/* * vrf.c: device driver to encapsulate a VRF space * * Copyright (c) 2015 Cumulus Networks. All rights reserved. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> * * Based on dummy, team and ipvlan drivers * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ip.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/netfilter.h> #include <linux/rtnetlink.h> #include <net/rtnetlink.h> #include <linux/u64_stats_sync.h> #include <linux/hashtable.h> #include <linux/inetdevice.h> #include <net/arp.h> #include <net/ip.h> #include <net/ip_fib.h> #include <net/ip6_route.h> #include <net/rtnetlink.h> #include <net/route.h> #include <net/addrconf.h> #include <net/vrf.h> #define DRV_NAME "vrf" #define DRV_VERSION "1.0" #define vrf_is_slave(dev) ((dev)->flags & IFF_SLAVE) #define vrf_master_get_rcu(dev) \ ((struct net_device *)rcu_dereference(dev->rx_handler_data)) struct pcpu_dstats { u64 tx_pkts; u64 tx_bytes; u64 tx_drps; u64 rx_pkts; u64 rx_bytes; struct u64_stats_sync syncp; }; static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie) { return dst; } static int vrf_ip_local_out(struct sk_buff *skb) { return ip_local_out(skb); } static unsigned int vrf_v4_mtu(const struct dst_entry *dst) { /* TO-DO: return max ethernet size? */ return dst->dev->mtu; } static void vrf_dst_destroy(struct dst_entry *dst) { /* our dst lives forever - or until the device is closed */ } static unsigned int vrf_default_advmss(const struct dst_entry *dst) { return 65535 - 40; } static struct dst_ops vrf_dst_ops = { .family = AF_INET, .local_out = vrf_ip_local_out, .check = vrf_ip_check, .mtu = vrf_v4_mtu, .destroy = vrf_dst_destroy, .default_advmss = vrf_default_advmss, }; static bool is_ip_rx_frame(struct sk_buff *skb) { switch (skb->protocol) { case htons(ETH_P_IP): case htons(ETH_P_IPV6): return true; } return false; } static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) { vrf_dev->stats.tx_errors++; kfree_skb(skb); } /* note: already called with rcu_read_lock */ static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; if (is_ip_rx_frame(skb)) { struct net_device *dev = vrf_master_get_rcu(skb->dev); struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); u64_stats_update_begin(&dstats->syncp); dstats->rx_pkts++; dstats->rx_bytes += skb->len; u64_stats_update_end(&dstats->syncp); skb->dev = dev; return RX_HANDLER_ANOTHER; } return RX_HANDLER_PASS; } static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { int i; for_each_possible_cpu(i) { const struct pcpu_dstats *dstats; u64 tbytes, tpkts, tdrops, rbytes, rpkts; unsigned int start; dstats = per_cpu_ptr(dev->dstats, i); do { start = u64_stats_fetch_begin_irq(&dstats->syncp); tbytes = dstats->tx_bytes; tpkts = dstats->tx_pkts; tdrops = dstats->tx_drps; rbytes = dstats->rx_bytes; rpkts = dstats->rx_pkts; } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); stats->tx_bytes += tbytes; stats->tx_packets += tpkts; stats->tx_dropped += tdrops; stats->rx_bytes += rbytes; stats->rx_packets += rpkts; } return stats; } static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, struct net_device *dev) { vrf_tx_error(dev, skb); return NET_XMIT_DROP; } static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4, struct net_device *vrf_dev) { struct rtable *rt; int err = 1; rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL); if (IS_ERR(rt)) goto out; /* TO-DO: what about broadcast ? */ if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { ip_rt_put(rt); goto out; } skb_dst_drop(skb); skb_dst_set(skb, &rt->dst); err = 0; out: return err; } static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, struct net_device *vrf_dev) { struct iphdr *ip4h = ip_hdr(skb); int ret = NET_XMIT_DROP; struct flowi4 fl4 = { /* needed to match OIF rule */ .flowi4_oif = vrf_dev->ifindex, .flowi4_iif = LOOPBACK_IFINDEX, .flowi4_tos = RT_TOS(ip4h->tos), .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_VRFSRC, .daddr = ip4h->daddr, }; if (vrf_send_v4_prep(skb, &fl4, vrf_dev)) goto err; if (!ip4h->saddr) { ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, RT_SCOPE_LINK); } ret = ip_local_out(skb); if (unlikely(net_xmit_eval(ret))) vrf_dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; out: return ret; err: vrf_tx_error(vrf_dev, skb); goto out; } static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) { /* strip the ethernet header added for pass through VRF device */ __skb_pull(skb, skb_network_offset(skb)); switch (skb->protocol) { case htons(ETH_P_IP): return vrf_process_v4_outbound(skb, dev); case htons(ETH_P_IPV6): return vrf_process_v6_outbound(skb, dev); default: vrf_tx_error(dev, skb); return NET_XMIT_DROP; } } static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) { netdev_tx_t ret = is_ip_tx_frame(skb, dev); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); u64_stats_update_begin(&dstats->syncp); dstats->tx_pkts++; dstats->tx_bytes += skb->len; u64_stats_update_end(&dstats->syncp); } else { this_cpu_inc(dev->dstats->tx_drps); } return ret; } /* modelled after ip_finish_output2 */ static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = (struct rtable *)dst; struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; u32 nexthop; int ret = -EINVAL; /* Be paranoid, rather than too clever. */ if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { struct sk_buff *skb2; skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); if (!skb2) { ret = -ENOMEM; goto err; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } rcu_read_lock_bh(); nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); if (!IS_ERR(neigh)) ret = dst_neigh_output(dst, neigh, skb); rcu_read_unlock_bh(); err: if (unlikely(ret < 0)) vrf_tx_error(skb->dev, skb); return ret; } static int vrf_output(struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; struct net *net = dev_net(dev); IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, vrf_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } static void vrf_rtable_destroy(struct net_vrf *vrf) { struct dst_entry *dst = (struct dst_entry *)vrf->rth; dst_destroy(dst); vrf->rth = NULL; } static struct rtable *vrf_rtable_create(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); struct rtable *rth; rth = dst_alloc(&vrf_dst_ops, dev, 2, DST_OBSOLETE_NONE, (DST_HOST | DST_NOPOLICY | DST_NOXFRM)); if (rth) { rth->dst.output = vrf_output; rth->rt_genid = rt_genid_ipv4(dev_net(dev)); rth->rt_flags = 0; rth->rt_type = RTN_UNICAST; rth->rt_is_input = 0; rth->rt_iif = 0; rth->rt_pmtu = 0; rth->rt_gateway = 0; rth->rt_uses_gateway = 0; rth->rt_table_id = vrf->tb_id; INIT_LIST_HEAD(&rth->rt_uncached); rth->rt_uncached_list = NULL; } return rth; } /**************************** device handling ********************/ /* cycle interface to flush neighbor cache and move routes across tables */ static void cycle_netdev(struct net_device *dev) { unsigned int flags = dev->flags; int ret; if (!netif_running(dev)) return; ret = dev_change_flags(dev, flags & ~IFF_UP); if (ret >= 0) ret = dev_change_flags(dev, flags); if (ret < 0) { netdev_err(dev, "Failed to cycle device %s; route tables might be wrong!\n", dev->name); } } static struct slave *__vrf_find_slave_dev(struct slave_queue *queue, struct net_device *dev) { struct list_head *head = &queue->all_slaves; struct slave *slave; list_for_each_entry(slave, head, list) { if (slave->dev == dev) return slave; } return NULL; } /* inverse of __vrf_insert_slave */ static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave) { list_del(&slave->list); } static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave) { list_add(&slave->list, &queue->all_slaves); } static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) { struct net_vrf_dev *vrf_ptr = kmalloc(sizeof(*vrf_ptr), GFP_KERNEL); struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL); struct net_vrf *vrf = netdev_priv(dev); struct slave_queue *queue = &vrf->queue; int ret = -ENOMEM; if (!slave || !vrf_ptr) goto out_fail; slave->dev = port_dev; vrf_ptr->ifindex = dev->ifindex; vrf_ptr->tb_id = vrf->tb_id; /* register the packet handler for slave ports */ ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev); if (ret) { netdev_err(port_dev, "Device %s failed to register rx_handler\n", port_dev->name); goto out_fail; } ret = netdev_master_upper_dev_link(port_dev, dev); if (ret < 0) goto out_unregister; port_dev->flags |= IFF_SLAVE; __vrf_insert_slave(queue, slave); rcu_assign_pointer(port_dev->vrf_ptr, vrf_ptr); cycle_netdev(port_dev); return 0; out_unregister: netdev_rx_handler_unregister(port_dev); out_fail: kfree(vrf_ptr); kfree(slave); return ret; } static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) { if (netif_is_vrf(port_dev) || vrf_is_slave(port_dev)) return -EINVAL; return do_vrf_add_slave(dev, port_dev); } /* inverse of do_vrf_add_slave */ static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { struct net_vrf_dev *vrf_ptr = rtnl_dereference(port_dev->vrf_ptr); struct net_vrf *vrf = netdev_priv(dev); struct slave_queue *queue = &vrf->queue; struct slave *slave; RCU_INIT_POINTER(port_dev->vrf_ptr, NULL); netdev_upper_dev_unlink(port_dev, dev); port_dev->flags &= ~IFF_SLAVE; netdev_rx_handler_unregister(port_dev); /* after netdev_rx_handler_unregister for synchronize_rcu */ kfree(vrf_ptr); cycle_netdev(port_dev); slave = __vrf_find_slave_dev(queue, port_dev); if (slave) __vrf_remove_slave(queue, slave); kfree(slave); return 0; } static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { return do_vrf_del_slave(dev, port_dev); } static void vrf_dev_uninit(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); struct slave_queue *queue = &vrf->queue; struct list_head *head = &queue->all_slaves; struct slave *slave, *next; vrf_rtable_destroy(vrf); list_for_each_entry_safe(slave, next, head, list) vrf_del_slave(dev, slave->dev); free_percpu(dev->dstats); dev->dstats = NULL; } static int vrf_dev_init(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); INIT_LIST_HEAD(&vrf->queue.all_slaves); dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); if (!dev->dstats) goto out_nomem; /* create the default dst which points back to us */ vrf->rth = vrf_rtable_create(dev); if (!vrf->rth) goto out_stats; dev->flags = IFF_MASTER | IFF_NOARP; return 0; out_stats: free_percpu(dev->dstats); dev->dstats = NULL; out_nomem: return -ENOMEM; } static const struct net_device_ops vrf_netdev_ops = { .ndo_init = vrf_dev_init, .ndo_uninit = vrf_dev_uninit, .ndo_start_xmit = vrf_xmit, .ndo_get_stats64 = vrf_get_stats64, .ndo_add_slave = vrf_add_slave, .ndo_del_slave = vrf_del_slave, }; static void vrf_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); } static const struct ethtool_ops vrf_ethtool_ops = { .get_drvinfo = vrf_get_drvinfo, }; static void vrf_setup(struct net_device *dev) { ether_setup(dev); /* Initialize the device structure. */ dev->netdev_ops = &vrf_netdev_ops; dev->ethtool_ops = &vrf_ethtool_ops; dev->destructor = free_netdev; /* Fill in device structure with ethernet-generic values. */ eth_hw_addr_random(dev); /* don't acquire vrf device's netif_tx_lock when transmitting */ dev->features |= NETIF_F_LLTX; /* don't allow vrf devices to change network namespaces. */ dev->features |= NETIF_F_NETNS_LOCAL; } static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } return 0; } static void vrf_dellink(struct net_device *dev, struct list_head *head) { struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); RCU_INIT_POINTER(dev->vrf_ptr, NULL); kfree_rcu(vrf_ptr, rcu); unregister_netdevice_queue(dev, head); } static int vrf_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct net_vrf *vrf = netdev_priv(dev); struct net_vrf_dev *vrf_ptr; int err; if (!data || !data[IFLA_VRF_TABLE]) return -EINVAL; vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); dev->priv_flags |= IFF_VRF_MASTER; err = -ENOMEM; vrf_ptr = kmalloc(sizeof(*dev->vrf_ptr), GFP_KERNEL); if (!vrf_ptr) goto out_fail; vrf_ptr->ifindex = dev->ifindex; vrf_ptr->tb_id = vrf->tb_id; err = register_netdevice(dev); if (err < 0) goto out_fail; rcu_assign_pointer(dev->vrf_ptr, vrf_ptr); return 0; out_fail: kfree(vrf_ptr); free_netdev(dev); return err; } static size_t vrf_nl_getsize(const struct net_device *dev) { return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ } static int vrf_fillinfo(struct sk_buff *skb, const struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); } static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { [IFLA_VRF_TABLE] = { .type = NLA_U32 }, }; static struct rtnl_link_ops vrf_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct net_vrf), .get_size = vrf_nl_getsize, .policy = vrf_nl_policy, .validate = vrf_validate, .fill_info = vrf_fillinfo, .newlink = vrf_newlink, .dellink = vrf_dellink, .setup = vrf_setup, .maxtype = IFLA_VRF_MAX, }; static int vrf_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); /* only care about unregister events to drop slave references */ if (event == NETDEV_UNREGISTER) { struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); struct net_device *vrf_dev; if (!vrf_ptr || netif_is_vrf(dev)) goto out; vrf_dev = netdev_master_upper_dev_get(dev); vrf_del_slave(vrf_dev, dev); } out: return NOTIFY_DONE; } static struct notifier_block vrf_notifier_block __read_mostly = { .notifier_call = vrf_device_event, }; static int __init vrf_init_module(void) { int rc; vrf_dst_ops.kmem_cachep = kmem_cache_create("vrf_ip_dst_cache", sizeof(struct rtable), 0, SLAB_HWCACHE_ALIGN, NULL); if (!vrf_dst_ops.kmem_cachep) return -ENOMEM; register_netdevice_notifier(&vrf_notifier_block); rc = rtnl_link_register(&vrf_link_ops); if (rc < 0) goto error; return 0; error: unregister_netdevice_notifier(&vrf_notifier_block); kmem_cache_destroy(vrf_dst_ops.kmem_cachep); return rc; } static void __exit vrf_cleanup_module(void) { rtnl_link_unregister(&vrf_link_ops); unregister_netdevice_notifier(&vrf_notifier_block); kmem_cache_destroy(vrf_dst_ops.kmem_cachep); } module_init(vrf_init_module); module_exit(vrf_cleanup_module); MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK(DRV_NAME); MODULE_VERSION(DRV_VERSION);