/* * Copyright © 2012-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * Daniel Vetter * */ #include #include #include #include "i915_drv.h" #include "intel_crt.h" #include "intel_csr.h" #include "intel_drv.h" /** * DOC: runtime pm * * The i915 driver supports dynamic enabling and disabling of entire hardware * blocks at runtime. This is especially important on the display side where * software is supposed to control many power gates manually on recent hardware, * since on the GT side a lot of the power management is done by the hardware. * But even there some manual control at the device level is required. * * Since i915 supports a diverse set of platforms with a unified codebase and * hardware engineers just love to shuffle functionality around between power * domains there's a sizeable amount of indirection required. This file provides * generic functions to the driver for grabbing and releasing references for * abstract power domains. It then maps those to the actual power wells * present for a given platform. */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) #include #define STACKDEPTH 8 static noinline depot_stack_handle_t __save_depot_stack(void) { unsigned long entries[STACKDEPTH]; struct stack_trace trace = { .entries = entries, .max_entries = ARRAY_SIZE(entries), .skip = 1, }; save_stack_trace(&trace); if (trace.nr_entries && trace.entries[trace.nr_entries - 1] == ULONG_MAX) trace.nr_entries--; return depot_save_stack(&trace, GFP_NOWAIT | __GFP_NOWARN); } static void __print_depot_stack(depot_stack_handle_t stack, char *buf, int sz, int indent) { unsigned long entries[STACKDEPTH]; struct stack_trace trace = { .entries = entries, .max_entries = ARRAY_SIZE(entries), }; depot_fetch_stack(stack, &trace); snprint_stack_trace(buf, sz, &trace, indent); } static void init_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { struct i915_runtime_pm *rpm = &i915->runtime_pm; spin_lock_init(&rpm->debug.lock); } static noinline depot_stack_handle_t track_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { struct i915_runtime_pm *rpm = &i915->runtime_pm; depot_stack_handle_t stack, *stacks; unsigned long flags; atomic_inc(&rpm->wakeref_count); assert_rpm_wakelock_held(i915); if (!HAS_RUNTIME_PM(i915)) return -1; stack = __save_depot_stack(); if (!stack) return -1; spin_lock_irqsave(&rpm->debug.lock, flags); if (!rpm->debug.count) rpm->debug.last_acquire = stack; stacks = krealloc(rpm->debug.owners, (rpm->debug.count + 1) * sizeof(*stacks), GFP_NOWAIT | __GFP_NOWARN); if (stacks) { stacks[rpm->debug.count++] = stack; rpm->debug.owners = stacks; } else { stack = -1; } spin_unlock_irqrestore(&rpm->debug.lock, flags); return stack; } static void cancel_intel_runtime_pm_wakeref(struct drm_i915_private *i915, depot_stack_handle_t stack) { struct i915_runtime_pm *rpm = &i915->runtime_pm; unsigned long flags, n; bool found = false; if (unlikely(stack == -1)) return; spin_lock_irqsave(&rpm->debug.lock, flags); for (n = rpm->debug.count; n--; ) { if (rpm->debug.owners[n] == stack) { memmove(rpm->debug.owners + n, rpm->debug.owners + n + 1, (--rpm->debug.count - n) * sizeof(stack)); found = true; break; } } spin_unlock_irqrestore(&rpm->debug.lock, flags); if (WARN(!found, "Unmatched wakeref (tracking %lu), count %u\n", rpm->debug.count, atomic_read(&rpm->wakeref_count))) { char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) return; __print_depot_stack(stack, buf, PAGE_SIZE, 2); DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf); stack = READ_ONCE(rpm->debug.last_release); if (stack) { __print_depot_stack(stack, buf, PAGE_SIZE, 2); DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf); } kfree(buf); } } static int cmphandle(const void *_a, const void *_b) { const depot_stack_handle_t * const a = _a, * const b = _b; if (*a < *b) return -1; else if (*a > *b) return 1; else return 0; } static void __print_intel_runtime_pm_wakeref(struct drm_printer *p, const struct intel_runtime_pm_debug *dbg) { unsigned long i; char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) return; if (dbg->last_acquire) { __print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref last acquired:\n%s", buf); } if (dbg->last_release) { __print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref last released:\n%s", buf); } drm_printf(p, "Wakeref count: %lu\n", dbg->count); sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL); for (i = 0; i < dbg->count; i++) { depot_stack_handle_t stack = dbg->owners[i]; unsigned long rep; rep = 1; while (i + 1 < dbg->count && dbg->owners[i + 1] == stack) rep++, i++; __print_depot_stack(stack, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf); } kfree(buf); } static noinline void untrack_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { struct i915_runtime_pm *rpm = &i915->runtime_pm; struct intel_runtime_pm_debug dbg = {}; struct drm_printer p; unsigned long flags; assert_rpm_wakelock_held(i915); if (atomic_dec_and_lock_irqsave(&rpm->wakeref_count, &rpm->debug.lock, flags)) { dbg = rpm->debug; rpm->debug.owners = NULL; rpm->debug.count = 0; rpm->debug.last_release = __save_depot_stack(); spin_unlock_irqrestore(&rpm->debug.lock, flags); } if (!dbg.count) return; p = drm_debug_printer("i915"); __print_intel_runtime_pm_wakeref(&p, &dbg); kfree(dbg.owners); } void print_intel_runtime_pm_wakeref(struct drm_i915_private *i915, struct drm_printer *p) { struct intel_runtime_pm_debug dbg = {}; do { struct i915_runtime_pm *rpm = &i915->runtime_pm; unsigned long alloc = dbg.count; depot_stack_handle_t *s; spin_lock_irq(&rpm->debug.lock); dbg.count = rpm->debug.count; if (dbg.count <= alloc) { memcpy(dbg.owners, rpm->debug.owners, dbg.count * sizeof(*s)); } dbg.last_acquire = rpm->debug.last_acquire; dbg.last_release = rpm->debug.last_release; spin_unlock_irq(&rpm->debug.lock); if (dbg.count <= alloc) break; s = krealloc(dbg.owners, dbg.count * sizeof(*s), GFP_KERNEL); if (!s) goto out; dbg.owners = s; } while (1); __print_intel_runtime_pm_wakeref(p, &dbg); out: kfree(dbg.owners); } #else static void init_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { } static depot_stack_handle_t track_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { atomic_inc(&i915->runtime_pm.wakeref_count); assert_rpm_wakelock_held(i915); return -1; } static void untrack_intel_runtime_pm_wakeref(struct drm_i915_private *i915) { assert_rpm_wakelock_held(i915); atomic_dec(&i915->runtime_pm.wakeref_count); } #endif bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, enum i915_power_well_id power_well_id); const char * intel_display_power_domain_str(enum intel_display_power_domain domain) { switch (domain) { case POWER_DOMAIN_PIPE_A: return "PIPE_A"; case POWER_DOMAIN_PIPE_B: return "PIPE_B"; case POWER_DOMAIN_PIPE_C: return "PIPE_C"; case POWER_DOMAIN_PIPE_A_PANEL_FITTER: return "PIPE_A_PANEL_FITTER"; case POWER_DOMAIN_PIPE_B_PANEL_FITTER: return "PIPE_B_PANEL_FITTER"; case POWER_DOMAIN_PIPE_C_PANEL_FITTER: return "PIPE_C_PANEL_FITTER"; case POWER_DOMAIN_TRANSCODER_A: return "TRANSCODER_A"; case POWER_DOMAIN_TRANSCODER_B: return "TRANSCODER_B"; case POWER_DOMAIN_TRANSCODER_C: return "TRANSCODER_C"; case POWER_DOMAIN_TRANSCODER_EDP: return "TRANSCODER_EDP"; case POWER_DOMAIN_TRANSCODER_EDP_VDSC: return "TRANSCODER_EDP_VDSC"; case POWER_DOMAIN_TRANSCODER_DSI_A: return "TRANSCODER_DSI_A"; case POWER_DOMAIN_TRANSCODER_DSI_C: return "TRANSCODER_DSI_C"; case POWER_DOMAIN_PORT_DDI_A_LANES: return "PORT_DDI_A_LANES"; case POWER_DOMAIN_PORT_DDI_B_LANES: return "PORT_DDI_B_LANES"; case POWER_DOMAIN_PORT_DDI_C_LANES: return "PORT_DDI_C_LANES"; case POWER_DOMAIN_PORT_DDI_D_LANES: return "PORT_DDI_D_LANES"; case POWER_DOMAIN_PORT_DDI_E_LANES: return "PORT_DDI_E_LANES"; case POWER_DOMAIN_PORT_DDI_F_LANES: return "PORT_DDI_F_LANES"; case POWER_DOMAIN_PORT_DDI_A_IO: return "PORT_DDI_A_IO"; case POWER_DOMAIN_PORT_DDI_B_IO: return "PORT_DDI_B_IO"; case POWER_DOMAIN_PORT_DDI_C_IO: return "PORT_DDI_C_IO"; case POWER_DOMAIN_PORT_DDI_D_IO: return "PORT_DDI_D_IO"; case POWER_DOMAIN_PORT_DDI_E_IO: return "PORT_DDI_E_IO"; case POWER_DOMAIN_PORT_DDI_F_IO: return "PORT_DDI_F_IO"; case POWER_DOMAIN_PORT_DSI: return "PORT_DSI"; case POWER_DOMAIN_PORT_CRT: return "PORT_CRT"; case POWER_DOMAIN_PORT_OTHER: return "PORT_OTHER"; case POWER_DOMAIN_VGA: return "VGA"; case POWER_DOMAIN_AUDIO: return "AUDIO"; case POWER_DOMAIN_PLLS: return "PLLS"; case POWER_DOMAIN_AUX_A: return "AUX_A"; case POWER_DOMAIN_AUX_B: return "AUX_B"; case POWER_DOMAIN_AUX_C: return "AUX_C"; case POWER_DOMAIN_AUX_D: return "AUX_D"; case POWER_DOMAIN_AUX_E: return "AUX_E"; case POWER_DOMAIN_AUX_F: return "AUX_F"; case POWER_DOMAIN_AUX_IO_A: return "AUX_IO_A"; case POWER_DOMAIN_AUX_TBT1: return "AUX_TBT1"; case POWER_DOMAIN_AUX_TBT2: return "AUX_TBT2"; case POWER_DOMAIN_AUX_TBT3: return "AUX_TBT3"; case POWER_DOMAIN_AUX_TBT4: return "AUX_TBT4"; case POWER_DOMAIN_GMBUS: return "GMBUS"; case POWER_DOMAIN_INIT: return "INIT"; case POWER_DOMAIN_MODESET: return "MODESET"; case POWER_DOMAIN_GT_IRQ: return "GT_IRQ"; default: MISSING_CASE(domain); return "?"; } } static void intel_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { DRM_DEBUG_KMS("enabling %s\n", power_well->desc->name); power_well->desc->ops->enable(dev_priv, power_well); power_well->hw_enabled = true; } static void intel_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { DRM_DEBUG_KMS("disabling %s\n", power_well->desc->name); power_well->hw_enabled = false; power_well->desc->ops->disable(dev_priv, power_well); } static void intel_power_well_get(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if (!power_well->count++) intel_power_well_enable(dev_priv, power_well); } static void intel_power_well_put(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { WARN(!power_well->count, "Use count on power well %s is already zero", power_well->desc->name); if (!--power_well->count) intel_power_well_disable(dev_priv, power_well); } /** * __intel_display_power_is_enabled - unlocked check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This is the unlocked version of intel_display_power_is_enabled() and should * only be used from error capture and recovery code where deadlocks are * possible. * * Returns: * True when the power domain is enabled, false otherwise. */ bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_well *power_well; bool is_enabled; if (dev_priv->runtime_pm.suspended) return false; is_enabled = true; for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain)) { if (power_well->desc->always_on) continue; if (!power_well->hw_enabled) { is_enabled = false; break; } } return is_enabled; } /** * intel_display_power_is_enabled - check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This function can be used to check the hw power domain state. It is mostly * used in hardware state readout functions. Everywhere else code should rely * upon explicit power domain reference counting to ensure that the hardware * block is powered up before accessing it. * * Callers must hold the relevant modesetting locks to ensure that concurrent * threads can't disable the power well while the caller tries to read a few * registers. * * Returns: * True when the power domain is enabled, false otherwise. */ bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; bool ret; power_domains = &dev_priv->power_domains; mutex_lock(&power_domains->lock); ret = __intel_display_power_is_enabled(dev_priv, domain); mutex_unlock(&power_domains->lock); return ret; } /* * Starting with Haswell, we have a "Power Down Well" that can be turned off * when not needed anymore. We have 4 registers that can request the power well * to be enabled, and it will only be disabled if none of the registers is * requesting it to be enabled. */ static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv, u8 irq_pipe_mask, bool has_vga) { struct pci_dev *pdev = dev_priv->drm.pdev; /* * After we re-enable the power well, if we touch VGA register 0x3d5 * we'll get unclaimed register interrupts. This stops after we write * anything to the VGA MSR register. The vgacon module uses this * register all the time, so if we unbind our driver and, as a * consequence, bind vgacon, we'll get stuck in an infinite loop at * console_unlock(). So make here we touch the VGA MSR register, making * sure vgacon can keep working normally without triggering interrupts * and error messages. */ if (has_vga) { vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO); outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); vga_put(pdev, VGA_RSRC_LEGACY_IO); } if (irq_pipe_mask) gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask); } static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv, u8 irq_pipe_mask) { if (irq_pipe_mask) gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask); } static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; /* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */ WARN_ON(intel_wait_for_register(&dev_priv->uncore, regs->driver, HSW_PWR_WELL_CTL_STATE(pw_idx), HSW_PWR_WELL_CTL_STATE(pw_idx), 1)); } static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv, const struct i915_power_well_regs *regs, int pw_idx) { u32 req_mask = HSW_PWR_WELL_CTL_REQ(pw_idx); u32 ret; ret = I915_READ(regs->bios) & req_mask ? 1 : 0; ret |= I915_READ(regs->driver) & req_mask ? 2 : 0; if (regs->kvmr.reg) ret |= I915_READ(regs->kvmr) & req_mask ? 4 : 0; ret |= I915_READ(regs->debug) & req_mask ? 8 : 0; return ret; } static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; bool disabled; u32 reqs; /* * Bspec doesn't require waiting for PWs to get disabled, but still do * this for paranoia. The known cases where a PW will be forced on: * - a KVMR request on any power well via the KVMR request register * - a DMC request on PW1 and MISC_IO power wells via the BIOS and * DEBUG request registers * Skip the wait in case any of the request bits are set and print a * diagnostic message. */ wait_for((disabled = !(I915_READ(regs->driver) & HSW_PWR_WELL_CTL_STATE(pw_idx))) || (reqs = hsw_power_well_requesters(dev_priv, regs, pw_idx)), 1); if (disabled) return; DRM_DEBUG_KMS("%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n", power_well->desc->name, !!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8)); } static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv, enum skl_power_gate pg) { /* Timeout 5us for PG#0, for other PGs 1us */ WARN_ON(intel_wait_for_register(&dev_priv->uncore, SKL_FUSE_STATUS, SKL_FUSE_PG_DIST_STATUS(pg), SKL_FUSE_PG_DIST_STATUS(pg), 1)); } static void hsw_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; bool wait_fuses = power_well->desc->hsw.has_fuses; enum skl_power_gate uninitialized_var(pg); u32 val; if (wait_fuses) { pg = INTEL_GEN(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) : SKL_PW_CTL_IDX_TO_PG(pw_idx); /* * For PW1 we have to wait both for the PW0/PG0 fuse state * before enabling the power well and PW1/PG1's own fuse * state after the enabling. For all other power wells with * fuses we only have to wait for that PW/PG's fuse state * after the enabling. */ if (pg == SKL_PG1) gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0); } val = I915_READ(regs->driver); I915_WRITE(regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_enable(dev_priv, power_well); /* Display WA #1178: cnl */ if (IS_CANNONLAKE(dev_priv) && pw_idx >= GLK_PW_CTL_IDX_AUX_B && pw_idx <= CNL_PW_CTL_IDX_AUX_F) { val = I915_READ(CNL_AUX_ANAOVRD1(pw_idx)); val |= CNL_AUX_ANAOVRD1_ENABLE | CNL_AUX_ANAOVRD1_LDO_BYPASS; I915_WRITE(CNL_AUX_ANAOVRD1(pw_idx), val); } if (wait_fuses) gen9_wait_for_power_well_fuses(dev_priv, pg); hsw_power_well_post_enable(dev_priv, power_well->desc->hsw.irq_pipe_mask, power_well->desc->hsw.has_vga); } static void hsw_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; u32 val; hsw_power_well_pre_disable(dev_priv, power_well->desc->hsw.irq_pipe_mask); val = I915_READ(regs->driver); I915_WRITE(regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_disable(dev_priv, power_well); } #define ICL_AUX_PW_TO_PORT(pw_idx) ((pw_idx) - ICL_PW_CTL_IDX_AUX_A) static void icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; enum port port = ICL_AUX_PW_TO_PORT(pw_idx); u32 val; val = I915_READ(regs->driver); I915_WRITE(regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx)); val = I915_READ(ICL_PORT_CL_DW12(port)); I915_WRITE(ICL_PORT_CL_DW12(port), val | ICL_LANE_ENABLE_AUX); hsw_wait_for_power_well_enable(dev_priv, power_well); /* Display WA #1178: icl */ if (IS_ICELAKE(dev_priv) && pw_idx >= ICL_PW_CTL_IDX_AUX_A && pw_idx <= ICL_PW_CTL_IDX_AUX_B && !intel_bios_is_port_edp(dev_priv, port)) { val = I915_READ(ICL_AUX_ANAOVRD1(pw_idx)); val |= ICL_AUX_ANAOVRD1_ENABLE | ICL_AUX_ANAOVRD1_LDO_BYPASS; I915_WRITE(ICL_AUX_ANAOVRD1(pw_idx), val); } } static void icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; enum port port = ICL_AUX_PW_TO_PORT(pw_idx); u32 val; val = I915_READ(ICL_PORT_CL_DW12(port)); I915_WRITE(ICL_PORT_CL_DW12(port), val & ~ICL_LANE_ENABLE_AUX); val = I915_READ(regs->driver); I915_WRITE(regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_disable(dev_priv, power_well); } #define ICL_AUX_PW_TO_CH(pw_idx) \ ((pw_idx) - ICL_PW_CTL_IDX_AUX_A + AUX_CH_A) static void icl_tc_phy_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum aux_ch aux_ch = ICL_AUX_PW_TO_CH(power_well->desc->hsw.idx); u32 val; val = I915_READ(DP_AUX_CH_CTL(aux_ch)); val &= ~DP_AUX_CH_CTL_TBT_IO; if (power_well->desc->hsw.is_tc_tbt) val |= DP_AUX_CH_CTL_TBT_IO; I915_WRITE(DP_AUX_CH_CTL(aux_ch), val); hsw_power_well_enable(dev_priv, power_well); } /* * We should only use the power well if we explicitly asked the hardware to * enable it, so check if it's enabled and also check if we've requested it to * be enabled. */ static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; enum i915_power_well_id id = power_well->desc->id; int pw_idx = power_well->desc->hsw.idx; u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx) | HSW_PWR_WELL_CTL_STATE(pw_idx); u32 val; val = I915_READ(regs->driver); /* * On GEN9 big core due to a DMC bug the driver's request bits for PW1 * and the MISC_IO PW will be not restored, so check instead for the * BIOS's own request bits, which are forced-on for these power wells * when exiting DC5/6. */ if (IS_GEN(dev_priv, 9) && !IS_GEN9_LP(dev_priv) && (id == SKL_DISP_PW_1 || id == SKL_DISP_PW_MISC_IO)) val |= I915_READ(regs->bios); return (val & mask) == mask; } static void assert_can_enable_dc9(struct drm_i915_private *dev_priv) { WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), "DC9 already programmed to be enabled.\n"); WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled to enable DC9.\n"); WARN_ONCE(I915_READ(HSW_PWR_WELL_CTL2) & HSW_PWR_WELL_CTL_REQ(SKL_PW_CTL_IDX_PW_2), "Power well 2 on.\n"); WARN_ONCE(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); /* * TODO: check for the following to verify the conditions to enter DC9 * state are satisfied: * 1] Check relevant display engine registers to verify if mode set * disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } static void assert_can_disable_dc9(struct drm_i915_private *dev_priv) { WARN_ONCE(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled.\n"); /* * TODO: check for the following to verify DC9 state was indeed * entered before programming to disable it: * 1] Check relevant display engine registers to verify if mode * set disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } static void gen9_write_dc_state(struct drm_i915_private *dev_priv, u32 state) { int rewrites = 0; int rereads = 0; u32 v; I915_WRITE(DC_STATE_EN, state); /* It has been observed that disabling the dc6 state sometimes * doesn't stick and dmc keeps returning old value. Make sure * the write really sticks enough times and also force rewrite until * we are confident that state is exactly what we want. */ do { v = I915_READ(DC_STATE_EN); if (v != state) { I915_WRITE(DC_STATE_EN, state); rewrites++; rereads = 0; } else if (rereads++ > 5) { break; } } while (rewrites < 100); if (v != state) DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n", state, v); /* Most of the times we need one retry, avoid spam */ if (rewrites > 1) DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n", state, rewrites); } static u32 gen9_dc_mask(struct drm_i915_private *dev_priv) { u32 mask; mask = DC_STATE_EN_UPTO_DC5; if (INTEL_GEN(dev_priv) >= 11) mask |= DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9; else if (IS_GEN9_LP(dev_priv)) mask |= DC_STATE_EN_DC9; else mask |= DC_STATE_EN_UPTO_DC6; return mask; } void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv); DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n", dev_priv->csr.dc_state, val); dev_priv->csr.dc_state = val; } /** * gen9_set_dc_state - set target display C power state * @dev_priv: i915 device instance * @state: target DC power state * - DC_STATE_DISABLE * - DC_STATE_EN_UPTO_DC5 * - DC_STATE_EN_UPTO_DC6 * - DC_STATE_EN_DC9 * * Signal to DMC firmware/HW the target DC power state passed in @state. * DMC/HW can turn off individual display clocks and power rails when entering * a deeper DC power state (higher in number) and turns these back when exiting * that state to a shallower power state (lower in number). The HW will decide * when to actually enter a given state on an on-demand basis, for instance * depending on the active state of display pipes. The state of display * registers backed by affected power rails are saved/restored as needed. * * Based on the above enabling a deeper DC power state is asynchronous wrt. * enabling it. Disabling a deeper power state is synchronous: for instance * setting %DC_STATE_DISABLE won't complete until all HW resources are turned * back on and register state is restored. This is guaranteed by the MMIO write * to DC_STATE_EN blocking until the state is restored. */ static void gen9_set_dc_state(struct drm_i915_private *dev_priv, u32 state) { u32 val; u32 mask; if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask)) state &= dev_priv->csr.allowed_dc_mask; val = I915_READ(DC_STATE_EN); mask = gen9_dc_mask(dev_priv); DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n", val & mask, state); /* Check if DMC is ignoring our DC state requests */ if ((val & mask) != dev_priv->csr.dc_state) DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n", dev_priv->csr.dc_state, val & mask); val &= ~mask; val |= state; gen9_write_dc_state(dev_priv, val); dev_priv->csr.dc_state = val & mask; } void bxt_enable_dc9(struct drm_i915_private *dev_priv) { assert_can_enable_dc9(dev_priv); DRM_DEBUG_KMS("Enabling DC9\n"); /* * Power sequencer reset is not needed on * platforms with South Display Engine on PCH, * because PPS registers are always on. */ if (!HAS_PCH_SPLIT(dev_priv)) intel_power_sequencer_reset(dev_priv); gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9); } void bxt_disable_dc9(struct drm_i915_private *dev_priv) { assert_can_disable_dc9(dev_priv); DRM_DEBUG_KMS("Disabling DC9\n"); gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); intel_pps_unlock_regs_wa(dev_priv); } static void assert_csr_loaded(struct drm_i915_private *dev_priv) { WARN_ONCE(!I915_READ(CSR_PROGRAM(0)), "CSR program storage start is NULL\n"); WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n"); WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n"); } static struct i915_power_well * lookup_power_well(struct drm_i915_private *dev_priv, enum i915_power_well_id power_well_id) { struct i915_power_well *power_well; for_each_power_well(dev_priv, power_well) if (power_well->desc->id == power_well_id) return power_well; /* * It's not feasible to add error checking code to the callers since * this condition really shouldn't happen and it doesn't even make sense * to abort things like display initialization sequences. Just return * the first power well and hope the WARN gets reported so we can fix * our driver. */ WARN(1, "Power well %d not defined for this platform\n", power_well_id); return &dev_priv->power_domains.power_wells[0]; } static void assert_can_enable_dc5(struct drm_i915_private *dev_priv) { bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv, SKL_DISP_PW_2); WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n"); WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5), "DC5 already programmed to be enabled.\n"); assert_rpm_wakelock_held(dev_priv); assert_csr_loaded(dev_priv); } void gen9_enable_dc5(struct drm_i915_private *dev_priv) { assert_can_enable_dc5(dev_priv); DRM_DEBUG_KMS("Enabling DC5\n"); /* Wa Display #1183: skl,kbl,cfl */ if (IS_GEN9_BC(dev_priv)) I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT); gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5); } static void assert_can_enable_dc6(struct drm_i915_private *dev_priv) { WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, "Backlight is not disabled.\n"); WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), "DC6 already programmed to be enabled.\n"); assert_csr_loaded(dev_priv); } void skl_enable_dc6(struct drm_i915_private *dev_priv) { assert_can_enable_dc6(dev_priv); DRM_DEBUG_KMS("Enabling DC6\n"); /* Wa Display #1183: skl,kbl,cfl */ if (IS_GEN9_BC(dev_priv)) I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT); gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); } static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->hsw.regs; int pw_idx = power_well->desc->hsw.idx; u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx); u32 bios_req = I915_READ(regs->bios); /* Take over the request bit if set by BIOS. */ if (bios_req & mask) { u32 drv_req = I915_READ(regs->driver); if (!(drv_req & mask)) I915_WRITE(regs->driver, drv_req | mask); I915_WRITE(regs->bios, bios_req & ~mask); } } static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { bxt_ddi_phy_init(dev_priv, power_well->desc->bxt.phy); } static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { bxt_ddi_phy_uninit(dev_priv, power_well->desc->bxt.phy); } static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return bxt_ddi_phy_is_enabled(dev_priv, power_well->desc->bxt.phy); } static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv) { struct i915_power_well *power_well; power_well = lookup_power_well(dev_priv, BXT_DISP_PW_DPIO_CMN_A); if (power_well->count > 0) bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy); power_well = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); if (power_well->count > 0) bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy); if (IS_GEMINILAKE(dev_priv)) { power_well = lookup_power_well(dev_priv, GLK_DISP_PW_DPIO_CMN_C); if (power_well->count > 0) bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy); } } static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0; } static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv) { u32 tmp = I915_READ(DBUF_CTL); WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) != (DBUF_POWER_STATE | DBUF_POWER_REQUEST), "Unexpected DBuf power power state (0x%08x)\n", tmp); } static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { struct intel_cdclk_state cdclk_state = {}; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); dev_priv->display.get_cdclk(dev_priv, &cdclk_state); /* Can't read out voltage_level so can't use intel_cdclk_changed() */ WARN_ON(intel_cdclk_needs_modeset(&dev_priv->cdclk.hw, &cdclk_state)); gen9_assert_dbuf_enabled(dev_priv); if (IS_GEN9_LP(dev_priv)) bxt_verify_ddi_phy_power_wells(dev_priv); if (INTEL_GEN(dev_priv) >= 11) /* * DMC retains HW context only for port A, the other combo * PHY's HW context for port B is lost after DC transitions, * so we need to restore it manually. */ icl_combo_phys_init(dev_priv); } static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if (!dev_priv->csr.dmc_payload) return; if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6) skl_enable_dc6(dev_priv); else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5) gen9_enable_dc5(dev_priv); } static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { } static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { } static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return true; } static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if ((I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE) == 0) i830_enable_pipe(dev_priv, PIPE_A); if ((I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE) == 0) i830_enable_pipe(dev_priv, PIPE_B); } static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { i830_disable_pipe(dev_priv, PIPE_B); i830_disable_pipe(dev_priv, PIPE_A); } static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE && I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE; } static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if (power_well->count > 0) i830_pipes_power_well_enable(dev_priv, power_well); else i830_pipes_power_well_disable(dev_priv, power_well); } static void vlv_set_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { int pw_idx = power_well->desc->vlv.idx; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(pw_idx); state = enable ? PUNIT_PWRGT_PWR_ON(pw_idx) : PUNIT_PWRGT_PWR_GATE(pw_idx); mutex_lock(&dev_priv->pcu_lock); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL); ctrl &= ~mask; ctrl |= state; vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl); if (wait_for(COND, 100)) DRM_ERROR("timeout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL)); #undef COND out: mutex_unlock(&dev_priv->pcu_lock); } static void vlv_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, true); } static void vlv_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, false); } static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { int pw_idx = power_well->desc->vlv.idx; bool enabled = false; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(pw_idx); ctrl = PUNIT_PWRGT_PWR_ON(pw_idx); mutex_lock(&dev_priv->pcu_lock); state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask; /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ WARN_ON(state != PUNIT_PWRGT_PWR_ON(pw_idx) && state != PUNIT_PWRGT_PWR_GATE(pw_idx)); if (state == ctrl) enabled = true; /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask; WARN_ON(ctrl != state); mutex_unlock(&dev_priv->pcu_lock); return enabled; } static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv) { u32 val; /* * On driver load, a pipe may be active and driving a DSI display. * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck * (and never recovering) in this case. intel_dsi_post_disable() will * clear it when we turn off the display. */ val = I915_READ(DSPCLK_GATE_D); val &= DPOUNIT_CLOCK_GATE_DISABLE; val |= VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, val); /* * Disable trickle feed and enable pnd deadline calculation */ I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE); I915_WRITE(CBR1_VLV, 0); WARN_ON(dev_priv->rawclk_freq == 0); I915_WRITE(RAWCLK_FREQ_VLV, DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000)); } static void vlv_display_power_well_init(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; enum pipe pipe; /* * Enable the CRI clock source so we can get at the * display and the reference clock for VGA * hotplug / manual detection. Supposedly DSI also * needs the ref clock up and running. * * CHV DPLL B/C have some issues if VGA mode is enabled. */ for_each_pipe(dev_priv, pipe) { u32 val = I915_READ(DPLL(pipe)); val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); } vlv_init_display_clock_gating(dev_priv); spin_lock_irq(&dev_priv->irq_lock); valleyview_enable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* * During driver initialization/resume we can avoid restoring the * part of the HW/SW state that will be inited anyway explicitly. */ if (dev_priv->power_domains.initializing) return; intel_hpd_init(dev_priv); /* Re-enable the ADPA, if we have one */ for_each_intel_encoder(&dev_priv->drm, encoder) { if (encoder->type == INTEL_OUTPUT_ANALOG) intel_crt_reset(&encoder->base); } i915_redisable_vga_power_on(dev_priv); intel_pps_unlock_regs_wa(dev_priv); } static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); valleyview_disable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* make sure we're done processing display irqs */ synchronize_irq(dev_priv->drm.irq); intel_power_sequencer_reset(dev_priv); /* Prevent us from re-enabling polling on accident in late suspend */ if (!dev_priv->drm.dev->power.is_suspended) intel_hpd_poll_init(dev_priv); } static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, true); vlv_display_power_well_init(dev_priv); } static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_display_power_well_deinit(dev_priv); vlv_set_power_well(dev_priv, power_well, false); } static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { /* since ref/cri clock was enabled */ udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx - * 6. De-assert cmn_reset/side_reset. Same as VLV X0. * a. GUnit 0x2110 bit[0] set to 1 (def 0) * b. The other bits such as sfr settings / modesel may all * be set to 0. * * This should only be done on init and resume from S3 with * both PLLs disabled, or we risk losing DPIO and PLL * synchronization. */ I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST); } static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe; for_each_pipe(dev_priv, pipe) assert_pll_disabled(dev_priv, pipe); /* Assert common reset */ I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST); vlv_set_power_well(dev_priv, power_well, false); } #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0)) #define BITS_SET(val, bits) (((val) & (bits)) == (bits)) static void assert_chv_phy_status(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn_bc = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *cmn_d = lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D); u32 phy_control = dev_priv->chv_phy_control; u32 phy_status = 0; u32 phy_status_mask = 0xffffffff; /* * The BIOS can leave the PHY is some weird state * where it doesn't fully power down some parts. * Disable the asserts until the PHY has been fully * reset (ie. the power well has been disabled at * least once). */ if (!dev_priv->chv_phy_assert[DPIO_PHY0]) phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) | PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1)); if (!dev_priv->chv_phy_assert[DPIO_PHY1]) phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1)); if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) { phy_status |= PHY_POWERGOOD(DPIO_PHY0); /* this assumes override is only used to enable lanes */ if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0); if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1); /* CL1 is on whenever anything is on in either channel */ if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) | PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0); /* * The DPLLB check accounts for the pipe B + port A usage * with CL2 powered up but all the lanes in the second channel * powered down. */ if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) && (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1); } if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) { phy_status |= PHY_POWERGOOD(DPIO_PHY1); /* this assumes override is only used to enable lanes */ if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1); } phy_status &= phy_status_mask; /* * The PHY may be busy with some initial calibration and whatnot, * so the power state can take a while to actually change. */ if (intel_wait_for_register(&dev_priv->uncore, DISPLAY_PHY_STATUS, phy_status_mask, phy_status, 10)) DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n", I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask, phy_status, dev_priv->chv_phy_control); } #undef BITS_SET static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum dpio_phy phy; enum pipe pipe; u32 tmp; WARN_ON_ONCE(power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC && power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D); if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) { pipe = PIPE_A; phy = DPIO_PHY0; } else { pipe = PIPE_C; phy = DPIO_PHY1; } /* since ref/cri clock was enabled */ udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* Poll for phypwrgood signal */ if (intel_wait_for_register(&dev_priv->uncore, DISPLAY_PHY_STATUS, PHY_POWERGOOD(phy), PHY_POWERGOOD(phy), 1)) DRM_ERROR("Display PHY %d is not power up\n", phy); mutex_lock(&dev_priv->sb_lock); /* Enable dynamic power down */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28); tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN | DPIO_SUS_CLK_CONFIG_GATE_CLKREQ; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp); if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) { tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1); tmp |= DPIO_DYNPWRDOWNEN_CH1; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp); } else { /* * Force the non-existing CL2 off. BXT does this * too, so maybe it saves some power even though * CL2 doesn't exist? */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); tmp |= DPIO_CL2_LDOFUSE_PWRENB; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp); } mutex_unlock(&dev_priv->sb_lock); dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy); I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n", phy, dev_priv->chv_phy_control); assert_chv_phy_status(dev_priv); } static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum dpio_phy phy; WARN_ON_ONCE(power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC && power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D); if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) { phy = DPIO_PHY0; assert_pll_disabled(dev_priv, PIPE_A); assert_pll_disabled(dev_priv, PIPE_B); } else { phy = DPIO_PHY1; assert_pll_disabled(dev_priv, PIPE_C); } dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy); I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); vlv_set_power_well(dev_priv, power_well, false); DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n", phy, dev_priv->chv_phy_control); /* PHY is fully reset now, so we can enable the PHY state asserts */ dev_priv->chv_phy_assert[phy] = true; assert_chv_phy_status(dev_priv); } static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy, enum dpio_channel ch, bool override, unsigned int mask) { enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C; u32 reg, val, expected, actual; /* * The BIOS can leave the PHY is some weird state * where it doesn't fully power down some parts. * Disable the asserts until the PHY has been fully * reset (ie. the power well has been disabled at * least once). */ if (!dev_priv->chv_phy_assert[phy]) return; if (ch == DPIO_CH0) reg = _CHV_CMN_DW0_CH0; else reg = _CHV_CMN_DW6_CH1; mutex_lock(&dev_priv->sb_lock); val = vlv_dpio_read(dev_priv, pipe, reg); mutex_unlock(&dev_priv->sb_lock); /* * This assumes !override is only used when the port is disabled. * All lanes should power down even without the override when * the port is disabled. */ if (!override || mask == 0xf) { expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN; /* * If CH1 common lane is not active anymore * (eg. for pipe B DPLL) the entire channel will * shut down, which causes the common lane registers * to read as 0. That means we can't actually check * the lane power down status bits, but as the entire * register reads as 0 it's a good indication that the * channel is indeed entirely powered down. */ if (ch == DPIO_CH1 && val == 0) expected = 0; } else if (mask != 0x0) { expected = DPIO_ANYDL_POWERDOWN; } else { expected = 0; } if (ch == DPIO_CH0) actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0; else actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1; actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN; WARN(actual != expected, "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n", !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN), !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN), reg, val); } bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy, enum dpio_channel ch, bool override) { struct i915_power_domains *power_domains = &dev_priv->power_domains; bool was_override; mutex_lock(&power_domains->lock); was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); if (override == was_override) goto out; if (override) dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); else dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n", phy, ch, dev_priv->chv_phy_control); assert_chv_phy_status(dev_priv); out: mutex_unlock(&power_domains->lock); return was_override; } void chv_phy_powergate_lanes(struct intel_encoder *encoder, bool override, unsigned int mask) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_power_domains *power_domains = &dev_priv->power_domains; enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base)); enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base)); mutex_lock(&power_domains->lock); dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch); dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch); if (override) dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); else dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n", phy, ch, mask, dev_priv->chv_phy_control); assert_chv_phy_status(dev_priv); assert_chv_phy_powergate(dev_priv, phy, ch, override, mask); mutex_unlock(&power_domains->lock); } static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe = PIPE_A; bool enabled; u32 state, ctrl; mutex_lock(&dev_priv->pcu_lock); state = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe); /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe)); enabled = state == DP_SSS_PWR_ON(pipe); /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSC_MASK(pipe); WARN_ON(ctrl << 16 != state); mutex_unlock(&dev_priv->pcu_lock); return enabled; } static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { enum pipe pipe = PIPE_A; u32 state; u32 ctrl; state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe); mutex_lock(&dev_priv->pcu_lock); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe)) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); ctrl &= ~DP_SSC_MASK(pipe); ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, ctrl); if (wait_for(COND, 100)) DRM_ERROR("timeout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM)); #undef COND out: mutex_unlock(&dev_priv->pcu_lock); } static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { chv_set_pipe_power_well(dev_priv, power_well, true); vlv_display_power_well_init(dev_priv); } static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_display_power_well_deinit(dev_priv); chv_set_pipe_power_well(dev_priv, power_well, false); } static void __intel_display_power_get_domain(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *power_well; for_each_power_domain_well(dev_priv, power_well, BIT_ULL(domain)) intel_power_well_get(dev_priv, power_well); power_domains->domain_use_count[domain]++; } /** * intel_display_power_get - grab a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function grabs a power domain reference for @domain and ensures that the * power domain and all its parents are powered up. Therefore users should only * grab a reference to the innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_display_power_put() to release the reference again. */ intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->power_domains; intel_wakeref_t wakeref = intel_runtime_pm_get(dev_priv); mutex_lock(&power_domains->lock); __intel_display_power_get_domain(dev_priv, domain); mutex_unlock(&power_domains->lock); return wakeref; } /** * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain * @dev_priv: i915 device instance * @domain: power domain to reference * * This function grabs a power domain reference for @domain and ensures that the * power domain and all its parents are powered up. Therefore users should only * grab a reference to the innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_display_power_put() to release the reference again. */ intel_wakeref_t intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->power_domains; intel_wakeref_t wakeref; bool is_enabled; wakeref = intel_runtime_pm_get_if_in_use(dev_priv); if (!wakeref) return false; mutex_lock(&power_domains->lock); if (__intel_display_power_is_enabled(dev_priv, domain)) { __intel_display_power_get_domain(dev_priv, domain); is_enabled = true; } else { is_enabled = false; } mutex_unlock(&power_domains->lock); if (!is_enabled) { intel_runtime_pm_put(dev_priv, wakeref); wakeref = 0; } return wakeref; } static void __intel_display_power_put(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; struct i915_power_well *power_well; power_domains = &dev_priv->power_domains; mutex_lock(&power_domains->lock); WARN(!power_domains->domain_use_count[domain], "Use count on domain %s is already zero\n", intel_display_power_domain_str(domain)); power_domains->domain_use_count[domain]--; for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain)) intel_power_well_put(dev_priv, power_well); mutex_unlock(&power_domains->lock); } /** * intel_display_power_put - release a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function drops the power domain reference obtained by * intel_display_power_get() and might power down the corresponding hardware * block right away if this is the last reference. */ void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { __intel_display_power_put(dev_priv, domain); intel_runtime_pm_put_unchecked(dev_priv); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) void intel_display_power_put(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain, intel_wakeref_t wakeref) { __intel_display_power_put(dev_priv, domain); intel_runtime_pm_put(dev_priv, wakeref); } #endif #define I830_PIPES_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DISPLAY_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DSI) | \ BIT_ULL(POWER_DOMAIN_PORT_CRT) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_GMBUS) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_CRT) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CHV_DISPLAY_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DSI) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_GMBUS) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define HSW_DISPLAY_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define BDW_DISPLAY_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \ SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_GT_IRQ) | \ BIT_ULL(POWER_DOMAIN_MODESET) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \ BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_GT_IRQ) | \ BIT_ULL(POWER_DOMAIN_MODESET) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_GMBUS) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define BXT_DPIO_CMN_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO)) #define GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO)) #define GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO)) #define GLK_DPIO_CMN_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DPIO_CMN_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DPIO_CMN_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_AUX_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_AUX_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_AUX_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define GLK_DISPLAY_DC_OFF_POWER_DOMAINS ( \ GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_GT_IRQ) | \ BIT_ULL(POWER_DOMAIN_MODESET) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_GMBUS) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_AUX_F) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_AUX_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_AUX_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_AUX_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_AUX_D_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_AUX_F_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_F) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define CNL_DISPLAY_DC_OFF_POWER_DOMAINS ( \ CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_GT_IRQ) | \ BIT_ULL(POWER_DOMAIN_MODESET) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) /* * ICL PW_0/PG_0 domains (HW/DMC control): * - PCI * - clocks except port PLL * - central power except FBC * - shared functions except pipe interrupts, pipe MBUS, DBUF registers * ICL PW_1/PG_1 domains (HW/DMC control): * - DBUF function * - PIPE_A and its planes, except VGA * - transcoder EDP + PSR * - transcoder DSI * - DDI_A * - FBC */ #define ICL_PW_4_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PIPE_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_INIT)) /* VDSC/joining */ #define ICL_PW_3_POWER_DOMAINS ( \ ICL_PW_4_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_PIPE_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \ BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \ BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \ BIT_ULL(POWER_DOMAIN_AUX_B) | \ BIT_ULL(POWER_DOMAIN_AUX_C) | \ BIT_ULL(POWER_DOMAIN_AUX_D) | \ BIT_ULL(POWER_DOMAIN_AUX_E) | \ BIT_ULL(POWER_DOMAIN_AUX_F) | \ BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \ BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \ BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \ BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \ BIT_ULL(POWER_DOMAIN_VGA) | \ BIT_ULL(POWER_DOMAIN_AUDIO) | \ BIT_ULL(POWER_DOMAIN_INIT)) /* * - transcoder WD * - KVMR (HW control) */ #define ICL_PW_2_POWER_DOMAINS ( \ ICL_PW_3_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_TRANSCODER_EDP_VDSC) | \ BIT_ULL(POWER_DOMAIN_INIT)) /* * - KVMR (HW control) */ #define ICL_DISPLAY_DC_OFF_POWER_DOMAINS ( \ ICL_PW_2_POWER_DOMAINS | \ BIT_ULL(POWER_DOMAIN_MODESET) | \ BIT_ULL(POWER_DOMAIN_AUX_A) | \ BIT_ULL(POWER_DOMAIN_INIT)) #define ICL_DDI_IO_A_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO)) #define ICL_DDI_IO_B_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO)) #define ICL_DDI_IO_C_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO)) #define ICL_DDI_IO_D_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO)) #define ICL_DDI_IO_E_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO)) #define ICL_DDI_IO_F_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO)) #define ICL_AUX_A_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \ BIT_ULL(POWER_DOMAIN_AUX_A)) #define ICL_AUX_B_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_B)) #define ICL_AUX_C_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_C)) #define ICL_AUX_D_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_D)) #define ICL_AUX_E_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_E)) #define ICL_AUX_F_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_F)) #define ICL_AUX_TBT1_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_TBT1)) #define ICL_AUX_TBT2_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_TBT2)) #define ICL_AUX_TBT3_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_TBT3)) #define ICL_AUX_TBT4_IO_POWER_DOMAINS ( \ BIT_ULL(POWER_DOMAIN_AUX_TBT4)) static const struct i915_power_well_ops i9xx_always_on_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = i9xx_always_on_power_well_noop, .disable = i9xx_always_on_power_well_noop, .is_enabled = i9xx_always_on_power_well_enabled, }; static const struct i915_power_well_ops chv_pipe_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = chv_pipe_power_well_enable, .disable = chv_pipe_power_well_disable, .is_enabled = chv_pipe_power_well_enabled, }; static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = chv_dpio_cmn_power_well_enable, .disable = chv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_desc i9xx_always_on_power_well[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, }; static const struct i915_power_well_ops i830_pipes_power_well_ops = { .sync_hw = i830_pipes_power_well_sync_hw, .enable = i830_pipes_power_well_enable, .disable = i830_pipes_power_well_disable, .is_enabled = i830_pipes_power_well_enabled, }; static const struct i915_power_well_desc i830_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "pipes", .domains = I830_PIPES_POWER_DOMAINS, .ops = &i830_pipes_power_well_ops, .id = DISP_PW_ID_NONE, }, }; static const struct i915_power_well_ops hsw_power_well_ops = { .sync_hw = hsw_power_well_sync_hw, .enable = hsw_power_well_enable, .disable = hsw_power_well_disable, .is_enabled = hsw_power_well_enabled, }; static const struct i915_power_well_ops gen9_dc_off_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = gen9_dc_off_power_well_enable, .disable = gen9_dc_off_power_well_disable, .is_enabled = gen9_dc_off_power_well_enabled, }; static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = bxt_dpio_cmn_power_well_enable, .disable = bxt_dpio_cmn_power_well_disable, .is_enabled = bxt_dpio_cmn_power_well_enabled, }; static const struct i915_power_well_regs hsw_power_well_regs = { .bios = HSW_PWR_WELL_CTL1, .driver = HSW_PWR_WELL_CTL2, .kvmr = HSW_PWR_WELL_CTL3, .debug = HSW_PWR_WELL_CTL4, }; static const struct i915_power_well_desc hsw_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "display", .domains = HSW_DISPLAY_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = HSW_DISP_PW_GLOBAL, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = HSW_PW_CTL_IDX_GLOBAL, .hsw.has_vga = true, }, }, }; static const struct i915_power_well_desc bdw_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "display", .domains = BDW_DISPLAY_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = HSW_DISP_PW_GLOBAL, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = HSW_PW_CTL_IDX_GLOBAL, .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C), .hsw.has_vga = true, }, }, }; static const struct i915_power_well_ops vlv_display_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_display_power_well_enable, .disable = vlv_display_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_dpio_cmn_power_well_enable, .disable = vlv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_ops vlv_dpio_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_power_well_enable, .disable = vlv_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_desc vlv_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "display", .domains = VLV_DISPLAY_POWER_DOMAINS, .ops = &vlv_display_power_well_ops, .id = VLV_DISP_PW_DISP2D, { .vlv.idx = PUNIT_PWGT_IDX_DISP2D, }, }, { .name = "dpio-tx-b-01", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .id = DISP_PW_ID_NONE, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_01, }, }, { .name = "dpio-tx-b-23", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .id = DISP_PW_ID_NONE, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_23, }, }, { .name = "dpio-tx-c-01", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .id = DISP_PW_ID_NONE, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_01, }, }, { .name = "dpio-tx-c-23", .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, .ops = &vlv_dpio_power_well_ops, .id = DISP_PW_ID_NONE, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_23, }, }, { .name = "dpio-common", .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS, .ops = &vlv_dpio_cmn_power_well_ops, .id = VLV_DISP_PW_DPIO_CMN_BC, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC, }, }, }; static const struct i915_power_well_desc chv_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "display", /* * Pipe A power well is the new disp2d well. Pipe B and C * power wells don't actually exist. Pipe A power well is * required for any pipe to work. */ .domains = CHV_DISPLAY_POWER_DOMAINS, .ops = &chv_pipe_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "dpio-common-bc", .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS, .ops = &chv_dpio_cmn_power_well_ops, .id = VLV_DISP_PW_DPIO_CMN_BC, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC, }, }, { .name = "dpio-common-d", .domains = CHV_DPIO_CMN_D_POWER_DOMAINS, .ops = &chv_dpio_cmn_power_well_ops, .id = CHV_DISP_PW_DPIO_CMN_D, { .vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_D, }, }, }; bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, enum i915_power_well_id power_well_id) { struct i915_power_well *power_well; bool ret; power_well = lookup_power_well(dev_priv, power_well_id); ret = power_well->desc->ops->is_enabled(dev_priv, power_well); return ret; } static const struct i915_power_well_desc skl_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 1", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_1, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_1, .hsw.has_fuses = true, }, }, { .name = "MISC IO power well", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_MISC_IO, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_MISC_IO, }, }, { .name = "DC off", .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS, .ops = &gen9_dc_off_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 2", .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_2, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_2, .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C), .hsw.has_vga = true, .hsw.has_fuses = true, }, }, { .name = "DDI A/E IO power well", .domains = SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_A_E, }, }, { .name = "DDI B IO power well", .domains = SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_B, }, }, { .name = "DDI C IO power well", .domains = SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_C, }, }, { .name = "DDI D IO power well", .domains = SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_D, }, }, }; static const struct i915_power_well_desc bxt_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 1", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_1, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_1, .hsw.has_fuses = true, }, }, { .name = "DC off", .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS, .ops = &gen9_dc_off_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 2", .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_2, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_2, .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C), .hsw.has_vga = true, .hsw.has_fuses = true, }, }, { .name = "dpio-common-a", .domains = BXT_DPIO_CMN_A_POWER_DOMAINS, .ops = &bxt_dpio_cmn_power_well_ops, .id = BXT_DISP_PW_DPIO_CMN_A, { .bxt.phy = DPIO_PHY1, }, }, { .name = "dpio-common-bc", .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS, .ops = &bxt_dpio_cmn_power_well_ops, .id = VLV_DISP_PW_DPIO_CMN_BC, { .bxt.phy = DPIO_PHY0, }, }, }; static const struct i915_power_well_desc glk_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 1", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_1, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_1, .hsw.has_fuses = true, }, }, { .name = "DC off", .domains = GLK_DISPLAY_DC_OFF_POWER_DOMAINS, .ops = &gen9_dc_off_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 2", .domains = GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_2, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_2, .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C), .hsw.has_vga = true, .hsw.has_fuses = true, }, }, { .name = "dpio-common-a", .domains = GLK_DPIO_CMN_A_POWER_DOMAINS, .ops = &bxt_dpio_cmn_power_well_ops, .id = BXT_DISP_PW_DPIO_CMN_A, { .bxt.phy = DPIO_PHY1, }, }, { .name = "dpio-common-b", .domains = GLK_DPIO_CMN_B_POWER_DOMAINS, .ops = &bxt_dpio_cmn_power_well_ops, .id = VLV_DISP_PW_DPIO_CMN_BC, { .bxt.phy = DPIO_PHY0, }, }, { .name = "dpio-common-c", .domains = GLK_DPIO_CMN_C_POWER_DOMAINS, .ops = &bxt_dpio_cmn_power_well_ops, .id = GLK_DISP_PW_DPIO_CMN_C, { .bxt.phy = DPIO_PHY2, }, }, { .name = "AUX A", .domains = GLK_DISPLAY_AUX_A_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_A, }, }, { .name = "AUX B", .domains = GLK_DISPLAY_AUX_B_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_B, }, }, { .name = "AUX C", .domains = GLK_DISPLAY_AUX_C_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_C, }, }, { .name = "DDI A IO power well", .domains = GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_DDI_A, }, }, { .name = "DDI B IO power well", .domains = GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_B, }, }, { .name = "DDI C IO power well", .domains = GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_C, }, }, }; static const struct i915_power_well_desc cnl_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 1", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_1, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_1, .hsw.has_fuses = true, }, }, { .name = "AUX A", .domains = CNL_DISPLAY_AUX_A_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_A, }, }, { .name = "AUX B", .domains = CNL_DISPLAY_AUX_B_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_B, }, }, { .name = "AUX C", .domains = CNL_DISPLAY_AUX_C_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_AUX_C, }, }, { .name = "AUX D", .domains = CNL_DISPLAY_AUX_D_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = CNL_PW_CTL_IDX_AUX_D, }, }, { .name = "DC off", .domains = CNL_DISPLAY_DC_OFF_POWER_DOMAINS, .ops = &gen9_dc_off_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 2", .domains = CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_2, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_PW_2, .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C), .hsw.has_vga = true, .hsw.has_fuses = true, }, }, { .name = "DDI A IO power well", .domains = CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = GLK_PW_CTL_IDX_DDI_A, }, }, { .name = "DDI B IO power well", .domains = CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_B, }, }, { .name = "DDI C IO power well", .domains = CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_C, }, }, { .name = "DDI D IO power well", .domains = CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = SKL_PW_CTL_IDX_DDI_D, }, }, { .name = "DDI F IO power well", .domains = CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = CNL_PW_CTL_IDX_DDI_F, }, }, { .name = "AUX F", .domains = CNL_DISPLAY_AUX_F_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = CNL_PW_CTL_IDX_AUX_F, }, }, }; static const struct i915_power_well_ops icl_combo_phy_aux_power_well_ops = { .sync_hw = hsw_power_well_sync_hw, .enable = icl_combo_phy_aux_power_well_enable, .disable = icl_combo_phy_aux_power_well_disable, .is_enabled = hsw_power_well_enabled, }; static const struct i915_power_well_ops icl_tc_phy_aux_power_well_ops = { .sync_hw = hsw_power_well_sync_hw, .enable = icl_tc_phy_aux_power_well_enable, .disable = hsw_power_well_disable, .is_enabled = hsw_power_well_enabled, }; static const struct i915_power_well_regs icl_aux_power_well_regs = { .bios = ICL_PWR_WELL_CTL_AUX1, .driver = ICL_PWR_WELL_CTL_AUX2, .debug = ICL_PWR_WELL_CTL_AUX4, }; static const struct i915_power_well_regs icl_ddi_power_well_regs = { .bios = ICL_PWR_WELL_CTL_DDI1, .driver = ICL_PWR_WELL_CTL_DDI2, .debug = ICL_PWR_WELL_CTL_DDI4, }; static const struct i915_power_well_desc icl_power_wells[] = { { .name = "always-on", .always_on = true, .domains = POWER_DOMAIN_MASK, .ops = &i9xx_always_on_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 1", /* Handled by the DMC firmware */ .always_on = true, .domains = 0, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_1, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_PW_1, .hsw.has_fuses = true, }, }, { .name = "DC off", .domains = ICL_DISPLAY_DC_OFF_POWER_DOMAINS, .ops = &gen9_dc_off_power_well_ops, .id = DISP_PW_ID_NONE, }, { .name = "power well 2", .domains = ICL_PW_2_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = SKL_DISP_PW_2, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_PW_2, .hsw.has_fuses = true, }, }, { .name = "power well 3", .domains = ICL_PW_3_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_PW_3, .hsw.irq_pipe_mask = BIT(PIPE_B), .hsw.has_vga = true, .hsw.has_fuses = true, }, }, { .name = "DDI A IO", .domains = ICL_DDI_IO_A_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_A, }, }, { .name = "DDI B IO", .domains = ICL_DDI_IO_B_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_B, }, }, { .name = "DDI C IO", .domains = ICL_DDI_IO_C_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_C, }, }, { .name = "DDI D IO", .domains = ICL_DDI_IO_D_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_D, }, }, { .name = "DDI E IO", .domains = ICL_DDI_IO_E_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_E, }, }, { .name = "DDI F IO", .domains = ICL_DDI_IO_F_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_ddi_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_DDI_F, }, }, { .name = "AUX A", .domains = ICL_AUX_A_IO_POWER_DOMAINS, .ops = &icl_combo_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_A, }, }, { .name = "AUX B", .domains = ICL_AUX_B_IO_POWER_DOMAINS, .ops = &icl_combo_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_B, }, }, { .name = "AUX C", .domains = ICL_AUX_C_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_C, .hsw.is_tc_tbt = false, }, }, { .name = "AUX D", .domains = ICL_AUX_D_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_D, .hsw.is_tc_tbt = false, }, }, { .name = "AUX E", .domains = ICL_AUX_E_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_E, .hsw.is_tc_tbt = false, }, }, { .name = "AUX F", .domains = ICL_AUX_F_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_F, .hsw.is_tc_tbt = false, }, }, { .name = "AUX TBT1", .domains = ICL_AUX_TBT1_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_TBT1, .hsw.is_tc_tbt = true, }, }, { .name = "AUX TBT2", .domains = ICL_AUX_TBT2_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_TBT2, .hsw.is_tc_tbt = true, }, }, { .name = "AUX TBT3", .domains = ICL_AUX_TBT3_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_TBT3, .hsw.is_tc_tbt = true, }, }, { .name = "AUX TBT4", .domains = ICL_AUX_TBT4_IO_POWER_DOMAINS, .ops = &icl_tc_phy_aux_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &icl_aux_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_AUX_TBT4, .hsw.is_tc_tbt = true, }, }, { .name = "power well 4", .domains = ICL_PW_4_POWER_DOMAINS, .ops = &hsw_power_well_ops, .id = DISP_PW_ID_NONE, { .hsw.regs = &hsw_power_well_regs, .hsw.idx = ICL_PW_CTL_IDX_PW_4, .hsw.has_fuses = true, .hsw.irq_pipe_mask = BIT(PIPE_C), }, }, }; static int sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv, int disable_power_well) { if (disable_power_well >= 0) return !!disable_power_well; return 1; } static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv, int enable_dc) { u32 mask; int requested_dc; int max_dc; if (INTEL_GEN(dev_priv) >= 11) { max_dc = 2; /* * DC9 has a separate HW flow from the rest of the DC states, * not depending on the DMC firmware. It's needed by system * suspend/resume, so allow it unconditionally. */ mask = DC_STATE_EN_DC9; } else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) { max_dc = 2; mask = 0; } else if (IS_GEN9_LP(dev_priv)) { max_dc = 1; mask = DC_STATE_EN_DC9; } else { max_dc = 0; mask = 0; } if (!i915_modparams.disable_power_well) max_dc = 0; if (enable_dc >= 0 && enable_dc <= max_dc) { requested_dc = enable_dc; } else if (enable_dc == -1) { requested_dc = max_dc; } else if (enable_dc > max_dc && enable_dc <= 2) { DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n", enable_dc, max_dc); requested_dc = max_dc; } else { DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc); requested_dc = max_dc; } if (requested_dc > 1) mask |= DC_STATE_EN_UPTO_DC6; if (requested_dc > 0) mask |= DC_STATE_EN_UPTO_DC5; DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask); return mask; } static int __set_power_wells(struct i915_power_domains *power_domains, const struct i915_power_well_desc *power_well_descs, int power_well_count) { u64 power_well_ids = 0; int i; power_domains->power_well_count = power_well_count; power_domains->power_wells = kcalloc(power_well_count, sizeof(*power_domains->power_wells), GFP_KERNEL); if (!power_domains->power_wells) return -ENOMEM; for (i = 0; i < power_well_count; i++) { enum i915_power_well_id id = power_well_descs[i].id; power_domains->power_wells[i].desc = &power_well_descs[i]; if (id == DISP_PW_ID_NONE) continue; WARN_ON(id >= sizeof(power_well_ids) * 8); WARN_ON(power_well_ids & BIT_ULL(id)); power_well_ids |= BIT_ULL(id); } return 0; } #define set_power_wells(power_domains, __power_well_descs) \ __set_power_wells(power_domains, __power_well_descs, \ ARRAY_SIZE(__power_well_descs)) /** * intel_power_domains_init - initializes the power domain structures * @dev_priv: i915 device instance * * Initializes the power domain structures for @dev_priv depending upon the * supported platform. */ int intel_power_domains_init(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; int err; i915_modparams.disable_power_well = sanitize_disable_power_well_option(dev_priv, i915_modparams.disable_power_well); dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv, i915_modparams.enable_dc); BUILD_BUG_ON(POWER_DOMAIN_NUM > 64); mutex_init(&power_domains->lock); /* * The enabling order will be from lower to higher indexed wells, * the disabling order is reversed. */ if (IS_ICELAKE(dev_priv)) { err = set_power_wells(power_domains, icl_power_wells); } else if (IS_CANNONLAKE(dev_priv)) { err = set_power_wells(power_domains, cnl_power_wells); /* * DDI and Aux IO are getting enabled for all ports * regardless the presence or use. So, in order to avoid * timeouts, lets remove them from the list * for the SKUs without port F. */ if (!IS_CNL_WITH_PORT_F(dev_priv)) power_domains->power_well_count -= 2; } else if (IS_GEMINILAKE(dev_priv)) { err = set_power_wells(power_domains, glk_power_wells); } else if (IS_BROXTON(dev_priv)) { err = set_power_wells(power_domains, bxt_power_wells); } else if (IS_GEN9_BC(dev_priv)) { err = set_power_wells(power_domains, skl_power_wells); } else if (IS_CHERRYVIEW(dev_priv)) { err = set_power_wells(power_domains, chv_power_wells); } else if (IS_BROADWELL(dev_priv)) { err = set_power_wells(power_domains, bdw_power_wells); } else if (IS_HASWELL(dev_priv)) { err = set_power_wells(power_domains, hsw_power_wells); } else if (IS_VALLEYVIEW(dev_priv)) { err = set_power_wells(power_domains, vlv_power_wells); } else if (IS_I830(dev_priv)) { err = set_power_wells(power_domains, i830_power_wells); } else { err = set_power_wells(power_domains, i9xx_always_on_power_well); } return err; } /** * intel_power_domains_cleanup - clean up power domains resources * @dev_priv: i915 device instance * * Release any resources acquired by intel_power_domains_init() */ void intel_power_domains_cleanup(struct drm_i915_private *dev_priv) { kfree(dev_priv->power_domains.power_wells); } static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *power_well; mutex_lock(&power_domains->lock); for_each_power_well(dev_priv, power_well) { power_well->desc->ops->sync_hw(dev_priv, power_well); power_well->hw_enabled = power_well->desc->ops->is_enabled(dev_priv, power_well); } mutex_unlock(&power_domains->lock); } static inline bool intel_dbuf_slice_set(struct drm_i915_private *dev_priv, i915_reg_t reg, bool enable) { u32 val, status; val = I915_READ(reg); val = enable ? (val | DBUF_POWER_REQUEST) : (val & ~DBUF_POWER_REQUEST); I915_WRITE(reg, val); POSTING_READ(reg); udelay(10); status = I915_READ(reg) & DBUF_POWER_STATE; if ((enable && !status) || (!enable && status)) { DRM_ERROR("DBus power %s timeout!\n", enable ? "enable" : "disable"); return false; } return true; } static void gen9_dbuf_enable(struct drm_i915_private *dev_priv) { intel_dbuf_slice_set(dev_priv, DBUF_CTL, true); } static void gen9_dbuf_disable(struct drm_i915_private *dev_priv) { intel_dbuf_slice_set(dev_priv, DBUF_CTL, false); } static u8 intel_dbuf_max_slices(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 11) return 1; return 2; } void icl_dbuf_slices_update(struct drm_i915_private *dev_priv, u8 req_slices) { const u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices; bool ret; if (req_slices > intel_dbuf_max_slices(dev_priv)) { DRM_ERROR("Invalid number of dbuf slices requested\n"); return; } if (req_slices == hw_enabled_slices || req_slices == 0) return; if (req_slices > hw_enabled_slices) ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, true); else ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, false); if (ret) dev_priv->wm.skl_hw.ddb.enabled_slices = req_slices; } static void icl_dbuf_enable(struct drm_i915_private *dev_priv) { I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) | DBUF_POWER_REQUEST); I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) | DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL_S2); udelay(10); if (!(I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) || !(I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)) DRM_ERROR("DBuf power enable timeout\n"); else /* * FIXME: for now pretend that we only have 1 slice, see * intel_enabled_dbuf_slices_num(). */ dev_priv->wm.skl_hw.ddb.enabled_slices = 1; } static void icl_dbuf_disable(struct drm_i915_private *dev_priv) { I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) & ~DBUF_POWER_REQUEST); I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) & ~DBUF_POWER_REQUEST); POSTING_READ(DBUF_CTL_S2); udelay(10); if ((I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) || (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)) DRM_ERROR("DBuf power disable timeout!\n"); else /* * FIXME: for now pretend that the first slice is always * enabled, see intel_enabled_dbuf_slices_num(). */ dev_priv->wm.skl_hw.ddb.enabled_slices = 1; } static void icl_mbus_init(struct drm_i915_private *dev_priv) { u32 val; val = MBUS_ABOX_BT_CREDIT_POOL1(16) | MBUS_ABOX_BT_CREDIT_POOL2(16) | MBUS_ABOX_B_CREDIT(1) | MBUS_ABOX_BW_CREDIT(1); I915_WRITE(MBUS_ABOX_CTL, val); } static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv, bool enable) { i915_reg_t reg; u32 reset_bits, val; if (IS_IVYBRIDGE(dev_priv)) { reg = GEN7_MSG_CTL; reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK; } else { reg = HSW_NDE_RSTWRN_OPT; reset_bits = RESET_PCH_HANDSHAKE_ENABLE; } val = I915_READ(reg); if (enable) val |= reset_bits; else val &= ~reset_bits; I915_WRITE(reg, val); } static void skl_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* enable PCH reset handshake */ intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); /* enable PG1 and Misc I/O */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); skl_init_cdclk(dev_priv); gen9_dbuf_enable(dev_priv); if (resume && dev_priv->csr.dmc_payload) intel_csr_load_program(dev_priv); } static void skl_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); gen9_dbuf_disable(dev_priv); skl_uninit_cdclk(dev_priv); /* The spec doesn't call for removing the reset handshake flag */ /* disable PG1 and Misc I/O */ mutex_lock(&power_domains->lock); /* * BSpec says to keep the MISC IO power well enabled here, only * remove our request for power well 1. * Note that even though the driver's request is removed power well 1 * may stay enabled after this due to DMC's own request on it. */ well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); usleep_range(10, 30); /* 10 us delay per Bspec */ } void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT * or else the reset will hang because there is no PCH to respond. * Move the handshake programming to initialization sequence. * Previously was left up to BIOS. */ intel_pch_reset_handshake(dev_priv, false); /* Enable PG1 */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); bxt_init_cdclk(dev_priv); gen9_dbuf_enable(dev_priv); if (resume && dev_priv->csr.dmc_payload) intel_csr_load_program(dev_priv); } void bxt_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); gen9_dbuf_disable(dev_priv); bxt_uninit_cdclk(dev_priv); /* The spec doesn't call for removing the reset handshake flag */ /* * Disable PW1 (PG1). * Note that even though the driver's request is removed power well 1 * may stay enabled after this due to DMC's own request on it. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); usleep_range(10, 30); /* 10 us delay per Bspec */ } static void cnl_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* 1. Enable PCH Reset Handshake */ intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); /* 2-3. */ cnl_combo_phys_init(dev_priv); /* * 4. Enable Power Well 1 (PG1). * The AUX IO power wells will be enabled on demand. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); /* 5. Enable CD clock */ cnl_init_cdclk(dev_priv); /* 6. Enable DBUF */ gen9_dbuf_enable(dev_priv); if (resume && dev_priv->csr.dmc_payload) intel_csr_load_program(dev_priv); } static void cnl_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* 1. Disable all display engine functions -> aready done */ /* 2. Disable DBUF */ gen9_dbuf_disable(dev_priv); /* 3. Disable CD clock */ cnl_uninit_cdclk(dev_priv); /* * 4. Disable Power Well 1 (PG1). * The AUX IO power wells are toggled on demand, so they are already * disabled at this point. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); usleep_range(10, 30); /* 10 us delay per Bspec */ /* 5. */ cnl_combo_phys_uninit(dev_priv); } void icl_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* 1. Enable PCH reset handshake. */ intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); /* 2-3. */ icl_combo_phys_init(dev_priv); /* * 4. Enable Power Well 1 (PG1). * The AUX IO power wells will be enabled on demand. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); /* 5. Enable CDCLK. */ icl_init_cdclk(dev_priv); /* 6. Enable DBUF. */ icl_dbuf_enable(dev_priv); /* 7. Setup MBUS. */ icl_mbus_init(dev_priv); if (resume && dev_priv->csr.dmc_payload) intel_csr_load_program(dev_priv); } void icl_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* 1. Disable all display engine functions -> aready done */ /* 2. Disable DBUF */ icl_dbuf_disable(dev_priv); /* 3. Disable CD clock */ icl_uninit_cdclk(dev_priv); /* * 4. Disable Power Well 1 (PG1). * The AUX IO power wells are toggled on demand, so they are already * disabled at this point. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); /* 5. */ icl_combo_phys_uninit(dev_priv); } static void chv_phy_control_init(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn_bc = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *cmn_d = lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D); /* * DISPLAY_PHY_CONTROL can get corrupted if read. As a * workaround never ever read DISPLAY_PHY_CONTROL, and * instead maintain a shadow copy ourselves. Use the actual * power well state and lane status to reconstruct the * expected initial value. */ dev_priv->chv_phy_control = PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0); /* * If all lanes are disabled we leave the override disabled * with all power down bits cleared to match the state we * would use after disabling the port. Otherwise enable the * override and set the lane powerdown bits accding to the * current lane status. */ if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) { u32 status = I915_READ(DPLL(PIPE_A)); unsigned int mask; mask = status & DPLL_PORTB_READY_MASK; if (mask == 0xf) mask = 0x0; else dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0); dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0); mask = (status & DPLL_PORTC_READY_MASK) >> 4; if (mask == 0xf) mask = 0x0; else dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1); dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1); dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); dev_priv->chv_phy_assert[DPIO_PHY0] = false; } else { dev_priv->chv_phy_assert[DPIO_PHY0] = true; } if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) { u32 status = I915_READ(DPIO_PHY_STATUS); unsigned int mask; mask = status & DPLL_PORTD_READY_MASK; if (mask == 0xf) mask = 0x0; else dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0); dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0); dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); dev_priv->chv_phy_assert[DPIO_PHY1] = false; } else { dev_priv->chv_phy_assert[DPIO_PHY1] = true; } I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n", dev_priv->chv_phy_control); } static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *disp2d = lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D); /* If the display might be already active skip this */ if (cmn->desc->ops->is_enabled(dev_priv, cmn) && disp2d->desc->ops->is_enabled(dev_priv, disp2d) && I915_READ(DPIO_CTL) & DPIO_CMNRST) return; DRM_DEBUG_KMS("toggling display PHY side reset\n"); /* cmnlane needs DPLL registers */ disp2d->desc->ops->enable(dev_priv, disp2d); /* * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: * Need to assert and de-assert PHY SB reset by gating the * common lane power, then un-gating it. * Simply ungating isn't enough to reset the PHY enough to get * ports and lanes running. */ cmn->desc->ops->disable(dev_priv, cmn); } static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0) { bool ret; mutex_lock(&dev_priv->pcu_lock); ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE; mutex_unlock(&dev_priv->pcu_lock); return ret; } static void assert_ved_power_gated(struct drm_i915_private *dev_priv) { WARN(!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0), "VED not power gated\n"); } static void assert_isp_power_gated(struct drm_i915_private *dev_priv) { static const struct pci_device_id isp_ids[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)}, {} }; WARN(!pci_dev_present(isp_ids) && !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0), "ISP not power gated\n"); } static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv); /** * intel_power_domains_init_hw - initialize hardware power domain state * @i915: i915 device instance * @resume: Called from resume code paths or not * * This function initializes the hardware power domain state and enables all * power wells belonging to the INIT power domain. Power wells in other * domains (and not in the INIT domain) are referenced or disabled by * intel_modeset_readout_hw_state(). After that the reference count of each * power well must match its HW enabled state, see * intel_power_domains_verify_state(). * * It will return with power domains disabled (to be enabled later by * intel_power_domains_enable()) and must be paired with * intel_power_domains_fini_hw(). */ void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume) { struct i915_power_domains *power_domains = &i915->power_domains; power_domains->initializing = true; if (IS_ICELAKE(i915)) { icl_display_core_init(i915, resume); } else if (IS_CANNONLAKE(i915)) { cnl_display_core_init(i915, resume); } else if (IS_GEN9_BC(i915)) { skl_display_core_init(i915, resume); } else if (IS_GEN9_LP(i915)) { bxt_display_core_init(i915, resume); } else if (IS_CHERRYVIEW(i915)) { mutex_lock(&power_domains->lock); chv_phy_control_init(i915); mutex_unlock(&power_domains->lock); assert_isp_power_gated(i915); } else if (IS_VALLEYVIEW(i915)) { mutex_lock(&power_domains->lock); vlv_cmnlane_wa(i915); mutex_unlock(&power_domains->lock); assert_ved_power_gated(i915); assert_isp_power_gated(i915); } else if (IS_IVYBRIDGE(i915) || INTEL_GEN(i915) >= 7) { intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915)); } /* * Keep all power wells enabled for any dependent HW access during * initialization and to make sure we keep BIOS enabled display HW * resources powered until display HW readout is complete. We drop * this reference in intel_power_domains_enable(). */ power_domains->wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); /* Disable power support if the user asked so. */ if (!i915_modparams.disable_power_well) intel_display_power_get(i915, POWER_DOMAIN_INIT); intel_power_domains_sync_hw(i915); power_domains->initializing = false; } /** * intel_power_domains_fini_hw - deinitialize hw power domain state * @i915: i915 device instance * * De-initializes the display power domain HW state. It also ensures that the * device stays powered up so that the driver can be reloaded. * * It must be called with power domains already disabled (after a call to * intel_power_domains_disable()) and must be paired with * intel_power_domains_init_hw(). */ void intel_power_domains_fini_hw(struct drm_i915_private *i915) { intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&i915->power_domains.wakeref); /* Remove the refcount we took to keep power well support disabled. */ if (!i915_modparams.disable_power_well) intel_display_power_put_unchecked(i915, POWER_DOMAIN_INIT); intel_power_domains_verify_state(i915); /* Keep the power well enabled, but cancel its rpm wakeref. */ intel_runtime_pm_put(i915, wakeref); } /** * intel_power_domains_enable - enable toggling of display power wells * @i915: i915 device instance * * Enable the ondemand enabling/disabling of the display power wells. Note that * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled * only at specific points of the display modeset sequence, thus they are not * affected by the intel_power_domains_enable()/disable() calls. The purpose * of these function is to keep the rest of power wells enabled until the end * of display HW readout (which will acquire the power references reflecting * the current HW state). */ void intel_power_domains_enable(struct drm_i915_private *i915) { intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&i915->power_domains.wakeref); intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); intel_power_domains_verify_state(i915); } /** * intel_power_domains_disable - disable toggling of display power wells * @i915: i915 device instance * * Disable the ondemand enabling/disabling of the display power wells. See * intel_power_domains_enable() for which power wells this call controls. */ void intel_power_domains_disable(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->power_domains; WARN_ON(power_domains->wakeref); power_domains->wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); intel_power_domains_verify_state(i915); } /** * intel_power_domains_suspend - suspend power domain state * @i915: i915 device instance * @suspend_mode: specifies the target suspend state (idle, mem, hibernation) * * This function prepares the hardware power domain state before entering * system suspend. * * It must be called with power domains already disabled (after a call to * intel_power_domains_disable()) and paired with intel_power_domains_resume(). */ void intel_power_domains_suspend(struct drm_i915_private *i915, enum i915_drm_suspend_mode suspend_mode) { struct i915_power_domains *power_domains = &i915->power_domains; intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&power_domains->wakeref); intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); /* * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9 * support don't manually deinit the power domains. This also means the * CSR/DMC firmware will stay active, it will power down any HW * resources as required and also enable deeper system power states * that would be blocked if the firmware was inactive. */ if (!(i915->csr.allowed_dc_mask & DC_STATE_EN_DC9) && suspend_mode == I915_DRM_SUSPEND_IDLE && i915->csr.dmc_payload) { intel_power_domains_verify_state(i915); return; } /* * Even if power well support was disabled we still want to disable * power wells if power domains must be deinitialized for suspend. */ if (!i915_modparams.disable_power_well) { intel_display_power_put_unchecked(i915, POWER_DOMAIN_INIT); intel_power_domains_verify_state(i915); } if (IS_ICELAKE(i915)) icl_display_core_uninit(i915); else if (IS_CANNONLAKE(i915)) cnl_display_core_uninit(i915); else if (IS_GEN9_BC(i915)) skl_display_core_uninit(i915); else if (IS_GEN9_LP(i915)) bxt_display_core_uninit(i915); power_domains->display_core_suspended = true; } /** * intel_power_domains_resume - resume power domain state * @i915: i915 device instance * * This function resume the hardware power domain state during system resume. * * It will return with power domain support disabled (to be enabled later by * intel_power_domains_enable()) and must be paired with * intel_power_domains_suspend(). */ void intel_power_domains_resume(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->power_domains; if (power_domains->display_core_suspended) { intel_power_domains_init_hw(i915, true); power_domains->display_core_suspended = false; } else { WARN_ON(power_domains->wakeref); power_domains->wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); } intel_power_domains_verify_state(i915); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) static void intel_power_domains_dump_info(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->power_domains; struct i915_power_well *power_well; for_each_power_well(i915, power_well) { enum intel_display_power_domain domain; DRM_DEBUG_DRIVER("%-25s %d\n", power_well->desc->name, power_well->count); for_each_power_domain(domain, power_well->desc->domains) DRM_DEBUG_DRIVER(" %-23s %d\n", intel_display_power_domain_str(domain), power_domains->domain_use_count[domain]); } } /** * intel_power_domains_verify_state - verify the HW/SW state for all power wells * @i915: i915 device instance * * Verify if the reference count of each power well matches its HW enabled * state and the total refcount of the domains it belongs to. This must be * called after modeset HW state sanitization, which is responsible for * acquiring reference counts for any power wells in use and disabling the * ones left on by BIOS but not required by any active output. */ static void intel_power_domains_verify_state(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->power_domains; struct i915_power_well *power_well; bool dump_domain_info; mutex_lock(&power_domains->lock); dump_domain_info = false; for_each_power_well(i915, power_well) { enum intel_display_power_domain domain; int domains_count; bool enabled; enabled = power_well->desc->ops->is_enabled(i915, power_well); if ((power_well->count || power_well->desc->always_on) != enabled) DRM_ERROR("power well %s state mismatch (refcount %d/enabled %d)", power_well->desc->name, power_well->count, enabled); domains_count = 0; for_each_power_domain(domain, power_well->desc->domains) domains_count += power_domains->domain_use_count[domain]; if (power_well->count != domains_count) { DRM_ERROR("power well %s refcount/domain refcount mismatch " "(refcount %d/domains refcount %d)\n", power_well->desc->name, power_well->count, domains_count); dump_domain_info = true; } } if (dump_domain_info) { static bool dumped; if (!dumped) { intel_power_domains_dump_info(i915); dumped = true; } } mutex_unlock(&power_domains->lock); } #else static void intel_power_domains_verify_state(struct drm_i915_private *i915) { } #endif /** * intel_runtime_pm_get - grab a runtime pm reference * @i915: i915 device instance * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on) and ensures that it is powered up. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; int ret; ret = pm_runtime_get_sync(kdev); WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); return track_intel_runtime_pm_wakeref(i915); } /** * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use * @i915: i915 device instance * * This function grabs a device-level runtime pm reference if the device is * already in use and ensures that it is powered up. It is illegal to try * and access the HW should intel_runtime_pm_get_if_in_use() report failure. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates * as True if the wakeref was acquired, or False otherwise. */ intel_wakeref_t intel_runtime_pm_get_if_in_use(struct drm_i915_private *i915) { if (IS_ENABLED(CONFIG_PM)) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; /* * In cases runtime PM is disabled by the RPM core and we get * an -EINVAL return value we are not supposed to call this * function, since the power state is undefined. This applies * atm to the late/early system suspend/resume handlers. */ if (pm_runtime_get_if_in_use(kdev) <= 0) return 0; } return track_intel_runtime_pm_wakeref(i915); } /** * intel_runtime_pm_get_noresume - grab a runtime pm reference * @i915: i915 device instance * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on). * * It will _not_ power up the device but instead only check that it's powered * on. Therefore it is only valid to call this functions from contexts where * the device is known to be powered up and where trying to power it up would * result in hilarity and deadlocks. That pretty much means only the system * suspend/resume code where this is used to grab runtime pm references for * delayed setup down in work items. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get_noresume(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; assert_rpm_wakelock_held(i915); pm_runtime_get_noresume(kdev); return track_intel_runtime_pm_wakeref(i915); } /** * intel_runtime_pm_put - release a runtime pm reference * @i915: i915 device instance * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put_unchecked(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; untrack_intel_runtime_pm_wakeref(i915); pm_runtime_mark_last_busy(kdev); pm_runtime_put_autosuspend(kdev); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) void intel_runtime_pm_put(struct drm_i915_private *i915, intel_wakeref_t wref) { cancel_intel_runtime_pm_wakeref(i915, wref); intel_runtime_pm_put_unchecked(i915); } #endif /** * intel_runtime_pm_enable - enable runtime pm * @i915: i915 device instance * * This function enables runtime pm at the end of the driver load sequence. * * Note that this function does currently not enable runtime pm for the * subordinate display power domains. That is done by * intel_power_domains_enable(). */ void intel_runtime_pm_enable(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; /* * Disable the system suspend direct complete optimization, which can * leave the device suspended skipping the driver's suspend handlers * if the device was already runtime suspended. This is needed due to * the difference in our runtime and system suspend sequence and * becaue the HDA driver may require us to enable the audio power * domain during system suspend. */ dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP); pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */ pm_runtime_mark_last_busy(kdev); /* * Take a permanent reference to disable the RPM functionality and drop * it only when unloading the driver. Use the low level get/put helpers, * so the driver's own RPM reference tracking asserts also work on * platforms without RPM support. */ if (!HAS_RUNTIME_PM(i915)) { int ret; pm_runtime_dont_use_autosuspend(kdev); ret = pm_runtime_get_sync(kdev); WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); } else { pm_runtime_use_autosuspend(kdev); } /* * The core calls the driver load handler with an RPM reference held. * We drop that here and will reacquire it during unloading in * intel_power_domains_fini(). */ pm_runtime_put_autosuspend(kdev); } void intel_runtime_pm_disable(struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; /* Transfer rpm ownership back to core */ WARN(pm_runtime_get_sync(kdev) < 0, "Failed to pass rpm ownership back to core\n"); pm_runtime_dont_use_autosuspend(kdev); if (!HAS_RUNTIME_PM(i915)) pm_runtime_put(kdev); } void intel_runtime_pm_cleanup(struct drm_i915_private *i915) { struct i915_runtime_pm *rpm = &i915->runtime_pm; int count; count = atomic_fetch_inc(&rpm->wakeref_count); /* balance untrack */ WARN(count, "i915->runtime_pm.wakeref_count=%d on cleanup\n", count); untrack_intel_runtime_pm_wakeref(i915); } void intel_runtime_pm_init_early(struct drm_i915_private *i915) { init_intel_runtime_pm_wakeref(i915); }