void *manifest; ret = gb_interface_read_and_clear_init_status(intf); if (ret) { dev_err(&intf->dev, "failed to clear init status: %d\n", ret); return ret; } /* Establish control connection */ control = gb_control_create(intf); if (IS_ERR(control)) { dev_err(&intf->dev, "failed to create control device: %ld\n", PTR_ERR(control)); return PTR_ERR(control); } intf->control = control; ret = gb_control_enable(intf->control); if (ret) goto err_put_control; /* Get manifest size using control protocol on CPort */ size = gb_control_get_manifest_size_operation(intf); if (size <= 0) { dev_err(&intf->dev, "failed to get manifest size: %d\n", size); if (size) ret = size; else ret = -EINVAL; goto err_disable_control; } manifest = kmalloc(size, GFP_KERNEL); if (!manifest) { ret = -ENOMEM; goto err_disable_control; } /* Get manifest using control protocol on CPort */ ret = gb_control_get_manifest_operation(intf, manifest, size); if (ret) { dev_err(&intf->dev, "failed to get manifest: %d\n", ret); goto err_free_manifest; } /* * Parse the manifest and build up our data structures representing * what's in it. */ if (!gb_manifest_parse(intf, manifest, size)) { dev_err(&intf->dev, "failed to parse manifest\n"); ret = -EINVAL; goto err_destroy_bundles; } ret = gb_control_get_bundle_versions(intf->control); if (ret) goto err_destroy_bundles; /* Register the control device and any bundles */ ret = gb_control_add(intf->control); if (ret) goto err_destroy_bundles; pm_runtime_use_autosuspend(&intf->dev); pm_runtime_get_noresume(&intf->dev); pm_runtime_set_active(&intf->dev); pm_runtime_enable(&intf->dev); list_for_each_entry_safe_reverse(bundle, tmp, &intf->bundles, links) { ret = gb_bundle_add(bundle); if (ret) { gb_bundle_destroy(bundle); continue; } } kfree(manifest); intf->enabled = true; pm_runtime_put(&intf->dev); trace_gb_interface_enable(intf); return 0; err_destroy_bundles: list_for_each_entry_safe(bundle, tmp, &intf->bundles, links) gb_bundle_destroy(bundle); err_free_manifest: kfree(manifest); err_disable_control: gb_control_disable(intf->control); err_put_control: gb_control_put(intf->control); intf->control = NULL; return ret; } /* * Disable an interface and destroy its bundles. * * Locking: Caller holds the interface mutex. */ void gb_interface_disable(struct gb_interface *intf) { struct gb_bundle *bundle; struct gb_bundle *next; if (!intf->enabled) return; trace_gb_interface_disable(intf); pm_runtime_get_sync(&intf->dev); /* Set disconnected flag to avoid I/O during connection tear down. */ if (intf->quirks & GB_INTERFACE_QUIRK_FORCED_DISABLE) intf->disconnected = true; list_for_each_entry_safe(bundle, next, &intf->bundles, links) gb_bundle_destroy(bundle); if (!intf->mode_switch && !intf->disconnected) gb_control_interface_deactivate_prepare(intf->control); gb_control_del(intf->control); gb_control_disable(intf->control); gb_control_put(intf->control); intf->control = NULL; intf->enabled = false; pm_runtime_disable(&intf->dev); pm_runtime_set_suspended(&intf->dev); pm_runtime_dont_use_autosuspend(&intf->dev); pm_runtime_put_noidle(&intf->dev); } /* Register an interface. */ int gb_interface_add(struct gb_interface *intf) { int ret; ret = device_add(&intf->dev); if (ret) { dev_err(&intf->dev, "failed to register interface: %d\n", ret); return ret; } trace_gb_interface_add(intf); dev_info(&intf->dev, "Interface added (%s)\n", gb_interface_type_string(intf)); switch (intf->type) { case GB_INTERFACE_TYPE_GREYBUS: dev_info(&intf->dev, "GMP VID=0x%08x, PID=0x%08x\n", intf->vendor_id, intf->product_id); /* fall-through */ case GB_INTERFACE_TYPE_UNIPRO: dev_info(&intf->dev, "DDBL1 Manufacturer=0x%08x, Product=0x%08x\n", intf->ddbl1_manufacturer_id, intf->ddbl1_product_id); break; default: break; } return 0; } /* Deregister an interface. */ void gb_interface_del(struct gb_interface *intf) { if (device_is_registered(&intf->dev)) { trace_gb_interface_del(intf); device_del(&intf->dev); dev_info(&intf->dev, "Interface removed\n"); } } void gb_interface_put(struct gb_interface *intf) { put_device(&intf->dev); }