/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _UAPI_LINUX_PERF_EVENT_H #define _UAPI_LINUX_PERF_EVENT_H #include #include #include /* * User-space ABI bits: */ /* * attr.type */ enum perf_type_id { PERF_TYPE_HARDWARE = 0, PERF_TYPE_SOFTWARE = 1, PERF_TYPE_TRACEPOINT = 2, PERF_TYPE_HW_CACHE = 3, PERF_TYPE_RAW = 4, PERF_TYPE_BREAKPOINT = 5, PERF_TYPE_MAX, /* non-ABI */ }; /* * Generalized performance event event_id types, used by the * attr.event_id parameter of the sys_perf_event_open() * syscall: */ enum perf_hw_id { /* * Common hardware events, generalized by the kernel: */ PERF_COUNT_HW_CPU_CYCLES = 0, PERF_COUNT_HW_INSTRUCTIONS = 1, PERF_COUNT_HW_CACHE_REFERENCES = 2, PERF_COUNT_HW_CACHE_MISSES = 3, PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, PERF_COUNT_HW_BRANCH_MISSES = 5, PERF_COUNT_HW_BUS_CYCLES = 6, PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, PERF_COUNT_HW_REF_CPU_CYCLES = 9, PERF_COUNT_HW_MAX, /* non-ABI */ }; /* * Generalized hardware cache events: * * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x * { read, write, prefetch } x * { accesses, misses } */ enum perf_hw_cache_id { PERF_COUNT_HW_CACHE_L1D = 0, PERF_COUNT_HW_CACHE_L1I = 1, PERF_COUNT_HW_CACHE_LL = 2, PERF_COUNT_HW_CACHE_DTLB = 3, PERF_COUNT_HW_CACHE_ITLB = 4, PERF_COUNT_HW_CACHE_BPU = 5, PERF_COUNT_HW_CACHE_NODE = 6, PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ }; enum perf_hw_cache_op_id { PERF_COUNT_HW_CACHE_OP_READ = 0, PERF_COUNT_HW_CACHE_OP_WRITE = 1, PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ }; enum perf_hw_cache_op_result_id { PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, PERF_COUNT_HW_CACHE_RESULT_MISS = 1, PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ }; /* * Special "software" events provided by the kernel, even if the hardware * does not support performance events. These events measure various * physical and sw events of the kernel (and allow the profiling of them as * well): */ enum perf_sw_ids { PERF_COUNT_SW_CPU_CLOCK = 0, PERF_COUNT_SW_TASK_CLOCK = 1, PERF_COUNT_SW_PAGE_FAULTS = 2, PERF_COUNT_SW_CONTEXT_SWITCHES = 3, PERF_COUNT_SW_CPU_MIGRATIONS = 4, PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, PERF_COUNT_SW_EMULATION_FAULTS = 8, PERF_COUNT_SW_DUMMY = 9, PERF_COUNT_SW_BPF_OUTPUT = 10, PERF_COUNT_SW_MAX, /* non-ABI */ }; /* * Bits that can be set in attr.sample_type to request information * in the overflow packets. */ enum perf_event_sample_format { PERF_SAMPLE_IP = 1U << 0, PERF_SAMPLE_TID = 1U << 1, PERF_SAMPLE_TIME = 1U << 2, PERF_SAMPLE_ADDR = 1U << 3, PERF_SAMPLE_READ = 1U << 4, PERF_SAMPLE_CALLCHAIN = 1U << 5, PERF_SAMPLE_ID = 1U << 6, PERF_SAMPLE_CPU = 1U << 7, PERF_SAMPLE_PERIOD = 1U << 8, PERF_SAMPLE_STREAM_ID = 1U << 9, PERF_SAMPLE_RAW = 1U << 10, PERF_SAMPLE_BRANCH_STACK = 1U << 11, PERF_SAMPLE_REGS_USER = 1U << 12, PERF_SAMPLE_STACK_USER = 1U << 13, PERF_SAMPLE_WEIGHT = 1U << 14, PERF_SAMPLE_DATA_SRC = 1U << 15, PERF_SAMPLE_IDENTIFIER = 1U << 16, PERF_SAMPLE_TRANSACTION = 1U << 17, PERF_SAMPLE_REGS_INTR = 1U << 18, PERF_SAMPLE_PHYS_ADDR = 1U << 19, PERF_SAMPLE_MAX = 1U << 20, /* non-ABI */ }; /* * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set * * If the user does not pass priv level information via branch_sample_type, * the kernel uses the event's priv level. Branch and event priv levels do * not have to match. Branch priv level is checked for permissions. * * The branch types can be combined, however BRANCH_ANY covers all types * of branches and therefore it supersedes all the other types. */ enum perf_branch_sample_type_shift { PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */ PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ }; enum perf_branch_sample_type { PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, PERF_SAMPLE_BRANCH_TYPE_SAVE = 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT, PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, }; /* * Common flow change classification */ enum { PERF_BR_UNKNOWN = 0, /* unknown */ PERF_BR_COND = 1, /* conditional */ PERF_BR_UNCOND = 2, /* unconditional */ PERF_BR_IND = 3, /* indirect */ PERF_BR_CALL = 4, /* function call */ PERF_BR_IND_CALL = 5, /* indirect function call */ PERF_BR_RET = 6, /* function return */ PERF_BR_SYSCALL = 7, /* syscall */ PERF_BR_SYSRET = 8, /* syscall return */ PERF_BR_COND_CALL = 9, /* conditional function call */ PERF_BR_COND_RET = 10, /* conditional function return */ PERF_BR_MAX, }; #define PERF_SAMPLE_BRANCH_PLM_ALL \ (PERF_SAMPLE_BRANCH_USER|\ PERF_SAMPLE_BRANCH_KERNEL|\ PERF_SAMPLE_BRANCH_HV) /* * Values to determine ABI of the registers dump. */ enum perf_sample_regs_abi { PERF_SAMPLE_REGS_ABI_NONE = 0, PERF_SAMPLE_REGS_ABI_32 = 1, PERF_SAMPLE_REGS_ABI_64 = 2, }; /* * Values for the memory transaction event qualifier, mostly for * abort events. Multiple bits can be set. */ enum { PERF_TXN_ELISION = (1 << 0), /* From elision */ PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ PERF_TXN_RETRY = (1 << 4), /* Retry possible */ PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ PERF_TXN_MAX = (1 << 8), /* non-ABI */ /* bits 32..63 are reserved for the abort code */ PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), PERF_TXN_ABORT_SHIFT = 32, }; /* * The format of the data returned by read() on a perf event fd, * as specified by attr.read_format: * * struct read_format { * { u64 value; * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING * { u64 id; } && PERF_FORMAT_ID * } && !PERF_FORMAT_GROUP * * { u64 nr; * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING * { u64 value; * { u64 id; } && PERF_FORMAT_ID * } cntr[nr]; * } && PERF_FORMAT_GROUP * }; */ enum perf_event_read_format { PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, PERF_FORMAT_ID = 1U << 2, PERF_FORMAT_GROUP = 1U << 3, PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ }; #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ /* add: sample_stack_user */ #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ /* * Hardware event_id to monitor via a performance monitoring event: * * @sample_max_stack: Max number of frame pointers in a callchain, * should be < /proc/sys/kernel/perf_event_max_stack */ struct perf_event_attr { /* * Major type: hardware/software/tracepoint/etc. */ __u32 type; /* * Size of the attr structure, for fwd/bwd compat. */ __u32 size; /* * Type specific configuration information. */ __u64 config; union { __u64 sample_period; __u64 sample_freq; }; __u64 sample_type; __u64 read_format; __u64 disabled : 1, /* off by default */ inherit : 1, /* children inherit it */ pinned : 1, /* must always be on PMU */ exclusive : 1, /* only group on PMU */ exclude_user : 1, /* don't count user */ exclude_kernel : 1, /* ditto kernel */ exclude_hv : 1, /* ditto hypervisor */ exclude_idle : 1, /* don't count when idle */ mmap : 1, /* include mmap data */ comm : 1, /* include comm data */ freq : 1, /* use freq, not period */ inherit_stat : 1, /* per task counts */ enable_on_exec : 1, /* next exec enables */ task : 1, /* trace fork/exit */ watermark : 1, /* wakeup_watermark */ /* * precise_ip: * * 0 - SAMPLE_IP can have arbitrary skid * 1 - SAMPLE_IP must have constant skid * 2 - SAMPLE_IP requested to have 0 skid * 3 - SAMPLE_IP must have 0 skid * * See also PERF_RECORD_MISC_EXACT_IP */ precise_ip : 2, /* skid constraint */ mmap_data : 1, /* non-exec mmap data */ sample_id_all : 1, /* sample_type all events */ exclude_host : 1, /* don't count in host */ exclude_guest : 1, /* don't count in guest */ exclude_callchain_kernel : 1, /* exclude kernel callchains */ exclude_callchain_user : 1, /* exclude user callchains */ mmap2 : 1, /* include mmap with inode data */ comm_exec : 1, /* flag comm events that are due to an exec */ use_clockid : 1, /* use @clockid for time fields */ context_switch : 1, /* context switch data */ write_backward : 1, /* Write ring buffer from end to beginning */ namespaces : 1, /* include namespaces data */ __reserved_1 : 35; union { __u32 wakeup_events; /* wakeup every n events */ __u32 wakeup_watermark; /* bytes before wakeup */ }; __u32 bp_type; union { __u64 bp_addr; __u64 kprobe_func; /* for perf_kprobe */ __u64 uprobe_path; /* for perf_uprobe */ __u64 config1; /* extension of config */ }; union { __u64 bp_len; __u64 kprobe_addr; /* when kprobe_func == NULL */ __u64 probe_offset; /* for perf_[k,u]probe */ __u64 config2; /* extension of config1 */ }; __u64 branch_sample_type; /* enum perf_branch_sample_type */ /* * Defines set of user regs to dump on samples. * See asm/perf_regs.h for details. */ __u64 sample_regs_user; /* * Defines size of the user stack to dump on samples. */ __u32 sample_stack_user; __s32 clockid; /* * Defines set of regs to dump for each sample * state captured on: * - precise = 0: PMU interrupt * - precise > 0: sampled instruction * * See asm/perf_regs.h for details. */ __u64 sample_regs_intr; /* * Wakeup watermark for AUX area */ __u32 aux_watermark; __u16 sample_max_stack; __u16 __reserved_2; /* align to __u64 */ }; /* * Structure used by below PERF_EVENT_IOC_QUERY_BPF command * to query bpf programs attached to the same perf tracepoint * as the given perf event. */ struct perf_event_query_bpf { /* * The below ids array length */ __u32 ids_len; /* * Set by the kernel to indicate the number of * available programs */ __u32 prog_cnt; /* * User provided buffer to store program ids */ __u32 ids[0]; }; #define perf_flags(attr) (*(&(attr)->read_format + 1)) /* * Ioctls that can be done on a perf event fd: */ #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) #define PERF_EVENT_IOC_RESET _IO ('$', 3) #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32) #define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *) enum perf_event_ioc_flags { PERF_IOC_FLAG_GROUP = 1U << 0, }; /* * Structure of the page that can be mapped via mmap */ struct perf_event_mmap_page { __u32 version; /* version number of this structure */ __u32 compat_version; /* lowest version this is compat with */ /* * Bits needed to read the hw events in user-space. * * u32 seq, time_mult, time_shift, index, width; * u64 count, enabled, running; * u64 cyc, time_offset; * s64 pmc = 0; * * do { * seq = pc->lock; * barrier() * * enabled = pc->time_enabled; * running = pc->time_running; * * if (pc->cap_usr_time && enabled != running) { * cyc = rdtsc(); * time_offset = pc->time_offset; * time_mult = pc->time_mult; * time_shift = pc->time_shift; * } * * index = pc->index; * count = pc->offset; * if (pc->cap_user_rdpmc && index) { * width = pc->pmc_width; * pmc = rdpmc(index - 1); * } * * barrier(); * } while (pc->lock != seq); * * NOTE: for obvious reason this only works on self-monitoring * processes. */ __u32 lock; /* seqlock for synchronization */ __u32 index; /* hardware event identifier */ __s64 offset; /* add to hardware event value */ __u64 time_enabled; /* time event active */ __u64 time_running; /* time event on cpu */ union { __u64 capabilities; struct { __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ cap_user_time : 1, /* The time_* fields are used */ cap_user_time_zero : 1, /* The time_zero field is used */ cap_____res : 59; }; }; /* * If cap_user_rdpmc this field provides the bit-width of the value * read using the rdpmc() or equivalent instruction. This can be used * to sign extend the result like: * * pmc <<= 64 - width; * pmc >>= 64 - width; // signed shift right * count += pmc; */ __u16 pmc_width; /* * If cap_usr_time the below fields can be used to compute the time * delta since time_enabled (in ns) using rdtsc or similar. * * u64 quot, rem; * u64 delta; * * quot = (cyc >> time_shift); * rem = cyc & (((u64)1 << time_shift) - 1); * delta = time_offset + quot * time_mult + * ((rem * time_mult) >> time_shift); * * Where time_offset,time_mult,time_shift and cyc are read in the * seqcount loop described above. This delta can then be added to * enabled and possible running (if index), improving the scaling: * * enabled += delta; * if (index) * running += delta; * * quot = count / running; * rem = count % running; * count = quot * enabled + (rem * enabled) / running; */ __u16 time_shift; __u32 time_mult; __u64 time_offset; /* * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated * from sample timestamps. * * time = timestamp - time_zero; * quot = time / time_mult; * rem = time % time_mult; * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; * * And vice versa: * * quot = cyc >> time_shift; * rem = cyc & (((u64)1 << time_shift) - 1); * timestamp = time_zero + quot * time_mult + * ((rem * time_mult) >> time_shift); */ __u64 time_zero; __u32 size; /* Header size up to __reserved[] fields. */ /* * Hole for extension of the self monitor capabilities */ __u8 __reserved[118*8+4]; /* align to 1k. */ /* * Control data for the mmap() data buffer. * * User-space reading the @data_head value should issue an smp_rmb(), * after reading this value. * * When the mapping is PROT_WRITE the @data_tail value should be * written by userspace to reflect the last read data, after issueing * an smp_mb() to separate the data read from the ->data_tail store. * In this case the kernel will not over-write unread data. * * See perf_output_put_handle() for the data ordering. * * data_{offset,size} indicate the location and size of the perf record * buffer within the mmapped area. */ __u64 data_head; /* head in the data section */ __u64 data_tail; /* user-space written tail */ __u64 data_offset; /* where the buffer starts */ __u64 data_size; /* data buffer size */ /* * AUX area is defined by aux_{offset,size} fields that should be set * by the userspace, so that * * aux_offset >= data_offset + data_size * * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. * * Ring buffer pointers aux_{head,tail} have the same semantics as * data_{head,tail} and same ordering rules apply. */ __u64 aux_head; __u64 aux_tail; __u64 aux_offset; __u64 aux_size; }; #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) #define PERF_RECORD_MISC_KERNEL (1 << 0) #define PERF_RECORD_MISC_USER (2 << 0) #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) #define PERF_RECORD_MISC_GUEST_USER (5 << 0) /* * Indicates that /proc/PID/maps parsing are truncated by time out. */ #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) /* * Following PERF_RECORD_MISC_* are used on different * events, so can reuse the same bit position: * * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events */ #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) /* * Indicates that the content of PERF_SAMPLE_IP points to * the actual instruction that triggered the event. See also * perf_event_attr::precise_ip. */ #define PERF_RECORD_MISC_EXACT_IP (1 << 14) /* * Reserve the last bit to indicate some extended misc field */ #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) struct perf_event_header { __u32 type; __u16 misc; __u16 size; }; struct perf_ns_link_info { __u64 dev; __u64 ino; }; enum { NET_NS_INDEX = 0, UTS_NS_INDEX = 1, IPC_NS_INDEX = 2, PID_NS_INDEX = 3, USER_NS_INDEX = 4, MNT_NS_INDEX = 5, CGROUP_NS_INDEX = 6, NR_NAMESPACES, /* number of available namespaces */ }; enum perf_event_type { /* * If perf_event_attr.sample_id_all is set then all event types will * have the sample_type selected fields related to where/when * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed * just after the perf_event_header and the fields already present for * the existing fields, i.e. at the end of the payload. That way a newer * perf.data file will be supported by older perf tools, with these new * optional fields being ignored. * * struct sample_id { * { u32 pid, tid; } && PERF_SAMPLE_TID * { u64 time; } && PERF_SAMPLE_TIME * { u64 id; } && PERF_SAMPLE_ID * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID * { u32 cpu, res; } && PERF_SAMPLE_CPU * { u64 id; } && PERF_SAMPLE_IDENTIFIER * } && perf_event_attr::sample_id_all * * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed * relative to header.size. */ /* * The MMAP events record the PROT_EXEC mappings so that we can * correlate userspace IPs to code. They have the following structure: * * struct { * struct perf_event_header header; * * u32 pid, tid; * u64 addr; * u64 len; * u64 pgoff; * char filename[]; * struct sample_id sample_id; * }; */ PERF_RECORD_MMAP = 1, /* * struct { * struct perf_event_header header; * u64 id; * u64 lost; * struct sample_id sample_id; * }; */ PERF_RECORD_LOST = 2, /* * struct { * struct perf_event_header header; * * u32 pid, tid; * char comm[]; * struct sample_id sample_id; * }; */ PERF_RECORD_COMM = 3, /* * struct { * struct perf_event_header header; * u32 pid, ppid; * u32 tid, ptid; * u64 time; * struct sample_id sample_id; * }; */ PERF_RECORD_EXIT = 4, /* * struct { * struct perf_event_header header; * u64 time; * u64 id; * u64 stream_id; * struct sample_id sample_id; * }; */ PERF_RECORD_THROTTLE = 5, PERF_RECORD_UNTHROTTLE = 6, /* * struct { * struct perf_event_header header; * u32 pid, ppid; * u32 tid, ptid; * u64 time; * struct sample_id sample_id; * }; */ PERF_RECORD_FORK = 7, /* * struct { * struct perf_event_header header; * u32 pid, tid; * * struct read_format values; * struct sample_id sample_id; * }; */ PERF_RECORD_READ = 8, /* * struct { * struct perf_event_header header; * * # * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position * # is fixed relative to header. * # * * { u64 id; } && PERF_SAMPLE_IDENTIFIER * { u64 ip; } && PERF_SAMPLE_IP * { u32 pid, tid; } && PERF_SAMPLE_TID * { u64 time; } && PERF_SAMPLE_TIME * { u64 addr; } && PERF_SAMPLE_ADDR * { u64 id; } && PERF_SAMPLE_ID * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID * { u32 cpu, res; } && PERF_SAMPLE_CPU * { u64 period; } && PERF_SAMPLE_PERIOD * * { struct read_format values; } && PERF_SAMPLE_READ * * { u64 nr, * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN * * # * # The RAW record below is opaque data wrt the ABI * # * # That is, the ABI doesn't make any promises wrt to * # the stability of its content, it may vary depending * # on event, hardware, kernel version and phase of * # the moon. * # * # In other words, PERF_SAMPLE_RAW contents are not an ABI. * # * * { u32 size; * char data[size];}&& PERF_SAMPLE_RAW * * { u64 nr; * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK * * { u64 abi; # enum perf_sample_regs_abi * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER * * { u64 size; * char data[size]; * u64 dyn_size; } && PERF_SAMPLE_STACK_USER * * { u64 weight; } && PERF_SAMPLE_WEIGHT * { u64 data_src; } && PERF_SAMPLE_DATA_SRC * { u64 transaction; } && PERF_SAMPLE_TRANSACTION * { u64 abi; # enum perf_sample_regs_abi * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR * }; */ PERF_RECORD_SAMPLE = 9, /* * The MMAP2 records are an augmented version of MMAP, they add * maj, min, ino numbers to be used to uniquely identify each mapping * * struct { * struct perf_event_header header; * * u32 pid, tid; * u64 addr; * u64 len; * u64 pgoff; * u32 maj; * u32 min; * u64 ino; * u64 ino_generation; * u32 prot, flags; * char filename[]; * struct sample_id sample_id; * }; */ PERF_RECORD_MMAP2 = 10, /* * Records that new data landed in the AUX buffer part. * * struct { * struct perf_event_header header; * * u64 aux_offset; * u64 aux_size; * u64 flags; * struct sample_id sample_id; * }; */ PERF_RECORD_AUX = 11, /* * Indicates that instruction trace has started * * struct { * struct perf_event_header header; * u32 pid; * u32 tid; * struct sample_id sample_id; * }; */ PERF_RECORD_ITRACE_START = 12, /* * Records the dropped/lost sample number. * * struct { * struct perf_event_header header; * * u64 lost; * struct sample_id sample_id; * }; */ PERF_RECORD_LOST_SAMPLES = 13, /* * Records a context switch in or out (flagged by * PERF_RECORD_MISC_SWITCH_OUT). See also * PERF_RECORD_SWITCH_CPU_WIDE. * * struct { * struct perf_event_header header; * struct sample_id sample_id; * }; */ PERF_RECORD_SWITCH = 14, /* * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and * next_prev_tid that are the next (switching out) or previous * (switching in) pid/tid. * * struct { * struct perf_event_header header; * u32 next_prev_pid; * u32 next_prev_tid; * struct sample_id sample_id; * }; */ PERF_RECORD_SWITCH_CPU_WIDE = 15, /* * struct { * struct perf_event_header header; * u32 pid; * u32 tid; * u64 nr_namespaces; * { u64 dev, inode; } [nr_namespaces]; * struct sample_id sample_id; * }; */ PERF_RECORD_NAMESPACES = 16, PERF_RECORD_MAX, /* non-ABI */ }; #define PERF_MAX_STACK_DEPTH 127 #define PERF_MAX_CONTEXTS_PER_STACK 8 enum perf_callchain_context { PERF_CONTEXT_HV = (__u64)-32, PERF_CONTEXT_KERNEL = (__u64)-128, PERF_CONTEXT_USER = (__u64)-512, PERF_CONTEXT_GUEST = (__u64)-2048, PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, PERF_CONTEXT_GUEST_USER = (__u64)-2560, PERF_CONTEXT_MAX = (__u64)-4095, }; /** * PERF_RECORD_AUX::flags bits */ #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ #define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */ #define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */ #define PERF_FLAG_FD_NO_GROUP (1UL << 0) #define PERF_FLAG_FD_OUTPUT (1UL << 1) #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ #if defined(__LITTLE_ENDIAN_BITFIELD) union perf_mem_data_src { __u64 val; struct { __u64 mem_op:5, /* type of opcode */ mem_lvl:14, /* memory hierarchy level */ mem_snoop:5, /* snoop mode */ mem_lock:2, /* lock instr */ mem_dtlb:7, /* tlb access */ mem_lvl_num:4, /* memory hierarchy level number */ mem_remote:1, /* remote */ mem_snoopx:2, /* snoop mode, ext */ mem_rsvd:24; }; }; #elif defined(__BIG_ENDIAN_BITFIELD) union perf_mem_data_src { __u64 val; struct { __u64 mem_rsvd:24, mem_snoopx:2, /* snoop mode, ext */ mem_remote:1, /* remote */ mem_lvl_num:4, /* memory hierarchy level number */ mem_dtlb:7, /* tlb access */ mem_lock:2, /* lock instr */ mem_snoop:5, /* snoop mode */ mem_lvl:14, /* memory hierarchy level */ mem_op:5; /* type of opcode */ }; }; #else #error "Unknown endianness" #endif /* type of opcode (load/store/prefetch,code) */ #define PERF_MEM_OP_NA 0x01 /* not available */ #define PERF_MEM_OP_LOAD 0x02 /* load instruction */ #define PERF_MEM_OP_STORE 0x04 /* store instruction */ #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ #define PERF_MEM_OP_SHIFT 0 /* memory hierarchy (memory level, hit or miss) */ #define PERF_MEM_LVL_NA 0x01 /* not available */ #define PERF_MEM_LVL_HIT 0x02 /* hit level */ #define PERF_MEM_LVL_MISS 0x04 /* miss level */ #define PERF_MEM_LVL_L1 0x08 /* L1 */ #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ #define PERF_MEM_LVL_L2 0x20 /* L2 */ #define PERF_MEM_LVL_L3 0x40 /* L3 */ #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ #define PERF_MEM_LVL_SHIFT 5 #define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */ #define PERF_MEM_REMOTE_SHIFT 37 #define PERF_MEM_LVLNUM_L1 0x01 /* L1 */ #define PERF_MEM_LVLNUM_L2 0x02 /* L2 */ #define PERF_MEM_LVLNUM_L3 0x03 /* L3 */ #define PERF_MEM_LVLNUM_L4 0x04 /* L4 */ /* 5-0xa available */ #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */ #define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */ #define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */ #define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */ #define PERF_MEM_LVLNUM_NA 0x0f /* N/A */ #define PERF_MEM_LVLNUM_SHIFT 33 /* snoop mode */ #define PERF_MEM_SNOOP_NA 0x01 /* not available */ #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ #define PERF_MEM_SNOOP_SHIFT 19 #define PERF_MEM_SNOOPX_FWD 0x01 /* forward */ /* 1 free */ #define PERF_MEM_SNOOPX_SHIFT 37 /* locked instruction */ #define PERF_MEM_LOCK_NA 0x01 /* not available */ #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ #define PERF_MEM_LOCK_SHIFT 24 /* TLB access */ #define PERF_MEM_TLB_NA 0x01 /* not available */ #define PERF_MEM_TLB_HIT 0x02 /* hit level */ #define PERF_MEM_TLB_MISS 0x04 /* miss level */ #define PERF_MEM_TLB_L1 0x08 /* L1 */ #define PERF_MEM_TLB_L2 0x10 /* L2 */ #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ #define PERF_MEM_TLB_SHIFT 26 #define PERF_MEM_S(a, s) \ (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) /* * single taken branch record layout: * * from: source instruction (may not always be a branch insn) * to: branch target * mispred: branch target was mispredicted * predicted: branch target was predicted * * support for mispred, predicted is optional. In case it * is not supported mispred = predicted = 0. * * in_tx: running in a hardware transaction * abort: aborting a hardware transaction * cycles: cycles from last branch (or 0 if not supported) * type: branch type */ struct perf_branch_entry { __u64 from; __u64 to; __u64 mispred:1, /* target mispredicted */ predicted:1,/* target predicted */ in_tx:1, /* in transaction */ abort:1, /* transaction abort */ cycles:16, /* cycle count to last branch */ type:4, /* branch type */ reserved:40; }; #endif /* _UAPI_LINUX_PERF_EVENT_H */