#ifndef __BTRFS__ #define __BTRFS__ #include #include #include "bit-radix.h" struct btrfs_trans_handle; struct btrfs_transaction; extern struct kmem_cache *btrfs_path_cachep; #define BTRFS_MAGIC "_BtRfS_M" #define BTRFS_ROOT_TREE_OBJECTID 1ULL #define BTRFS_EXTENT_TREE_OBJECTID 2ULL #define BTRFS_INODE_MAP_OBJECTID 3ULL #define BTRFS_FS_TREE_OBJECTID 4ULL #define BTRFS_FIRST_FREE_OBJECTID 5ULL /* * we can actually store much bigger names, but lets not confuse the rest * of linux */ #define BTRFS_NAME_LEN 255 /* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32 /* * the key defines the order in the tree, and so it also defines (optimal) * block layout. objectid corresonds to the inode number. The flags * tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with flags of 1 might refer to the inode * data, flags of 2 may point to file data in the btree and flags == 3 * may point to extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; __le64 offset; __le32 flags; } __attribute__ ((__packed__)); struct btrfs_key { u64 objectid; u64 offset; u32 flags; } __attribute__ ((__packed__)); /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { u8 csum[BTRFS_CSUM_SIZE]; u8 fsid[16]; /* FS specific uuid */ __le64 blocknr; /* which block this node is supposed to live in */ __le64 generation; __le64 parentid; /* objectid of the tree root */ __le32 ham; __le16 nritems; __le16 flags; u8 level; } __attribute__ ((__packed__)); #define BTRFS_MAX_LEVEL 8 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \ sizeof(struct btrfs_header)) / \ (sizeof(struct btrfs_disk_key) + sizeof(u64))) #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize)) struct buffer_head; /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct btrfs_super_block { u8 csum[BTRFS_CSUM_SIZE]; /* the first 3 fields must match struct btrfs_header */ u8 fsid[16]; /* FS specific uuid */ __le64 blocknr; /* this block number */ __le64 magic; __le32 blocksize; __le64 generation; __le64 root; __le64 total_blocks; __le64 blocks_used; __le64 root_dir_objectid; } __attribute__ ((__packed__)); /* * A leaf is full of items. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le32 offset; __le16 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct btrfs_key_ptr { struct btrfs_disk_key key; __le64 blockptr; } __attribute__ ((__packed__)); struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; } __attribute__ ((__packed__)); /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct buffer_head *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; }; /* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */ struct btrfs_extent_item { __le32 refs; __le64 owner; } __attribute__ ((__packed__)); struct btrfs_inode_timespec { __le64 sec; __le32 nsec; } __attribute__ ((__packed__)); /* * there is no padding here on purpose. If you want to extent the inode, * make a new item type */ struct btrfs_inode_item { __le64 generation; __le64 size; __le64 nblocks; __le32 nlink; __le32 uid; __le32 gid; __le32 mode; __le32 rdev; __le16 flags; __le16 compat_flags; struct btrfs_inode_timespec atime; struct btrfs_inode_timespec ctime; struct btrfs_inode_timespec mtime; struct btrfs_inode_timespec otime; } __attribute__ ((__packed__)); /* inline data is just a blob of bytes */ struct btrfs_inline_data_item { u8 data; } __attribute__ ((__packed__)); struct btrfs_dir_item { __le64 objectid; __le16 flags; __le16 name_len; u8 type; } __attribute__ ((__packed__)); struct btrfs_root_item { __le64 blocknr; __le32 flags; __le64 block_limit; __le64 blocks_used; __le32 refs; } __attribute__ ((__packed__)); struct btrfs_file_extent_item { __le64 generation; /* * disk space consumed by the extent, checksum blocks are included * in these numbers */ __le64 disk_blocknr; __le64 disk_num_blocks; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ __le64 offset; /* * the logical number of file blocks (no csums included) */ __le64 num_blocks; } __attribute__ ((__packed__)); struct btrfs_csum_item { u8 csum[BTRFS_CSUM_SIZE]; } __attribute__ ((__packed__)); struct btrfs_inode_map_item { struct btrfs_disk_key key; } __attribute__ ((__packed__)); struct crypto_hash; struct btrfs_fs_info { struct btrfs_root *fs_root; struct btrfs_root *extent_root; struct btrfs_root *tree_root; struct btrfs_root *inode_root; struct btrfs_key current_insert; struct btrfs_key last_insert; struct radix_tree_root pending_del_radix; struct radix_tree_root pinned_radix; u64 last_inode_alloc; u64 generation; struct btrfs_transaction *running_transaction; struct btrfs_super_block *disk_super; struct buffer_head *sb_buffer; struct super_block *sb; struct inode *btree_inode; struct mutex trans_mutex; struct mutex fs_mutex; struct crypto_hash *hash_tfm; spinlock_t hash_lock; }; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. current_insert is used * only for the extent tree. */ struct btrfs_root { struct buffer_head *node; struct buffer_head *commit_root; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; u32 blocksize; int ref_cows; u32 type; }; /* the lower bits in the key flags defines the item type */ #define BTRFS_KEY_TYPE_MAX 256 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1) /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_ITEM_KEY 2 #define BTRFS_DIR_INDEX_KEY 3 /* * inline data is file data that fits in the btree. */ #define BTRFS_INLINE_DATA_KEY 4 /* * extent data is for data that can't fit in the btree. It points to * a (hopefully) huge chunk of disk */ #define BTRFS_EXTENT_DATA_KEY 5 /* * csum items have the checksums for data in the extents */ #define BTRFS_CSUM_ITEM_KEY 6 /* * root items point to tree roots. There are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 7 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 8 /* * the inode map records which inode numbers are in use and where * they actually live on disk */ #define BTRFS_INODE_MAP_ITEM_KEY 9 /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 10 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i) { return le64_to_cpu(i->generation); } static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i, u64 val) { i->generation = cpu_to_le64(val); } static inline u64 btrfs_inode_size(struct btrfs_inode_item *i) { return le64_to_cpu(i->size); } static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val) { i->size = cpu_to_le64(val); } static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i) { return le64_to_cpu(i->nblocks); } static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val) { i->nblocks = cpu_to_le64(val); } static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i) { return le32_to_cpu(i->nlink); } static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val) { i->nlink = cpu_to_le32(val); } static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i) { return le32_to_cpu(i->uid); } static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val) { i->uid = cpu_to_le32(val); } static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i) { return le32_to_cpu(i->gid); } static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val) { i->gid = cpu_to_le32(val); } static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i) { return le32_to_cpu(i->mode); } static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val) { i->mode = cpu_to_le32(val); } static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i) { return le32_to_cpu(i->rdev); } static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val) { i->rdev = cpu_to_le32(val); } static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i) { return le16_to_cpu(i->flags); } static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val) { i->flags = cpu_to_le16(val); } static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i) { return le16_to_cpu(i->compat_flags); } static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i, u16 val) { i->compat_flags = cpu_to_le16(val); } static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts) { return le64_to_cpu(ts->sec); } static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts, u64 val) { ts->sec = cpu_to_le64(val); } static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts) { return le32_to_cpu(ts->nsec); } static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts, u32 val) { ts->nsec = cpu_to_le32(val); } static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei) { return le64_to_cpu(ei->owner); } static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val) { ei->owner = cpu_to_le64(val); } static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei) { return le32_to_cpu(ei->refs); } static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val) { ei->refs = cpu_to_le32(val); } static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr) { return le64_to_cpu(n->ptrs[nr].blockptr); } static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr, u64 val) { n->ptrs[nr].blockptr = cpu_to_le64(val); } static inline u32 btrfs_item_offset(struct btrfs_item *item) { return le32_to_cpu(item->offset); } static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val) { item->offset = cpu_to_le32(val); } static inline u32 btrfs_item_end(struct btrfs_item *item) { return le32_to_cpu(item->offset) + le16_to_cpu(item->size); } static inline u16 btrfs_item_size(struct btrfs_item *item) { return le16_to_cpu(item->size); } static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val) { item->size = cpu_to_le16(val); } static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d) { return le64_to_cpu(d->objectid); } static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val) { d->objectid = cpu_to_le64(val); } static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d) { return le16_to_cpu(d->flags); } static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val) { d->flags = cpu_to_le16(val); } static inline u8 btrfs_dir_type(struct btrfs_dir_item *d) { return d->type; } static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val) { d->type = val; } static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d) { return le16_to_cpu(d->name_len); } static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val) { d->name_len = cpu_to_le16(val); } static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->flags = le32_to_cpu(disk->flags); cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->flags = cpu_to_le32(cpu->flags); disk->objectid = cpu_to_le64(cpu->objectid); } static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk) { return le64_to_cpu(disk->objectid); } static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk, u64 val) { disk->objectid = cpu_to_le64(val); } static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk) { return le64_to_cpu(disk->offset); } static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk, u64 val) { disk->offset = cpu_to_le64(val); } static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk) { return le32_to_cpu(disk->flags); } static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk, u32 val) { disk->flags = cpu_to_le32(val); } static inline u32 btrfs_key_type(struct btrfs_key *key) { return key->flags & BTRFS_KEY_TYPE_MASK; } static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key) { return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK; } static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type) { BUG_ON(type >= BTRFS_KEY_TYPE_MAX); key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type; } static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type) { u32 flags = btrfs_disk_key_flags(key); BUG_ON(type >= BTRFS_KEY_TYPE_MAX); flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type; btrfs_set_disk_key_flags(key, flags); } static inline u64 btrfs_header_blocknr(struct btrfs_header *h) { return le64_to_cpu(h->blocknr); } static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr) { h->blocknr = cpu_to_le64(blocknr); } static inline u64 btrfs_header_generation(struct btrfs_header *h) { return le64_to_cpu(h->generation); } static inline void btrfs_set_header_generation(struct btrfs_header *h, u64 val) { h->generation = cpu_to_le64(val); } static inline u64 btrfs_header_parentid(struct btrfs_header *h) { return le64_to_cpu(h->parentid); } static inline void btrfs_set_header_parentid(struct btrfs_header *h, u64 parentid) { h->parentid = cpu_to_le64(parentid); } static inline u16 btrfs_header_nritems(struct btrfs_header *h) { return le16_to_cpu(h->nritems); } static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val) { h->nritems = cpu_to_le16(val); } static inline u16 btrfs_header_flags(struct btrfs_header *h) { return le16_to_cpu(h->flags); } static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val) { h->flags = cpu_to_le16(val); } static inline int btrfs_header_level(struct btrfs_header *h) { return h->level; } static inline void btrfs_set_header_level(struct btrfs_header *h, int level) { BUG_ON(level > BTRFS_MAX_LEVEL); h->level = level; } static inline int btrfs_is_leaf(struct btrfs_node *n) { return (btrfs_header_level(&n->header) == 0); } static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item) { return le64_to_cpu(item->blocknr); } static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val) { item->blocknr = cpu_to_le64(val); } static inline u32 btrfs_root_refs(struct btrfs_root_item *item) { return le32_to_cpu(item->refs); } static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val) { item->refs = cpu_to_le32(val); } static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s) { return le64_to_cpu(s->blocknr); } static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val) { s->blocknr = cpu_to_le64(val); } static inline u64 btrfs_super_root(struct btrfs_super_block *s) { return le64_to_cpu(s->root); } static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val) { s->root = cpu_to_le64(val); } static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s) { return le64_to_cpu(s->total_blocks); } static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s, u64 val) { s->total_blocks = cpu_to_le64(val); } static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s) { return le64_to_cpu(s->blocks_used); } static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s, u64 val) { s->blocks_used = cpu_to_le64(val); } static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s) { return le32_to_cpu(s->blocksize); } static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s, u32 val) { s->blocksize = cpu_to_le32(val); } static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s) { return le64_to_cpu(s->root_dir_objectid); } static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64 val) { s->root_dir_objectid = cpu_to_le64(val); } static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l) { return (u8 *)l->items; } static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item *e) { return le64_to_cpu(e->disk_blocknr); } static inline void btrfs_set_file_extent_disk_blocknr(struct btrfs_file_extent_item *e, u64 val) { e->disk_blocknr = cpu_to_le64(val); } static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e) { return le64_to_cpu(e->generation); } static inline void btrfs_set_file_extent_generation(struct btrfs_file_extent_item *e, u64 val) { e->generation = cpu_to_le64(val); } static inline u64 btrfs_file_extent_disk_num_blocks(struct btrfs_file_extent_item *e) { return le64_to_cpu(e->disk_num_blocks); } static inline void btrfs_set_file_extent_disk_num_blocks(struct btrfs_file_extent_item *e, u64 val) { e->disk_num_blocks = cpu_to_le64(val); } static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e) { return le64_to_cpu(e->offset); } static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item *e, u64 val) { e->offset = cpu_to_le64(val); } static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item *e) { return le64_to_cpu(e->num_blocks); } static inline void btrfs_set_file_extent_num_blocks(struct btrfs_file_extent_item *e, u64 val) { e->num_blocks = cpu_to_le64(val); } static inline struct btrfs_root *btrfs_sb(struct super_block *sb) { return sb->s_fs_info; } static inline void btrfs_check_bounds(void *vptr, size_t len, void *vcontainer, size_t container_len) { char *ptr = vptr; char *container = vcontainer; WARN_ON(ptr < container); WARN_ON(ptr + len > container + container_len); } static inline void btrfs_memcpy(struct btrfs_root *root, void *dst_block, void *dst, const void *src, size_t nr) { btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize); memcpy(dst, src, nr); } static inline void btrfs_memmove(struct btrfs_root *root, void *dst_block, void *dst, void *src, size_t nr) { btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize); memmove(dst, src, nr); } static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh) { WARN_ON(!atomic_read(&bh->b_count)); mark_buffer_dirty(bh); } /* helper function to cast into the data area of the leaf. */ #define btrfs_item_ptr(leaf, slot, type) \ ((type *)(btrfs_leaf_data(leaf) + \ btrfs_item_offset((leaf)->items + (slot)))) /* extent-item.c */ struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_blocks, u64 search_start, u64 search_end, u64 owner, struct btrfs_key *ins); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf); int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin); int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); /* ctree.c */ int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); struct btrfs_path *btrfs_alloc_path(void); void btrfs_free_path(struct btrfs_path *p); void btrfs_init_path(struct btrfs_path *p); int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path); int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 data_size); int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf); int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *snap); /* root-item.c */ int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct btrfs_root_item *item, struct btrfs_key *key); /* dir-item.c */ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 dir, u64 objectid, u8 type); int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, int name_len, int mod); int btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, u64 objectid, int mod); int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len); /* inode-map.c */ int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, struct btrfs_root *fs_root, u64 dirid, u64 *objectid); int btrfs_insert_inode_map(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_key *location); int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, int mod); /* inode-item.c */ int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode_item); int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, int mod); /* file-item.c */ int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 offset, u64 num_blocks, u64 hint_block, u64 *result); int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 blocknr, int mod); int btrfs_csum_file_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 offset, char *data, size_t len); int btrfs_csum_verify_file_block(struct btrfs_root *root, u64 objectid, u64 offset, char *data, size_t len); #endif