// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/block/floppy.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1993, 1994 Alain Knaff * Copyright (C) 1998 Alan Cox */ /* * 02.12.91 - Changed to static variables to indicate need for reset * and recalibrate. This makes some things easier (output_byte reset * checking etc), and means less interrupt jumping in case of errors, * so the code is hopefully easier to understand. */ /* * This file is certainly a mess. I've tried my best to get it working, * but I don't like programming floppies, and I have only one anyway. * Urgel. I should check for more errors, and do more graceful error * recovery. Seems there are problems with several drives. I've tried to * correct them. No promises. */ /* * As with hd.c, all routines within this file can (and will) be called * by interrupts, so extreme caution is needed. A hardware interrupt * handler may not sleep, or a kernel panic will happen. Thus I cannot * call "floppy-on" directly, but have to set a special timer interrupt * etc. */ /* * 28.02.92 - made track-buffering routines, based on the routines written * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus. */ /* * Automatic floppy-detection and formatting written by Werner Almesberger * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with * the floppy-change signal detection. */ /* * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed * FDC data overrun bug, added some preliminary stuff for vertical * recording support. * * 1992/9/17: Added DMA allocation & DMA functions. -- hhb. * * TODO: Errors are still not counted properly. */ /* 1992/9/20 * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl) * modeled after the freeware MS-DOS program fdformat/88 V1.8 by * Christoph H. Hochst\"atter. * I have fixed the shift values to the ones I always use. Maybe a new * ioctl() should be created to be able to modify them. * There is a bug in the driver that makes it impossible to format a * floppy as the first thing after bootup. */ /* * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and * this helped the floppy driver as well. Much cleaner, and still seems to * work. */ /* 1994/6/24 --bbroad-- added the floppy table entries and made * minor modifications to allow 2.88 floppies to be run. */ /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more * disk types. */ /* * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger * format bug fixes, but unfortunately some new bugs too... */ /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write * errors to allow safe writing by specialized programs. */ /* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks * by defining bit 1 of the "stretch" parameter to mean put sectors on the * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's * drives are "upside-down"). */ /* * 1995/8/26 -- Andreas Busse -- added Mips support. */ /* * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent * features to asm/floppy.h. */ /* * 1998/1/21 -- Richard Gooch -- devfs support */ /* * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting & * use of '0' for NULL. */ /* * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation * failures. */ /* * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives. */ /* * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24 * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were * being used to store jiffies, which are unsigned longs). */ /* * 2000/08/28 -- Arnaldo Carvalho de Melo * - get rid of check_region * - s/suser/capable/ */ /* * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no * floppy controller (lingering task on list after module is gone... boom.) */ /* * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix * requires many non-obvious changes in arch dependent code. */ /* 2003/07/28 -- Daniele Bellucci . * Better audit of register_blkdev. */ #undef FLOPPY_SILENT_DCL_CLEAR #define REALLY_SLOW_IO #define DEBUGT 2 #define DPRINT(format, args...) \ pr_info("floppy%d: " format, current_drive, ##args) #define DCL_DEBUG /* debug disk change line */ #ifdef DCL_DEBUG #define debug_dcl(test, fmt, args...) \ do { if ((test) & FD_DEBUG) DPRINT(fmt, ##args); } while (0) #else #define debug_dcl(test, fmt, args...) \ do { if (0) DPRINT(fmt, ##args); } while (0) #endif /* do print messages for unexpected interrupts */ static int print_unex = 1; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* CMOS defines */ #include #include #include #include #include #include #include #include #include #include /* * PS/2 floppies have much slower step rates than regular floppies. * It's been recommended that take about 1/4 of the default speed * in some more extreme cases. */ static DEFINE_MUTEX(floppy_mutex); static int slow_floppy; #include #include static int FLOPPY_IRQ = 6; static int FLOPPY_DMA = 2; static int can_use_virtual_dma = 2; /* ======= * can use virtual DMA: * 0 = use of virtual DMA disallowed by config * 1 = use of virtual DMA prescribed by config * 2 = no virtual DMA preference configured. By default try hard DMA, * but fall back on virtual DMA when not enough memory available */ static int use_virtual_dma; /* ======= * use virtual DMA * 0 using hard DMA * 1 using virtual DMA * This variable is set to virtual when a DMA mem problem arises, and * reset back in floppy_grab_irq_and_dma. * It is not safe to reset it in other circumstances, because the floppy * driver may have several buffers in use at once, and we do currently not * record each buffers capabilities */ static DEFINE_SPINLOCK(floppy_lock); static unsigned short virtual_dma_port = 0x3f0; irqreturn_t floppy_interrupt(int irq, void *dev_id); static int set_dor(int fdc, char mask, char data); #define K_64 0x10000 /* 64KB */ /* the following is the mask of allowed drives. By default units 2 and * 3 of both floppy controllers are disabled, because switching on the * motor of these drives causes system hangs on some PCI computers. drive * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if * a drive is allowed. * * NOTE: This must come before we include the arch floppy header because * some ports reference this variable from there. -DaveM */ static int allowed_drive_mask = 0x33; #include static int irqdma_allocated; #include #include #include /* for the compatibility eject ioctl */ #include static LIST_HEAD(floppy_reqs); static struct request *current_req; static int set_next_request(void); #ifndef fd_get_dma_residue #define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA) #endif /* Dma Memory related stuff */ #ifndef fd_dma_mem_free #define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size)) #endif #ifndef fd_dma_mem_alloc #define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL, get_order(size)) #endif #ifndef fd_cacheflush #define fd_cacheflush(addr, size) /* nothing... */ #endif static inline void fallback_on_nodma_alloc(char **addr, size_t l) { #ifdef FLOPPY_CAN_FALLBACK_ON_NODMA if (*addr) return; /* we have the memory */ if (can_use_virtual_dma != 2) return; /* no fallback allowed */ pr_info("DMA memory shortage. Temporarily falling back on virtual DMA\n"); *addr = (char *)nodma_mem_alloc(l); #else return; #endif } /* End dma memory related stuff */ static unsigned long fake_change; static bool initialized; #define ITYPE(x) (((x) >> 2) & 0x1f) #define TOMINOR(x) ((x & 3) | ((x & 4) << 5)) #define UNIT(x) ((x) & 0x03) /* drive on fdc */ #define FDC(x) (((x) & 0x04) >> 2) /* fdc of drive */ /* reverse mapping from unit and fdc to drive */ #define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2)) #define PH_HEAD(floppy, head) (((((floppy)->stretch & 2) >> 1) ^ head) << 2) #define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH) /* read/write commands */ #define COMMAND 0 #define DR_SELECT 1 #define TRACK 2 #define HEAD 3 #define SECTOR 4 #define SIZECODE 5 #define SECT_PER_TRACK 6 #define GAP 7 #define SIZECODE2 8 #define NR_RW 9 /* format commands */ #define F_SIZECODE 2 #define F_SECT_PER_TRACK 3 #define F_GAP 4 #define F_FILL 5 #define NR_F 6 /* * Maximum disk size (in kilobytes). * This default is used whenever the current disk size is unknown. * [Now it is rather a minimum] */ #define MAX_DISK_SIZE 4 /* 3984 */ /* * globals used by 'result()' */ #define MAX_REPLIES 16 static unsigned char reply_buffer[MAX_REPLIES]; static int inr; /* size of reply buffer, when called from interrupt */ #define ST0 0 #define ST1 1 #define ST2 2 #define ST3 0 /* result of GETSTATUS */ #define R_TRACK 3 #define R_HEAD 4 #define R_SECTOR 5 #define R_SIZECODE 6 #define SEL_DLY (2 * HZ / 100) /* * this struct defines the different floppy drive types. */ static struct { struct floppy_drive_params params; const char *name; /* name printed while booting */ } default_drive_params[] = { /* NOTE: the time values in jiffies should be in msec! CMOS drive type | Maximum data rate supported by drive type | | Head load time, msec | | | Head unload time, msec (not used) | | | | Step rate interval, usec | | | | | Time needed for spinup time (jiffies) | | | | | | Timeout for spinning down (jiffies) | | | | | | | Spindown offset (where disk stops) | | | | | | | | Select delay | | | | | | | | | RPS | | | | | | | | | | Max number of tracks | | | | | | | | | | | Interrupt timeout | | | | | | | | | | | | Max nonintlv. sectors | | | | | | | | | | | | | -Max Errors- flags */ {{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" }, {{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/ {{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/ {{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/ {{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/ {{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/ {{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/ /* | --autodetected formats--- | | | * read_track | | Name printed when booting * | Native format * Frequency of disk change checks */ }; static struct floppy_drive_params drive_params[N_DRIVE]; static struct floppy_drive_struct drive_state[N_DRIVE]; static struct floppy_write_errors write_errors[N_DRIVE]; static struct timer_list motor_off_timer[N_DRIVE]; static struct gendisk *disks[N_DRIVE]; static struct blk_mq_tag_set tag_sets[N_DRIVE]; static struct block_device *opened_bdev[N_DRIVE]; static DEFINE_MUTEX(open_lock); static struct floppy_raw_cmd *raw_cmd, default_raw_cmd; /* * This struct defines the different floppy types. * * Bit 0 of 'stretch' tells if the tracks need to be doubled for some * types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch' * tells if the disk is in Commodore 1581 format, which means side 0 sectors * are located on side 1 of the disk but with a side 0 ID, and vice-versa. * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical * side 0 is on physical side 0 (but with the misnamed sector IDs). * 'stretch' should probably be renamed to something more general, like * 'options'. * * Bits 2 through 9 of 'stretch' tell the number of the first sector. * The LSB (bit 2) is flipped. For most disks, the first sector * is 1 (represented by 0x00<<2). For some CP/M and music sampler * disks (such as Ensoniq EPS 16plus) it is 0 (represented as 0x01<<2). * For Amstrad CPC disks it is 0xC1 (represented as 0xC0<<2). * * Other parameters should be self-explanatory (see also setfdprm(8)). */ /* Size | Sectors per track | | Head | | | Tracks | | | | Stretch | | | | | Gap 1 size | | | | | | Data rate, | 0x40 for perp | | | | | | | Spec1 (stepping rate, head unload | | | | | | | | /fmt gap (gap2) */ static struct floppy_struct floppy_type[32] = { { 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */ { 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */ { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */ { 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */ { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */ { 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */ { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */ { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */ { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */ { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /* 9 3.12MB 3.5" */ { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */ { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */ { 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */ { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */ { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */ { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */ { 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */ { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */ { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */ { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */ { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */ { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */ { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */ { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */ { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */ { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */ { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */ { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */ { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */ { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */ { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */ { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */ }; #define SECTSIZE (_FD_SECTSIZE(*floppy)) /* Auto-detection: Disk type used until the next media change occurs. */ static struct floppy_struct *current_type[N_DRIVE]; /* * User-provided type information. current_type points to * the respective entry of this array. */ static struct floppy_struct user_params[N_DRIVE]; static sector_t floppy_sizes[256]; static char floppy_device_name[] = "floppy"; /* * The driver is trying to determine the correct media format * while probing is set. rw_interrupt() clears it after a * successful access. */ static int probing; /* Synchronization of FDC access. */ #define FD_COMMAND_NONE -1 #define FD_COMMAND_ERROR 2 #define FD_COMMAND_OKAY 3 static volatile int command_status = FD_COMMAND_NONE; static unsigned long fdc_busy; static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); static DECLARE_WAIT_QUEUE_HEAD(command_done); /* Errors during formatting are counted here. */ static int format_errors; /* Format request descriptor. */ static struct format_descr format_req; /* * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc), * H is head unload time (1=16ms, 2=32ms, etc) */ /* * Track buffer * Because these are written to by the DMA controller, they must * not contain a 64k byte boundary crossing, or data will be * corrupted/lost. */ static char *floppy_track_buffer; static int max_buffer_sectors; static int *errors; typedef void (*done_f)(int); static const struct cont_t { void (*interrupt)(void); /* this is called after the interrupt of the * main command */ void (*redo)(void); /* this is called to retry the operation */ void (*error)(void); /* this is called to tally an error */ done_f done; /* this is called to say if the operation has * succeeded/failed */ } *cont; static void floppy_ready(void); static void floppy_start(void); static void process_fd_request(void); static void recalibrate_floppy(void); static void floppy_shutdown(struct work_struct *); static int floppy_request_regions(int); static void floppy_release_regions(int); static int floppy_grab_irq_and_dma(void); static void floppy_release_irq_and_dma(void); /* * The "reset" variable should be tested whenever an interrupt is scheduled, * after the commands have been sent. This is to ensure that the driver doesn't * get wedged when the interrupt doesn't come because of a failed command. * reset doesn't need to be tested before sending commands, because * output_byte is automatically disabled when reset is set. */ static void reset_fdc(void); /* * These are global variables, as that's the easiest way to give * information to interrupts. They are the data used for the current * request. */ #define NO_TRACK -1 #define NEED_1_RECAL -2 #define NEED_2_RECAL -3 static atomic_t usage_count = ATOMIC_INIT(0); /* buffer related variables */ static int buffer_track = -1; static int buffer_drive = -1; static int buffer_min = -1; static int buffer_max = -1; /* fdc related variables, should end up in a struct */ static struct floppy_fdc_state fdc_state[N_FDC]; static int current_fdc; /* current fdc */ static struct workqueue_struct *floppy_wq; static struct floppy_struct *_floppy = floppy_type; static unsigned char current_drive; static long current_count_sectors; static unsigned char fsector_t; /* sector in track */ static unsigned char in_sector_offset; /* offset within physical sector, * expressed in units of 512 bytes */ static inline unsigned char fdc_inb(int fdc, int reg) { return fd_inb(fdc_state[fdc].address, reg); } static inline void fdc_outb(unsigned char value, int fdc, int reg) { fd_outb(value, fdc_state[fdc].address, reg); } static inline bool drive_no_geom(int drive) { return !current_type[drive] && !ITYPE(drive_state[drive].fd_device); } #ifndef fd_eject static inline int fd_eject(int drive) { return -EINVAL; } #endif /* * Debugging * ========= */ #ifdef DEBUGT static long unsigned debugtimer; static inline void set_debugt(void) { debugtimer = jiffies; } static inline void debugt(const char *func, const char *msg) { if (drive_params[current_drive].flags & DEBUGT) pr_info("%s:%s dtime=%lu\n", func, msg, jiffies - debugtimer); } #else static inline void set_debugt(void) { } static inline void debugt(const char *func, const char *msg) { } #endif /* DEBUGT */ static DECLARE_DELAYED_WORK(fd_timeout, floppy_shutdown); static const char *timeout_message; static void is_alive(const char *func, const char *message) { /* this routine checks whether the floppy driver is "alive" */ if (test_bit(0, &fdc_busy) && command_status < 2 && !delayed_work_pending(&fd_timeout)) { DPRINT("%s: timeout handler died. %s\n", func, message); } } static void (*do_floppy)(void) = NULL; #define OLOGSIZE 20 static void (*lasthandler)(void); static unsigned long interruptjiffies; static unsigned long resultjiffies; static int resultsize; static unsigned long lastredo; static struct output_log { unsigned char data; unsigned char status; unsigned long jiffies; } output_log[OLOGSIZE]; static int output_log_pos; #define current_reqD -1 #define MAXTIMEOUT -2 static void __reschedule_timeout(int drive, const char *message) { unsigned long delay; if (drive == current_reqD) drive = current_drive; if (drive < 0 || drive >= N_DRIVE) { delay = 20UL * HZ; drive = 0; } else delay = drive_params[drive].timeout; mod_delayed_work(floppy_wq, &fd_timeout, delay); if (drive_params[drive].flags & FD_DEBUG) DPRINT("reschedule timeout %s\n", message); timeout_message = message; } static void reschedule_timeout(int drive, const char *message) { unsigned long flags; spin_lock_irqsave(&floppy_lock, flags); __reschedule_timeout(drive, message); spin_unlock_irqrestore(&floppy_lock, flags); } #define INFBOUND(a, b) (a) = max_t(int, a, b) #define SUPBOUND(a, b) (a) = min_t(int, a, b) /* * Bottom half floppy driver. * ========================== * * This part of the file contains the code talking directly to the hardware, * and also the main service loop (seek-configure-spinup-command) */ /* * disk change. * This routine is responsible for maintaining the FD_DISK_CHANGE flag, * and the last_checked date. * * last_checked is the date of the last check which showed 'no disk change' * FD_DISK_CHANGE is set under two conditions: * 1. The floppy has been changed after some i/o to that floppy already * took place. * 2. No floppy disk is in the drive. This is done in order to ensure that * requests are quickly flushed in case there is no disk in the drive. It * follows that FD_DISK_CHANGE can only be cleared if there is a disk in * the drive. * * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet. * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on * each seek. If a disk is present, the disk change line should also be * cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk * change line is set, this means either that no disk is in the drive, or * that it has been removed since the last seek. * * This means that we really have a third possibility too: * The floppy has been changed after the last seek. */ static int disk_change(int drive) { int fdc = FDC(drive); if (time_before(jiffies, drive_state[drive].select_date + drive_params[drive].select_delay)) DPRINT("WARNING disk change called early\n"); if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive))) || (fdc_state[fdc].dor & 3) != UNIT(drive) || fdc != FDC(drive)) { DPRINT("probing disk change on unselected drive\n"); DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive), (unsigned int)fdc_state[fdc].dor); } debug_dcl(drive_params[drive].flags, "checking disk change line for drive %d\n", drive); debug_dcl(drive_params[drive].flags, "jiffies=%lu\n", jiffies); debug_dcl(drive_params[drive].flags, "disk change line=%x\n", fdc_inb(fdc, FD_DIR) & 0x80); debug_dcl(drive_params[drive].flags, "flags=%lx\n", drive_state[drive].flags); if (drive_params[drive].flags & FD_BROKEN_DCL) return test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); if ((fdc_inb(fdc, FD_DIR) ^ drive_params[drive].flags) & 0x80) { set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); /* verify write protection */ if (drive_state[drive].maxblock) /* mark it changed */ set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); /* invalidate its geometry */ if (drive_state[drive].keep_data >= 0) { if ((drive_params[drive].flags & FTD_MSG) && current_type[drive] != NULL) DPRINT("Disk type is undefined after disk change\n"); current_type[drive] = NULL; floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1; } return 1; } else { drive_state[drive].last_checked = jiffies; clear_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags); } return 0; } static inline int is_selected(int dor, int unit) { return ((dor & (0x10 << unit)) && (dor & 3) == unit); } static bool is_ready_state(int status) { int state = status & (STATUS_READY | STATUS_DIR | STATUS_DMA); return state == STATUS_READY; } static int set_dor(int fdc, char mask, char data) { unsigned char unit; unsigned char drive; unsigned char newdor; unsigned char olddor; if (fdc_state[fdc].address == -1) return -1; olddor = fdc_state[fdc].dor; newdor = (olddor & mask) | data; if (newdor != olddor) { unit = olddor & 0x3; if (is_selected(olddor, unit) && !is_selected(newdor, unit)) { drive = REVDRIVE(fdc, unit); debug_dcl(drive_params[drive].flags, "calling disk change from set_dor\n"); disk_change(drive); } fdc_state[fdc].dor = newdor; fdc_outb(newdor, fdc, FD_DOR); unit = newdor & 0x3; if (!is_selected(olddor, unit) && is_selected(newdor, unit)) { drive = REVDRIVE(fdc, unit); drive_state[drive].select_date = jiffies; } } return olddor; } static void twaddle(int fdc, int drive) { if (drive_params[drive].select_delay) return; fdc_outb(fdc_state[fdc].dor & ~(0x10 << UNIT(drive)), fdc, FD_DOR); fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR); drive_state[drive].select_date = jiffies; } /* * Reset all driver information about the specified fdc. * This is needed after a reset, and after a raw command. */ static void reset_fdc_info(int fdc, int mode) { int drive; fdc_state[fdc].spec1 = fdc_state[fdc].spec2 = -1; fdc_state[fdc].need_configure = 1; fdc_state[fdc].perp_mode = 1; fdc_state[fdc].rawcmd = 0; for (drive = 0; drive < N_DRIVE; drive++) if (FDC(drive) == fdc && (mode || drive_state[drive].track != NEED_1_RECAL)) drive_state[drive].track = NEED_2_RECAL; } /* selects the fdc and drive, and enables the fdc's input/dma. */ static void set_fdc(int drive) { unsigned int new_fdc = current_fdc; if (drive >= 0 && drive < N_DRIVE) { new_fdc = FDC(drive); current_drive = drive; } if (new_fdc >= N_FDC) { pr_info("bad fdc value\n"); return; } current_fdc = new_fdc; set_dor(current_fdc, ~0, 8); #if N_FDC > 1 set_dor(1 - current_fdc, ~8, 0); #endif if (fdc_state[current_fdc].rawcmd == 2) reset_fdc_info(current_fdc, 1); if (fdc_inb(current_fdc, FD_STATUS) != STATUS_READY) fdc_state[current_fdc].reset = 1; } /* locks the driver */ static int lock_fdc(int drive) { if (WARN(atomic_read(&usage_count) == 0, "Trying to lock fdc while usage count=0\n")) return -1; if (wait_event_interruptible(fdc_wait, !test_and_set_bit(0, &fdc_busy))) return -EINTR; command_status = FD_COMMAND_NONE; reschedule_timeout(drive, "lock fdc"); set_fdc(drive); return 0; } /* unlocks the driver */ static void unlock_fdc(void) { if (!test_bit(0, &fdc_busy)) DPRINT("FDC access conflict!\n"); raw_cmd = NULL; command_status = FD_COMMAND_NONE; cancel_delayed_work(&fd_timeout); do_floppy = NULL; cont = NULL; clear_bit(0, &fdc_busy); wake_up(&fdc_wait); } /* switches the motor off after a given timeout */ static void motor_off_callback(struct timer_list *t) { unsigned long nr = t - motor_off_timer; unsigned char mask = ~(0x10 << UNIT(nr)); if (WARN_ON_ONCE(nr >= N_DRIVE)) return; set_dor(FDC(nr), mask, 0); } /* schedules motor off */ static void floppy_off(unsigned int drive) { unsigned long volatile delta; int fdc = FDC(drive); if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive)))) return; del_timer(motor_off_timer + drive); /* make spindle stop in a position which minimizes spinup time * next time */ if (drive_params[drive].rps) { delta = jiffies - drive_state[drive].first_read_date + HZ - drive_params[drive].spindown_offset; delta = ((delta * drive_params[drive].rps) % HZ) / drive_params[drive].rps; motor_off_timer[drive].expires = jiffies + drive_params[drive].spindown - delta; } add_timer(motor_off_timer + drive); } /* * cycle through all N_DRIVE floppy drives, for disk change testing. * stopping at current drive. This is done before any long operation, to * be sure to have up to date disk change information. */ static void scandrives(void) { int i; int drive; int saved_drive; if (drive_params[current_drive].select_delay) return; saved_drive = current_drive; for (i = 0; i < N_DRIVE; i++) { drive = (saved_drive + i + 1) % N_DRIVE; if (drive_state[drive].fd_ref == 0 || drive_params[drive].select_delay != 0) continue; /* skip closed drives */ set_fdc(drive); if (!(set_dor(current_fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) & (0x10 << UNIT(drive)))) /* switch the motor off again, if it was off to * begin with */ set_dor(current_fdc, ~(0x10 << UNIT(drive)), 0); } set_fdc(saved_drive); } static void empty(void) { } static void (*floppy_work_fn)(void); static void floppy_work_workfn(struct work_struct *work) { floppy_work_fn(); } static DECLARE_WORK(floppy_work, floppy_work_workfn); static void schedule_bh(void (*handler)(void)) { WARN_ON(work_pending(&floppy_work)); floppy_work_fn = handler; queue_work(floppy_wq, &floppy_work); } static void (*fd_timer_fn)(void) = NULL; static void fd_timer_workfn(struct work_struct *work) { fd_timer_fn(); } static DECLARE_DELAYED_WORK(fd_timer, fd_timer_workfn); static void cancel_activity(void) { do_floppy = NULL; cancel_delayed_work_sync(&fd_timer); cancel_work_sync(&floppy_work); } /* this function makes sure that the disk stays in the drive during the * transfer */ static void fd_watchdog(void) { debug_dcl(drive_params[current_drive].flags, "calling disk change from watchdog\n"); if (disk_change(current_drive)) { DPRINT("disk removed during i/o\n"); cancel_activity(); cont->done(0); reset_fdc(); } else { cancel_delayed_work(&fd_timer); fd_timer_fn = fd_watchdog; queue_delayed_work(floppy_wq, &fd_timer, HZ / 10); } } static void main_command_interrupt(void) { cancel_delayed_work(&fd_timer); cont->interrupt(); } /* waits for a delay (spinup or select) to pass */ static int fd_wait_for_completion(unsigned long expires, void (*function)(void)) { if (fdc_state[current_fdc].reset) { reset_fdc(); /* do the reset during sleep to win time * if we don't need to sleep, it's a good * occasion anyways */ return 1; } if (time_before(jiffies, expires)) { cancel_delayed_work(&fd_timer); fd_timer_fn = function; queue_delayed_work(floppy_wq, &fd_timer, expires - jiffies); return 1; } return 0; } static void setup_DMA(void) { unsigned long f; if (raw_cmd->length == 0) { int i; pr_info("zero dma transfer size:"); for (i = 0; i < raw_cmd->cmd_count; i++) pr_cont("%x,", raw_cmd->cmd[i]); pr_cont("\n"); cont->done(0); fdc_state[current_fdc].reset = 1; return; } if (((unsigned long)raw_cmd->kernel_data) % 512) { pr_info("non aligned address: %p\n", raw_cmd->kernel_data); cont->done(0); fdc_state[current_fdc].reset = 1; return; } f = claim_dma_lock(); fd_disable_dma(); #ifdef fd_dma_setup if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length, (raw_cmd->flags & FD_RAW_READ) ? DMA_MODE_READ : DMA_MODE_WRITE, fdc_state[current_fdc].address) < 0) { release_dma_lock(f); cont->done(0); fdc_state[current_fdc].reset = 1; return; } release_dma_lock(f); #else fd_clear_dma_ff(); fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length); fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ? DMA_MODE_READ : DMA_MODE_WRITE); fd_set_dma_addr(raw_cmd->kernel_data); fd_set_dma_count(raw_cmd->length); virtual_dma_port = fdc_state[current_fdc].address; fd_enable_dma(); release_dma_lock(f); #endif } static void show_floppy(int fdc); /* waits until the fdc becomes ready */ static int wait_til_ready(int fdc) { int status; int counter; if (fdc_state[fdc].reset) return -1; for (counter = 0; counter < 10000; counter++) { status = fdc_inb(fdc, FD_STATUS); if (status & STATUS_READY) return status; } if (initialized) { DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc); show_floppy(fdc); } fdc_state[fdc].reset = 1; return -1; } /* sends a command byte to the fdc */ static int output_byte(char byte) { int status = wait_til_ready(current_fdc); if (status < 0) return -1; if (is_ready_state(status)) { fdc_outb(byte, current_fdc, FD_DATA); output_log[output_log_pos].data = byte; output_log[output_log_pos].status = status; output_log[output_log_pos].jiffies = jiffies; output_log_pos = (output_log_pos + 1) % OLOGSIZE; return 0; } fdc_state[current_fdc].reset = 1; if (initialized) { DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n", byte, current_fdc, status); show_floppy(current_fdc); } return -1; } /* gets the response from the fdc */ static int result(void) { int i; int status = 0; for (i = 0; i < MAX_REPLIES; i++) { status = wait_til_ready(current_fdc); if (status < 0) break; status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA; if ((status & ~STATUS_BUSY) == STATUS_READY) { resultjiffies = jiffies; resultsize = i; return i; } if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY)) reply_buffer[i] = fdc_inb(current_fdc, FD_DATA); else break; } if (initialized) { DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n", current_fdc, status, i); show_floppy(current_fdc); } fdc_state[current_fdc].reset = 1; return -1; } #define MORE_OUTPUT -2 /* does the fdc need more output? */ static int need_more_output(void) { int status = wait_til_ready(current_fdc); if (status < 0) return -1; if (is_ready_state(status)) return MORE_OUTPUT; return result(); } /* Set perpendicular mode as required, based on data rate, if supported. * 82077 Now tested. 1Mbps data rate only possible with 82077-1. */ static void perpendicular_mode(void) { unsigned char perp_mode; if (raw_cmd->rate & 0x40) { switch (raw_cmd->rate & 3) { case 0: perp_mode = 2; break; case 3: perp_mode = 3; break; default: DPRINT("Invalid data rate for perpendicular mode!\n"); cont->done(0); fdc_state[current_fdc].reset = 1; /* * convenient way to return to * redo without too much hassle * (deep stack et al.) */ return; } } else perp_mode = 0; if (fdc_state[current_fdc].perp_mode == perp_mode) return; if (fdc_state[current_fdc].version >= FDC_82077_ORIG) { output_byte(FD_PERPENDICULAR); output_byte(perp_mode); fdc_state[current_fdc].perp_mode = perp_mode; } else if (perp_mode) { DPRINT("perpendicular mode not supported by this FDC.\n"); } } /* perpendicular_mode */ static int fifo_depth = 0xa; static int no_fifo; static int fdc_configure(void) { /* Turn on FIFO */ output_byte(FD_CONFIGURE); if (need_more_output() != MORE_OUTPUT) return 0; output_byte(0); output_byte(0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf)); output_byte(0); /* pre-compensation from track 0 upwards */ return 1; } #define NOMINAL_DTR 500 /* Issue a "SPECIFY" command to set the step rate time, head unload time, * head load time, and DMA disable flag to values needed by floppy. * * The value "dtr" is the data transfer rate in Kbps. It is needed * to account for the data rate-based scaling done by the 82072 and 82077 * FDC types. This parameter is ignored for other types of FDCs (i.e. * 8272a). * * Note that changing the data transfer rate has a (probably deleterious) * effect on the parameters subject to scaling for 82072/82077 FDCs, so * fdc_specify is called again after each data transfer rate * change. * * srt: 1000 to 16000 in microseconds * hut: 16 to 240 milliseconds * hlt: 2 to 254 milliseconds * * These values are rounded up to the next highest available delay time. */ static void fdc_specify(void) { unsigned char spec1; unsigned char spec2; unsigned long srt; unsigned long hlt; unsigned long hut; unsigned long dtr = NOMINAL_DTR; unsigned long scale_dtr = NOMINAL_DTR; int hlt_max_code = 0x7f; int hut_max_code = 0xf; if (fdc_state[current_fdc].need_configure && fdc_state[current_fdc].version >= FDC_82072A) { fdc_configure(); fdc_state[current_fdc].need_configure = 0; } switch (raw_cmd->rate & 0x03) { case 3: dtr = 1000; break; case 1: dtr = 300; if (fdc_state[current_fdc].version >= FDC_82078) { /* chose the default rate table, not the one * where 1 = 2 Mbps */ output_byte(FD_DRIVESPEC); if (need_more_output() == MORE_OUTPUT) { output_byte(UNIT(current_drive)); output_byte(0xc0); } } break; case 2: dtr = 250; break; } if (fdc_state[current_fdc].version >= FDC_82072) { scale_dtr = dtr; hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */ hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */ } /* Convert step rate from microseconds to milliseconds and 4 bits */ srt = 16 - DIV_ROUND_UP(drive_params[current_drive].srt * scale_dtr / 1000, NOMINAL_DTR); if (slow_floppy) srt = srt / 4; SUPBOUND(srt, 0xf); INFBOUND(srt, 0); hlt = DIV_ROUND_UP(drive_params[current_drive].hlt * scale_dtr / 2, NOMINAL_DTR); if (hlt < 0x01) hlt = 0x01; else if (hlt > 0x7f) hlt = hlt_max_code; hut = DIV_ROUND_UP(drive_params[current_drive].hut * scale_dtr / 16, NOMINAL_DTR); if (hut < 0x1) hut = 0x1; else if (hut > 0xf) hut = hut_max_code; spec1 = (srt << 4) | hut; spec2 = (hlt << 1) | (use_virtual_dma & 1); /* If these parameters did not change, just return with success */ if (fdc_state[current_fdc].spec1 != spec1 || fdc_state[current_fdc].spec2 != spec2) { /* Go ahead and set spec1 and spec2 */ output_byte(FD_SPECIFY); output_byte(fdc_state[current_fdc].spec1 = spec1); output_byte(fdc_state[current_fdc].spec2 = spec2); } } /* fdc_specify */ /* Set the FDC's data transfer rate on behalf of the specified drive. * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue * of the specify command (i.e. using the fdc_specify function). */ static int fdc_dtr(void) { /* If data rate not already set to desired value, set it. */ if ((raw_cmd->rate & 3) == fdc_state[current_fdc].dtr) return 0; /* Set dtr */ fdc_outb(raw_cmd->rate & 3, current_fdc, FD_DCR); /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB) * need a stabilization period of several milliseconds to be * enforced after data rate changes before R/W operations. * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies) */ fdc_state[current_fdc].dtr = raw_cmd->rate & 3; return fd_wait_for_completion(jiffies + 2UL * HZ / 100, floppy_ready); } /* fdc_dtr */ static void tell_sector(void) { pr_cont(": track %d, head %d, sector %d, size %d", reply_buffer[R_TRACK], reply_buffer[R_HEAD], reply_buffer[R_SECTOR], reply_buffer[R_SIZECODE]); } /* tell_sector */ static void print_errors(void) { DPRINT(""); if (reply_buffer[ST0] & ST0_ECE) { pr_cont("Recalibrate failed!"); } else if (reply_buffer[ST2] & ST2_CRC) { pr_cont("data CRC error"); tell_sector(); } else if (reply_buffer[ST1] & ST1_CRC) { pr_cont("CRC error"); tell_sector(); } else if ((reply_buffer[ST1] & (ST1_MAM | ST1_ND)) || (reply_buffer[ST2] & ST2_MAM)) { if (!probing) { pr_cont("sector not found"); tell_sector(); } else pr_cont("probe failed..."); } else if (reply_buffer[ST2] & ST2_WC) { /* seek error */ pr_cont("wrong cylinder"); } else if (reply_buffer[ST2] & ST2_BC) { /* cylinder marked as bad */ pr_cont("bad cylinder"); } else { pr_cont("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", reply_buffer[ST0], reply_buffer[ST1], reply_buffer[ST2]); tell_sector(); } pr_cont("\n"); } /* * OK, this error interpreting routine is called after a * DMA read/write has succeeded * or failed, so we check the results, and copy any buffers. * hhb: Added better error reporting. * ak: Made this into a separate routine. */ static int interpret_errors(void) { char bad; if (inr != 7) { DPRINT("-- FDC reply error\n"); fdc_state[current_fdc].reset = 1; return 1; } /* check IC to find cause of interrupt */ switch (reply_buffer[ST0] & ST0_INTR) { case 0x40: /* error occurred during command execution */ if (reply_buffer[ST1] & ST1_EOC) return 0; /* occurs with pseudo-DMA */ bad = 1; if (reply_buffer[ST1] & ST1_WP) { DPRINT("Drive is write protected\n"); clear_bit(FD_DISK_WRITABLE_BIT, &drive_state[current_drive].flags); cont->done(0); bad = 2; } else if (reply_buffer[ST1] & ST1_ND) { set_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags); } else if (reply_buffer[ST1] & ST1_OR) { if (drive_params[current_drive].flags & FTD_MSG) DPRINT("Over/Underrun - retrying\n"); bad = 0; } else if (*errors >= drive_params[current_drive].max_errors.reporting) { print_errors(); } if (reply_buffer[ST2] & ST2_WC || reply_buffer[ST2] & ST2_BC) /* wrong cylinder => recal */ drive_state[current_drive].track = NEED_2_RECAL; return bad; case 0x80: /* invalid command given */ DPRINT("Invalid FDC command given!\n"); cont->done(0); return 2; case 0xc0: DPRINT("Abnormal termination caused by polling\n"); cont->error(); return 2; default: /* (0) Normal command termination */ return 0; } } /* * This routine is called when everything should be correctly set up * for the transfer (i.e. floppy motor is on, the correct floppy is * selected, and the head is sitting on the right track). */ static void setup_rw_floppy(void) { int i; int r; int flags; unsigned long ready_date; void (*function)(void); flags = raw_cmd->flags; if (flags & (FD_RAW_READ | FD_RAW_WRITE)) flags |= FD_RAW_INTR; if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) { ready_date = drive_state[current_drive].spinup_date + drive_params[current_drive].spinup; /* If spinup will take a long time, rerun scandrives * again just before spinup completion. Beware that * after scandrives, we must again wait for selection. */ if (time_after(ready_date, jiffies + drive_params[current_drive].select_delay)) { ready_date -= drive_params[current_drive].select_delay; function = floppy_start; } else function = setup_rw_floppy; /* wait until the floppy is spinning fast enough */ if (fd_wait_for_completion(ready_date, function)) return; } if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE)) setup_DMA(); if (flags & FD_RAW_INTR) do_floppy = main_command_interrupt; r = 0; for (i = 0; i < raw_cmd->cmd_count; i++) r |= output_byte(raw_cmd->cmd[i]); debugt(__func__, "rw_command"); if (r) { cont->error(); reset_fdc(); return; } if (!(flags & FD_RAW_INTR)) { inr = result(); cont->interrupt(); } else if (flags & FD_RAW_NEED_DISK) fd_watchdog(); } static int blind_seek; /* * This is the routine called after every seek (or recalibrate) interrupt * from the floppy controller. */ static void seek_interrupt(void) { debugt(__func__, ""); if (inr != 2 || (reply_buffer[ST0] & 0xF8) != 0x20) { DPRINT("seek failed\n"); drive_state[current_drive].track = NEED_2_RECAL; cont->error(); cont->redo(); return; } if (drive_state[current_drive].track >= 0 && drive_state[current_drive].track != reply_buffer[ST1] && !blind_seek) { debug_dcl(drive_params[current_drive].flags, "clearing NEWCHANGE flag because of effective seek\n"); debug_dcl(drive_params[current_drive].flags, "jiffies=%lu\n", jiffies); clear_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); /* effective seek */ drive_state[current_drive].select_date = jiffies; } drive_state[current_drive].track = reply_buffer[ST1]; floppy_ready(); } static void check_wp(void) { if (test_bit(FD_VERIFY_BIT, &drive_state[current_drive].flags)) { /* check write protection */ output_byte(FD_GETSTATUS); output_byte(UNIT(current_drive)); if (result() != 1) { fdc_state[current_fdc].reset = 1; return; } clear_bit(FD_VERIFY_BIT, &drive_state[current_drive].flags); clear_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags); debug_dcl(drive_params[current_drive].flags, "checking whether disk is write protected\n"); debug_dcl(drive_params[current_drive].flags, "wp=%x\n", reply_buffer[ST3] & 0x40); if (!(reply_buffer[ST3] & 0x40)) set_bit(FD_DISK_WRITABLE_BIT, &drive_state[current_drive].flags); else clear_bit(FD_DISK_WRITABLE_BIT, &drive_state[current_drive].flags); } } static void seek_floppy(void) { int track; blind_seek = 0; debug_dcl(drive_params[current_drive].flags, "calling disk change from %s\n", __func__); if (!test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) && disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) { /* the media changed flag should be cleared after the seek. * If it isn't, this means that there is really no disk in * the drive. */ set_bit(FD_DISK_CHANGED_BIT, &drive_state[current_drive].flags); cont->done(0); cont->redo(); return; } if (drive_state[current_drive].track <= NEED_1_RECAL) { recalibrate_floppy(); return; } else if (test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) && (raw_cmd->flags & FD_RAW_NEED_DISK) && (drive_state[current_drive].track <= NO_TRACK || drive_state[current_drive].track == raw_cmd->track)) { /* we seek to clear the media-changed condition. Does anybody * know a more elegant way, which works on all drives? */ if (raw_cmd->track) track = raw_cmd->track - 1; else { if (drive_params[current_drive].flags & FD_SILENT_DCL_CLEAR) { set_dor(current_fdc, ~(0x10 << UNIT(current_drive)), 0); blind_seek = 1; raw_cmd->flags |= FD_RAW_NEED_SEEK; } track = 1; } } else { check_wp(); if (raw_cmd->track != drive_state[current_drive].track && (raw_cmd->flags & FD_RAW_NEED_SEEK)) track = raw_cmd->track; else { setup_rw_floppy(); return; } } do_floppy = seek_interrupt; output_byte(FD_SEEK); output_byte(UNIT(current_drive)); if (output_byte(track) < 0) { reset_fdc(); return; } debugt(__func__, ""); } static void recal_interrupt(void) { debugt(__func__, ""); if (inr != 2) fdc_state[current_fdc].reset = 1; else if (reply_buffer[ST0] & ST0_ECE) { switch (drive_state[current_drive].track) { case NEED_1_RECAL: debugt(__func__, "need 1 recal"); /* after a second recalibrate, we still haven't * reached track 0. Probably no drive. Raise an * error, as failing immediately might upset * computers possessed by the Devil :-) */ cont->error(); cont->redo(); return; case NEED_2_RECAL: debugt(__func__, "need 2 recal"); /* If we already did a recalibrate, * and we are not at track 0, this * means we have moved. (The only way * not to move at recalibration is to * be already at track 0.) Clear the * new change flag */ debug_dcl(drive_params[current_drive].flags, "clearing NEWCHANGE flag because of second recalibrate\n"); clear_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); drive_state[current_drive].select_date = jiffies; /* fall through */ default: debugt(__func__, "default"); /* Recalibrate moves the head by at * most 80 steps. If after one * recalibrate we don't have reached * track 0, this might mean that we * started beyond track 80. Try * again. */ drive_state[current_drive].track = NEED_1_RECAL; break; } } else drive_state[current_drive].track = reply_buffer[ST1]; floppy_ready(); } static void print_result(char *message, int inr) { int i; DPRINT("%s ", message); if (inr >= 0) for (i = 0; i < inr; i++) pr_cont("repl[%d]=%x ", i, reply_buffer[i]); pr_cont("\n"); } /* interrupt handler. Note that this can be called externally on the Sparc */ irqreturn_t floppy_interrupt(int irq, void *dev_id) { int do_print; unsigned long f; void (*handler)(void) = do_floppy; lasthandler = handler; interruptjiffies = jiffies; f = claim_dma_lock(); fd_disable_dma(); release_dma_lock(f); do_floppy = NULL; if (current_fdc >= N_FDC || fdc_state[current_fdc].address == -1) { /* we don't even know which FDC is the culprit */ pr_info("DOR0=%x\n", fdc_state[0].dor); pr_info("floppy interrupt on bizarre fdc %d\n", current_fdc); pr_info("handler=%ps\n", handler); is_alive(__func__, "bizarre fdc"); return IRQ_NONE; } fdc_state[current_fdc].reset = 0; /* We have to clear the reset flag here, because apparently on boxes * with level triggered interrupts (PS/2, Sparc, ...), it is needed to * emit SENSEI's to clear the interrupt line. And fdc_state[fdc].reset * blocks the emission of the SENSEI's. * It is OK to emit floppy commands because we are in an interrupt * handler here, and thus we have to fear no interference of other * activity. */ do_print = !handler && print_unex && initialized; inr = result(); if (do_print) print_result("unexpected interrupt", inr); if (inr == 0) { int max_sensei = 4; do { output_byte(FD_SENSEI); inr = result(); if (do_print) print_result("sensei", inr); max_sensei--; } while ((reply_buffer[ST0] & 0x83) != UNIT(current_drive) && inr == 2 && max_sensei); } if (!handler) { fdc_state[current_fdc].reset = 1; return IRQ_NONE; } schedule_bh(handler); is_alive(__func__, "normal interrupt end"); /* FIXME! Was it really for us? */ return IRQ_HANDLED; } static void recalibrate_floppy(void) { debugt(__func__, ""); do_floppy = recal_interrupt; output_byte(FD_RECALIBRATE); if (output_byte(UNIT(current_drive)) < 0) reset_fdc(); } /* * Must do 4 FD_SENSEIs after reset because of ``drive polling''. */ static void reset_interrupt(void) { debugt(__func__, ""); result(); /* get the status ready for set_fdc */ if (fdc_state[current_fdc].reset) { pr_info("reset set in interrupt, calling %ps\n", cont->error); cont->error(); /* a reset just after a reset. BAD! */ } cont->redo(); } /* * reset is done by pulling bit 2 of DOR low for a while (old FDCs), * or by setting the self clearing bit 7 of STATUS (newer FDCs) */ static void reset_fdc(void) { unsigned long flags; do_floppy = reset_interrupt; fdc_state[current_fdc].reset = 0; reset_fdc_info(current_fdc, 0); /* Pseudo-DMA may intercept 'reset finished' interrupt. */ /* Irrelevant for systems with true DMA (i386). */ flags = claim_dma_lock(); fd_disable_dma(); release_dma_lock(flags); if (fdc_state[current_fdc].version >= FDC_82072A) fdc_outb(0x80 | (fdc_state[current_fdc].dtr & 3), current_fdc, FD_STATUS); else { fdc_outb(fdc_state[current_fdc].dor & ~0x04, current_fdc, FD_DOR); udelay(FD_RESET_DELAY); fdc_outb(fdc_state[current_fdc].dor, current_fdc, FD_DOR); } } static void show_floppy(int fdc) { int i; pr_info("\n"); pr_info("floppy driver state\n"); pr_info("-------------------\n"); pr_info("now=%lu last interrupt=%lu diff=%lu last called handler=%ps\n", jiffies, interruptjiffies, jiffies - interruptjiffies, lasthandler); pr_info("timeout_message=%s\n", timeout_message); pr_info("last output bytes:\n"); for (i = 0; i < OLOGSIZE; i++) pr_info("%2x %2x %lu\n", output_log[(i + output_log_pos) % OLOGSIZE].data, output_log[(i + output_log_pos) % OLOGSIZE].status, output_log[(i + output_log_pos) % OLOGSIZE].jiffies); pr_info("last result at %lu\n", resultjiffies); pr_info("last redo_fd_request at %lu\n", lastredo); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, reply_buffer, resultsize, true); pr_info("status=%x\n", fdc_inb(fdc, FD_STATUS)); pr_info("fdc_busy=%lu\n", fdc_busy); if (do_floppy) pr_info("do_floppy=%ps\n", do_floppy); if (work_pending(&floppy_work)) pr_info("floppy_work.func=%ps\n", floppy_work.func); if (delayed_work_pending(&fd_timer)) pr_info("delayed work.function=%p expires=%ld\n", fd_timer.work.func, fd_timer.timer.expires - jiffies); if (delayed_work_pending(&fd_timeout)) pr_info("timer_function=%p expires=%ld\n", fd_timeout.work.func, fd_timeout.timer.expires - jiffies); pr_info("cont=%p\n", cont); pr_info("current_req=%p\n", current_req); pr_info("command_status=%d\n", command_status); pr_info("\n"); } static void floppy_shutdown(struct work_struct *arg) { unsigned long flags; if (initialized) show_floppy(current_fdc); cancel_activity(); flags = claim_dma_lock(); fd_disable_dma(); release_dma_lock(flags); /* avoid dma going to a random drive after shutdown */ if (initialized) DPRINT("floppy timeout called\n"); fdc_state[current_fdc].reset = 1; if (cont) { cont->done(0); cont->redo(); /* this will recall reset when needed */ } else { pr_info("no cont in shutdown!\n"); process_fd_request(); } is_alive(__func__, ""); } /* start motor, check media-changed condition and write protection */ static int start_motor(void (*function)(void)) { int mask; int data; mask = 0xfc; data = UNIT(current_drive); if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) { if (!(fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive)))) { set_debugt(); /* no read since this drive is running */ drive_state[current_drive].first_read_date = 0; /* note motor start time if motor is not yet running */ drive_state[current_drive].spinup_date = jiffies; data |= (0x10 << UNIT(current_drive)); } } else if (fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive))) mask &= ~(0x10 << UNIT(current_drive)); /* starts motor and selects floppy */ del_timer(motor_off_timer + current_drive); set_dor(current_fdc, mask, data); /* wait_for_completion also schedules reset if needed. */ return fd_wait_for_completion(drive_state[current_drive].select_date + drive_params[current_drive].select_delay, function); } static void floppy_ready(void) { if (fdc_state[current_fdc].reset) { reset_fdc(); return; } if (start_motor(floppy_ready)) return; if (fdc_dtr()) return; debug_dcl(drive_params[current_drive].flags, "calling disk change from floppy_ready\n"); if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) && disk_change(current_drive) && !drive_params[current_drive].select_delay) twaddle(current_fdc, current_drive); /* this clears the dcl on certain * drive/controller combinations */ #ifdef fd_chose_dma_mode if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) { unsigned long flags = claim_dma_lock(); fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length); release_dma_lock(flags); } #endif if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) { perpendicular_mode(); fdc_specify(); /* must be done here because of hut, hlt ... */ seek_floppy(); } else { if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) fdc_specify(); setup_rw_floppy(); } } static void floppy_start(void) { reschedule_timeout(current_reqD, "floppy start"); scandrives(); debug_dcl(drive_params[current_drive].flags, "setting NEWCHANGE in floppy_start\n"); set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); floppy_ready(); } /* * ======================================================================== * here ends the bottom half. Exported routines are: * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc, * start_motor, reset_fdc, reset_fdc_info, interpret_errors. * Initialization also uses output_byte, result, set_dor, floppy_interrupt * and set_dor. * ======================================================================== */ /* * General purpose continuations. * ============================== */ static void do_wakeup(void) { reschedule_timeout(MAXTIMEOUT, "do wakeup"); cont = NULL; command_status += 2; wake_up(&command_done); } static const struct cont_t wakeup_cont = { .interrupt = empty, .redo = do_wakeup, .error = empty, .done = (done_f)empty }; static const struct cont_t intr_cont = { .interrupt = empty, .redo = process_fd_request, .error = empty, .done = (done_f)empty }; static int wait_til_done(void (*handler)(void), bool interruptible) { int ret; schedule_bh(handler); if (interruptible) wait_event_interruptible(command_done, command_status >= 2); else wait_event(command_done, command_status >= 2); if (command_status < 2) { cancel_activity(); cont = &intr_cont; reset_fdc(); return -EINTR; } if (fdc_state[current_fdc].reset) command_status = FD_COMMAND_ERROR; if (command_status == FD_COMMAND_OKAY) ret = 0; else ret = -EIO; command_status = FD_COMMAND_NONE; return ret; } static void generic_done(int result) { command_status = result; cont = &wakeup_cont; } static void generic_success(void) { cont->done(1); } static void generic_failure(void) { cont->done(0); } static void success_and_wakeup(void) { generic_success(); cont->redo(); } /* * formatting and rw support. * ========================== */ static int next_valid_format(void) { int probed_format; probed_format = drive_state[current_drive].probed_format; while (1) { if (probed_format >= 8 || !drive_params[current_drive].autodetect[probed_format]) { drive_state[current_drive].probed_format = 0; return 1; } if (floppy_type[drive_params[current_drive].autodetect[probed_format]].sect) { drive_state[current_drive].probed_format = probed_format; return 0; } probed_format++; } } static void bad_flp_intr(void) { int err_count; if (probing) { drive_state[current_drive].probed_format++; if (!next_valid_format()) return; } err_count = ++(*errors); INFBOUND(write_errors[current_drive].badness, err_count); if (err_count > drive_params[current_drive].max_errors.abort) cont->done(0); if (err_count > drive_params[current_drive].max_errors.reset) fdc_state[current_fdc].reset = 1; else if (err_count > drive_params[current_drive].max_errors.recal) drive_state[current_drive].track = NEED_2_RECAL; } static void set_floppy(int drive) { int type = ITYPE(drive_state[drive].fd_device); if (type) _floppy = floppy_type + type; else _floppy = current_type[drive]; } /* * formatting support. * =================== */ static void format_interrupt(void) { switch (interpret_errors()) { case 1: cont->error(); case 2: break; case 0: cont->done(1); } cont->redo(); } #define FM_MODE(x, y) ((y) & ~(((x)->rate & 0x80) >> 1)) #define CT(x) ((x) | 0xc0) static void setup_format_params(int track) { int n; int il; int count; int head_shift; int track_shift; struct fparm { unsigned char track, head, sect, size; } *here = (struct fparm *)floppy_track_buffer; raw_cmd = &default_raw_cmd; raw_cmd->track = track; raw_cmd->flags = (FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK); raw_cmd->rate = _floppy->rate & 0x43; raw_cmd->cmd_count = NR_F; raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_FORMAT); raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head); raw_cmd->cmd[F_SIZECODE] = FD_SIZECODE(_floppy); raw_cmd->cmd[F_SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[F_SIZECODE]; raw_cmd->cmd[F_GAP] = _floppy->fmt_gap; raw_cmd->cmd[F_FILL] = FD_FILL_BYTE; raw_cmd->kernel_data = floppy_track_buffer; raw_cmd->length = 4 * raw_cmd->cmd[F_SECT_PER_TRACK]; if (!raw_cmd->cmd[F_SECT_PER_TRACK]) return; /* allow for about 30ms for data transport per track */ head_shift = (raw_cmd->cmd[F_SECT_PER_TRACK] + 5) / 6; /* a ``cylinder'' is two tracks plus a little stepping time */ track_shift = 2 * head_shift + 3; /* position of logical sector 1 on this track */ n = (track_shift * format_req.track + head_shift * format_req.head) % raw_cmd->cmd[F_SECT_PER_TRACK]; /* determine interleave */ il = 1; if (_floppy->fmt_gap < 0x22) il++; /* initialize field */ for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) { here[count].track = format_req.track; here[count].head = format_req.head; here[count].sect = 0; here[count].size = raw_cmd->cmd[F_SIZECODE]; } /* place logical sectors */ for (count = 1; count <= raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) { here[n].sect = count; n = (n + il) % raw_cmd->cmd[F_SECT_PER_TRACK]; if (here[n].sect) { /* sector busy, find next free sector */ ++n; if (n >= raw_cmd->cmd[F_SECT_PER_TRACK]) { n -= raw_cmd->cmd[F_SECT_PER_TRACK]; while (here[n].sect) ++n; } } } if (_floppy->stretch & FD_SECTBASEMASK) { for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; count++) here[count].sect += FD_SECTBASE(_floppy) - 1; } } static void redo_format(void) { buffer_track = -1; setup_format_params(format_req.track << STRETCH(_floppy)); floppy_start(); debugt(__func__, "queue format request"); } static const struct cont_t format_cont = { .interrupt = format_interrupt, .redo = redo_format, .error = bad_flp_intr, .done = generic_done }; static int do_format(int drive, struct format_descr *tmp_format_req) { int ret; if (lock_fdc(drive)) return -EINTR; set_floppy(drive); if (!_floppy || _floppy->track > drive_params[current_drive].tracks || tmp_format_req->track >= _floppy->track || tmp_format_req->head >= _floppy->head || (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) || !_floppy->fmt_gap) { process_fd_request(); return -EINVAL; } format_req = *tmp_format_req; format_errors = 0; cont = &format_cont; errors = &format_errors; ret = wait_til_done(redo_format, true); if (ret == -EINTR) return -EINTR; process_fd_request(); return ret; } /* * Buffer read/write and support * ============================= */ static void floppy_end_request(struct request *req, blk_status_t error) { unsigned int nr_sectors = current_count_sectors; unsigned int drive = (unsigned long)req->rq_disk->private_data; /* current_count_sectors can be zero if transfer failed */ if (error) nr_sectors = blk_rq_cur_sectors(req); if (blk_update_request(req, error, nr_sectors << 9)) return; __blk_mq_end_request(req, error); /* We're done with the request */ floppy_off(drive); current_req = NULL; } /* new request_done. Can handle physical sectors which are smaller than a * logical buffer */ static void request_done(int uptodate) { struct request *req = current_req; int block; char msg[sizeof("request done ") + sizeof(int) * 3]; probing = 0; snprintf(msg, sizeof(msg), "request done %d", uptodate); reschedule_timeout(MAXTIMEOUT, msg); if (!req) { pr_info("floppy.c: no request in request_done\n"); return; } if (uptodate) { /* maintain values for invalidation on geometry * change */ block = current_count_sectors + blk_rq_pos(req); INFBOUND(drive_state[current_drive].maxblock, block); if (block > _floppy->sect) drive_state[current_drive].maxtrack = 1; floppy_end_request(req, 0); } else { if (rq_data_dir(req) == WRITE) { /* record write error information */ write_errors[current_drive].write_errors++; if (write_errors[current_drive].write_errors == 1) { write_errors[current_drive].first_error_sector = blk_rq_pos(req); write_errors[current_drive].first_error_generation = drive_state[current_drive].generation; } write_errors[current_drive].last_error_sector = blk_rq_pos(req); write_errors[current_drive].last_error_generation = drive_state[current_drive].generation; } floppy_end_request(req, BLK_STS_IOERR); } } /* Interrupt handler evaluating the result of the r/w operation */ static void rw_interrupt(void) { int eoc; int ssize; int heads; int nr_sectors; if (reply_buffer[R_HEAD] >= 2) { /* some Toshiba floppy controllers occasionnally seem to * return bogus interrupts after read/write operations, which * can be recognized by a bad head number (>= 2) */ return; } if (!drive_state[current_drive].first_read_date) drive_state[current_drive].first_read_date = jiffies; nr_sectors = 0; ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4); if (reply_buffer[ST1] & ST1_EOC) eoc = 1; else eoc = 0; if (raw_cmd->cmd[COMMAND] & 0x80) heads = 2; else heads = 1; nr_sectors = (((reply_buffer[R_TRACK] - raw_cmd->cmd[TRACK]) * heads + reply_buffer[R_HEAD] - raw_cmd->cmd[HEAD]) * raw_cmd->cmd[SECT_PER_TRACK] + reply_buffer[R_SECTOR] - raw_cmd->cmd[SECTOR] + eoc) << raw_cmd->cmd[SIZECODE] >> 2; if (nr_sectors / ssize > DIV_ROUND_UP(in_sector_offset + current_count_sectors, ssize)) { DPRINT("long rw: %x instead of %lx\n", nr_sectors, current_count_sectors); pr_info("rs=%d s=%d\n", reply_buffer[R_SECTOR], raw_cmd->cmd[SECTOR]); pr_info("rh=%d h=%d\n", reply_buffer[R_HEAD], raw_cmd->cmd[HEAD]); pr_info("rt=%d t=%d\n", reply_buffer[R_TRACK], raw_cmd->cmd[TRACK]); pr_info("heads=%d eoc=%d\n", heads, eoc); pr_info("spt=%d st=%d ss=%d\n", raw_cmd->cmd[SECT_PER_TRACK], fsector_t, ssize); pr_info("in_sector_offset=%d\n", in_sector_offset); } nr_sectors -= in_sector_offset; INFBOUND(nr_sectors, 0); SUPBOUND(current_count_sectors, nr_sectors); switch (interpret_errors()) { case 2: cont->redo(); return; case 1: if (!current_count_sectors) { cont->error(); cont->redo(); return; } break; case 0: if (!current_count_sectors) { cont->redo(); return; } current_type[current_drive] = _floppy; floppy_sizes[TOMINOR(current_drive)] = _floppy->size; break; } if (probing) { if (drive_params[current_drive].flags & FTD_MSG) DPRINT("Auto-detected floppy type %s in fd%d\n", _floppy->name, current_drive); current_type[current_drive] = _floppy; floppy_sizes[TOMINOR(current_drive)] = _floppy->size; probing = 0; } if (CT(raw_cmd->cmd[COMMAND]) != FD_READ || raw_cmd->kernel_data == bio_data(current_req->bio)) { /* transfer directly from buffer */ cont->done(1); } else if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) { buffer_track = raw_cmd->track; buffer_drive = current_drive; INFBOUND(buffer_max, nr_sectors + fsector_t); } cont->redo(); } /* Compute maximal contiguous buffer size. */ static int buffer_chain_size(void) { struct bio_vec bv; int size; struct req_iterator iter; char *base; base = bio_data(current_req->bio); size = 0; rq_for_each_segment(bv, current_req, iter) { if (page_address(bv.bv_page) + bv.bv_offset != base + size) break; size += bv.bv_len; } return size >> 9; } /* Compute the maximal transfer size */ static int transfer_size(int ssize, int max_sector, int max_size) { SUPBOUND(max_sector, fsector_t + max_size); /* alignment */ max_sector -= (max_sector % _floppy->sect) % ssize; /* transfer size, beginning not aligned */ current_count_sectors = max_sector - fsector_t; return max_sector; } /* * Move data from/to the track buffer to/from the buffer cache. */ static void copy_buffer(int ssize, int max_sector, int max_sector_2) { int remaining; /* number of transferred 512-byte sectors */ struct bio_vec bv; char *buffer; char *dma_buffer; int size; struct req_iterator iter; max_sector = transfer_size(ssize, min(max_sector, max_sector_2), blk_rq_sectors(current_req)); if (current_count_sectors <= 0 && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE && buffer_max > fsector_t + blk_rq_sectors(current_req)) current_count_sectors = min_t(int, buffer_max - fsector_t, blk_rq_sectors(current_req)); remaining = current_count_sectors << 9; if (remaining > blk_rq_bytes(current_req) && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { DPRINT("in copy buffer\n"); pr_info("current_count_sectors=%ld\n", current_count_sectors); pr_info("remaining=%d\n", remaining >> 9); pr_info("current_req->nr_sectors=%u\n", blk_rq_sectors(current_req)); pr_info("current_req->current_nr_sectors=%u\n", blk_rq_cur_sectors(current_req)); pr_info("max_sector=%d\n", max_sector); pr_info("ssize=%d\n", ssize); } buffer_max = max(max_sector, buffer_max); dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9); size = blk_rq_cur_bytes(current_req); rq_for_each_segment(bv, current_req, iter) { if (!remaining) break; size = bv.bv_len; SUPBOUND(size, remaining); buffer = page_address(bv.bv_page) + bv.bv_offset; if (dma_buffer + size > floppy_track_buffer + (max_buffer_sectors << 10) || dma_buffer < floppy_track_buffer) { DPRINT("buffer overrun in copy buffer %d\n", (int)((floppy_track_buffer - dma_buffer) >> 9)); pr_info("fsector_t=%d buffer_min=%d\n", fsector_t, buffer_min); pr_info("current_count_sectors=%ld\n", current_count_sectors); if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) pr_info("read\n"); if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) pr_info("write\n"); break; } if (((unsigned long)buffer) % 512) DPRINT("%p buffer not aligned\n", buffer); if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) memcpy(buffer, dma_buffer, size); else memcpy(dma_buffer, buffer, size); remaining -= size; dma_buffer += size; } if (remaining) { if (remaining > 0) max_sector -= remaining >> 9; DPRINT("weirdness: remaining %d\n", remaining >> 9); } } /* work around a bug in pseudo DMA * (on some FDCs) pseudo DMA does not stop when the CPU stops * sending data. Hence we need a different way to signal the * transfer length: We use raw_cmd->cmd[SECT_PER_TRACK]. Unfortunately, this * does not work with MT, hence we can only transfer one head at * a time */ static void virtualdmabug_workaround(void) { int hard_sectors; int end_sector; if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { raw_cmd->cmd[COMMAND] &= ~0x80; /* switch off multiple track mode */ hard_sectors = raw_cmd->length >> (7 + raw_cmd->cmd[SIZECODE]); end_sector = raw_cmd->cmd[SECTOR] + hard_sectors - 1; if (end_sector > raw_cmd->cmd[SECT_PER_TRACK]) { pr_info("too many sectors %d > %d\n", end_sector, raw_cmd->cmd[SECT_PER_TRACK]); return; } raw_cmd->cmd[SECT_PER_TRACK] = end_sector; /* make sure raw_cmd->cmd[SECT_PER_TRACK] * points to end of transfer */ } } /* * Formulate a read/write request. * this routine decides where to load the data (directly to buffer, or to * tmp floppy area), how much data to load (the size of the buffer, the whole * track, or a single sector) * All floppy_track_buffer handling goes in here. If we ever add track buffer * allocation on the fly, it should be done here. No other part should need * modification. */ static int make_raw_rw_request(void) { int aligned_sector_t; int max_sector; int max_size; int tracksize; int ssize; if (WARN(max_buffer_sectors == 0, "VFS: Block I/O scheduled on unopened device\n")) return 0; set_fdc((long)current_req->rq_disk->private_data); raw_cmd = &default_raw_cmd; raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK; raw_cmd->cmd_count = NR_RW; if (rq_data_dir(current_req) == READ) { raw_cmd->flags |= FD_RAW_READ; raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ); } else if (rq_data_dir(current_req) == WRITE) { raw_cmd->flags |= FD_RAW_WRITE; raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_WRITE); } else { DPRINT("%s: unknown command\n", __func__); return 0; } max_sector = _floppy->sect * _floppy->head; raw_cmd->cmd[TRACK] = (int)blk_rq_pos(current_req) / max_sector; fsector_t = (int)blk_rq_pos(current_req) % max_sector; if (_floppy->track && raw_cmd->cmd[TRACK] >= _floppy->track) { if (blk_rq_cur_sectors(current_req) & 1) { current_count_sectors = 1; return 1; } else return 0; } raw_cmd->cmd[HEAD] = fsector_t / _floppy->sect; if (((_floppy->stretch & (FD_SWAPSIDES | FD_SECTBASEMASK)) || test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags)) && fsector_t < _floppy->sect) max_sector = _floppy->sect; /* 2M disks have phantom sectors on the first track */ if ((_floppy->rate & FD_2M) && (!raw_cmd->cmd[TRACK]) && (!raw_cmd->cmd[HEAD])) { max_sector = 2 * _floppy->sect / 3; if (fsector_t >= max_sector) { current_count_sectors = min_t(int, _floppy->sect - fsector_t, blk_rq_sectors(current_req)); return 1; } raw_cmd->cmd[SIZECODE] = 2; } else raw_cmd->cmd[SIZECODE] = FD_SIZECODE(_floppy); raw_cmd->rate = _floppy->rate & 0x43; if ((_floppy->rate & FD_2M) && (raw_cmd->cmd[TRACK] || raw_cmd->cmd[HEAD]) && raw_cmd->rate == 2) raw_cmd->rate = 1; if (raw_cmd->cmd[SIZECODE]) raw_cmd->cmd[SIZECODE2] = 0xff; else raw_cmd->cmd[SIZECODE2] = 0x80; raw_cmd->track = raw_cmd->cmd[TRACK] << STRETCH(_floppy); raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, raw_cmd->cmd[HEAD]); raw_cmd->cmd[GAP] = _floppy->gap; ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4); raw_cmd->cmd[SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[SIZECODE]; raw_cmd->cmd[SECTOR] = ((fsector_t % _floppy->sect) << 2 >> raw_cmd->cmd[SIZECODE]) + FD_SECTBASE(_floppy); /* tracksize describes the size which can be filled up with sectors * of size ssize. */ tracksize = _floppy->sect - _floppy->sect % ssize; if (tracksize < _floppy->sect) { raw_cmd->cmd[SECT_PER_TRACK]++; if (tracksize <= fsector_t % _floppy->sect) raw_cmd->cmd[SECTOR]--; /* if we are beyond tracksize, fill up using smaller sectors */ while (tracksize <= fsector_t % _floppy->sect) { while (tracksize + ssize > _floppy->sect) { raw_cmd->cmd[SIZECODE]--; ssize >>= 1; } raw_cmd->cmd[SECTOR]++; raw_cmd->cmd[SECT_PER_TRACK]++; tracksize += ssize; } max_sector = raw_cmd->cmd[HEAD] * _floppy->sect + tracksize; } else if (!raw_cmd->cmd[TRACK] && !raw_cmd->cmd[HEAD] && !(_floppy->rate & FD_2M) && probing) { max_sector = _floppy->sect; } else if (!raw_cmd->cmd[HEAD] && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { /* for virtual DMA bug workaround */ max_sector = _floppy->sect; } in_sector_offset = (fsector_t % _floppy->sect) % ssize; aligned_sector_t = fsector_t - in_sector_offset; max_size = blk_rq_sectors(current_req); if ((raw_cmd->track == buffer_track) && (current_drive == buffer_drive) && (fsector_t >= buffer_min) && (fsector_t < buffer_max)) { /* data already in track buffer */ if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) { copy_buffer(1, max_sector, buffer_max); return 1; } } else if (in_sector_offset || blk_rq_sectors(current_req) < ssize) { if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { unsigned int sectors; sectors = fsector_t + blk_rq_sectors(current_req); if (sectors > ssize && sectors < ssize + ssize) max_size = ssize + ssize; else max_size = ssize; } raw_cmd->flags &= ~FD_RAW_WRITE; raw_cmd->flags |= FD_RAW_READ; raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ); } else if ((unsigned long)bio_data(current_req->bio) < MAX_DMA_ADDRESS) { unsigned long dma_limit; int direct, indirect; indirect = transfer_size(ssize, max_sector, max_buffer_sectors * 2) - fsector_t; /* * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide * on a 64 bit machine! */ max_size = buffer_chain_size(); dma_limit = (MAX_DMA_ADDRESS - ((unsigned long)bio_data(current_req->bio))) >> 9; if ((unsigned long)max_size > dma_limit) max_size = dma_limit; /* 64 kb boundaries */ if (CROSS_64KB(bio_data(current_req->bio), max_size << 9)) max_size = (K_64 - ((unsigned long)bio_data(current_req->bio)) % K_64) >> 9; direct = transfer_size(ssize, max_sector, max_size) - fsector_t; /* * We try to read tracks, but if we get too many errors, we * go back to reading just one sector at a time. * * This means we should be able to read a sector even if there * are other bad sectors on this track. */ if (!direct || (indirect * 2 > direct * 3 && *errors < drive_params[current_drive].max_errors.read_track && ((!probing || (drive_params[current_drive].read_track & (1 << drive_state[current_drive].probed_format)))))) { max_size = blk_rq_sectors(current_req); } else { raw_cmd->kernel_data = bio_data(current_req->bio); raw_cmd->length = current_count_sectors << 9; if (raw_cmd->length == 0) { DPRINT("%s: zero dma transfer attempted\n", __func__); DPRINT("indirect=%d direct=%d fsector_t=%d\n", indirect, direct, fsector_t); return 0; } virtualdmabug_workaround(); return 2; } } if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) max_size = max_sector; /* unbounded */ /* claim buffer track if needed */ if (buffer_track != raw_cmd->track || /* bad track */ buffer_drive != current_drive || /* bad drive */ fsector_t > buffer_max || fsector_t < buffer_min || ((CT(raw_cmd->cmd[COMMAND]) == FD_READ || (!in_sector_offset && blk_rq_sectors(current_req) >= ssize)) && max_sector > 2 * max_buffer_sectors + buffer_min && max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)) { /* not enough space */ buffer_track = -1; buffer_drive = current_drive; buffer_max = buffer_min = aligned_sector_t; } raw_cmd->kernel_data = floppy_track_buffer + ((aligned_sector_t - buffer_min) << 9); if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) { /* copy write buffer to track buffer. * if we get here, we know that the write * is either aligned or the data already in the buffer * (buffer will be overwritten) */ if (in_sector_offset && buffer_track == -1) DPRINT("internal error offset !=0 on write\n"); buffer_track = raw_cmd->track; buffer_drive = current_drive; copy_buffer(ssize, max_sector, 2 * max_buffer_sectors + buffer_min); } else transfer_size(ssize, max_sector, 2 * max_buffer_sectors + buffer_min - aligned_sector_t); /* round up current_count_sectors to get dma xfer size */ raw_cmd->length = in_sector_offset + current_count_sectors; raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1; raw_cmd->length <<= 9; if ((raw_cmd->length < current_count_sectors << 9) || (raw_cmd->kernel_data != bio_data(current_req->bio) && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE && (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max || aligned_sector_t < buffer_min)) || raw_cmd->length % (128 << raw_cmd->cmd[SIZECODE]) || raw_cmd->length <= 0 || current_count_sectors <= 0) { DPRINT("fractionary current count b=%lx s=%lx\n", raw_cmd->length, current_count_sectors); if (raw_cmd->kernel_data != bio_data(current_req->bio)) pr_info("addr=%d, length=%ld\n", (int)((raw_cmd->kernel_data - floppy_track_buffer) >> 9), current_count_sectors); pr_info("st=%d ast=%d mse=%d msi=%d\n", fsector_t, aligned_sector_t, max_sector, max_size); pr_info("ssize=%x SIZECODE=%d\n", ssize, raw_cmd->cmd[SIZECODE]); pr_info("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n", raw_cmd->cmd[COMMAND], raw_cmd->cmd[SECTOR], raw_cmd->cmd[HEAD], raw_cmd->cmd[TRACK]); pr_info("buffer drive=%d\n", buffer_drive); pr_info("buffer track=%d\n", buffer_track); pr_info("buffer_min=%d\n", buffer_min); pr_info("buffer_max=%d\n", buffer_max); return 0; } if (raw_cmd->kernel_data != bio_data(current_req->bio)) { if (raw_cmd->kernel_data < floppy_track_buffer || current_count_sectors < 0 || raw_cmd->length < 0 || raw_cmd->kernel_data + raw_cmd->length > floppy_track_buffer + (max_buffer_sectors << 10)) { DPRINT("buffer overrun in schedule dma\n"); pr_info("fsector_t=%d buffer_min=%d current_count=%ld\n", fsector_t, buffer_min, raw_cmd->length >> 9); pr_info("current_count_sectors=%ld\n", current_count_sectors); if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) pr_info("read\n"); if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) pr_info("write\n"); return 0; } } else if (raw_cmd->length > blk_rq_bytes(current_req) || current_count_sectors > blk_rq_sectors(current_req)) { DPRINT("buffer overrun in direct transfer\n"); return 0; } else if (raw_cmd->length < current_count_sectors << 9) { DPRINT("more sectors than bytes\n"); pr_info("bytes=%ld\n", raw_cmd->length >> 9); pr_info("sectors=%ld\n", current_count_sectors); } if (raw_cmd->length == 0) { DPRINT("zero dma transfer attempted from make_raw_request\n"); return 0; } virtualdmabug_workaround(); return 2; } static int set_next_request(void) { current_req = list_first_entry_or_null(&floppy_reqs, struct request, queuelist); if (current_req) { current_req->error_count = 0; list_del_init(¤t_req->queuelist); } return current_req != NULL; } static void redo_fd_request(void) { int drive; int tmp; lastredo = jiffies; if (current_drive < N_DRIVE) floppy_off(current_drive); do_request: if (!current_req) { int pending; spin_lock_irq(&floppy_lock); pending = set_next_request(); spin_unlock_irq(&floppy_lock); if (!pending) { do_floppy = NULL; unlock_fdc(); return; } } drive = (long)current_req->rq_disk->private_data; set_fdc(drive); reschedule_timeout(current_reqD, "redo fd request"); set_floppy(drive); raw_cmd = &default_raw_cmd; raw_cmd->flags = 0; if (start_motor(redo_fd_request)) return; disk_change(current_drive); if (test_bit(current_drive, &fake_change) || test_bit(FD_DISK_CHANGED_BIT, &drive_state[current_drive].flags)) { DPRINT("disk absent or changed during operation\n"); request_done(0); goto do_request; } if (!_floppy) { /* Autodetection */ if (!probing) { drive_state[current_drive].probed_format = 0; if (next_valid_format()) { DPRINT("no autodetectable formats\n"); _floppy = NULL; request_done(0); goto do_request; } } probing = 1; _floppy = floppy_type + drive_params[current_drive].autodetect[drive_state[current_drive].probed_format]; } else probing = 0; errors = &(current_req->error_count); tmp = make_raw_rw_request(); if (tmp < 2) { request_done(tmp); goto do_request; } if (test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags)) twaddle(current_fdc, current_drive); schedule_bh(floppy_start); debugt(__func__, "queue fd request"); return; } static const struct cont_t rw_cont = { .interrupt = rw_interrupt, .redo = redo_fd_request, .error = bad_flp_intr, .done = request_done }; static void process_fd_request(void) { cont = &rw_cont; schedule_bh(redo_fd_request); } static blk_status_t floppy_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { blk_mq_start_request(bd->rq); if (WARN(max_buffer_sectors == 0, "VFS: %s called on non-open device\n", __func__)) return BLK_STS_IOERR; if (WARN(atomic_read(&usage_count) == 0, "warning: usage count=0, current_req=%p sect=%ld flags=%llx\n", current_req, (long)blk_rq_pos(current_req), (unsigned long long) current_req->cmd_flags)) return BLK_STS_IOERR; spin_lock_irq(&floppy_lock); list_add_tail(&bd->rq->queuelist, &floppy_reqs); spin_unlock_irq(&floppy_lock); if (test_and_set_bit(0, &fdc_busy)) { /* fdc busy, this new request will be treated when the current one is done */ is_alive(__func__, "old request running"); return BLK_STS_OK; } command_status = FD_COMMAND_NONE; __reschedule_timeout(MAXTIMEOUT, "fd_request"); set_fdc(0); process_fd_request(); is_alive(__func__, ""); return BLK_STS_OK; } static const struct cont_t poll_cont = { .interrupt = success_and_wakeup, .redo = floppy_ready, .error = generic_failure, .done = generic_done }; static int poll_drive(bool interruptible, int flag) { /* no auto-sense, just clear dcl */ raw_cmd = &default_raw_cmd; raw_cmd->flags = flag; raw_cmd->track = 0; raw_cmd->cmd_count = 0; cont = &poll_cont; debug_dcl(drive_params[current_drive].flags, "setting NEWCHANGE in poll_drive\n"); set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags); return wait_til_done(floppy_ready, interruptible); } /* * User triggered reset * ==================== */ static void reset_intr(void) { pr_info("weird, reset interrupt called\n"); } static const struct cont_t reset_cont = { .interrupt = reset_intr, .redo = success_and_wakeup, .error = generic_failure, .done = generic_done }; static int user_reset_fdc(int drive, int arg, bool interruptible) { int ret; if (lock_fdc(drive)) return -EINTR; if (arg == FD_RESET_ALWAYS) fdc_state[current_fdc].reset = 1; if (fdc_state[current_fdc].reset) { cont = &reset_cont; ret = wait_til_done(reset_fdc, interruptible); if (ret == -EINTR) return -EINTR; } process_fd_request(); return 0; } /* * Misc Ioctl's and support * ======================== */ static inline int fd_copyout(void __user *param, const void *address, unsigned long size) { return copy_to_user(param, address, size) ? -EFAULT : 0; } static inline int fd_copyin(void __user *param, void *address, unsigned long size) { return copy_from_user(address, param, size) ? -EFAULT : 0; } static const char *drive_name(int type, int drive) { struct floppy_struct *floppy; if (type) floppy = floppy_type + type; else { if (drive_params[drive].native_format) floppy = floppy_type + drive_params[drive].native_format; else return "(null)"; } if (floppy->name) return floppy->name; else return "(null)"; } /* raw commands */ static void raw_cmd_done(int flag) { int i; if (!flag) { raw_cmd->flags |= FD_RAW_FAILURE; raw_cmd->flags |= FD_RAW_HARDFAILURE; } else { raw_cmd->reply_count = inr; if (raw_cmd->reply_count > MAX_REPLIES) raw_cmd->reply_count = 0; for (i = 0; i < raw_cmd->reply_count; i++) raw_cmd->reply[i] = reply_buffer[i]; if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) { unsigned long flags; flags = claim_dma_lock(); raw_cmd->length = fd_get_dma_residue(); release_dma_lock(flags); } if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) && (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0))) raw_cmd->flags |= FD_RAW_FAILURE; if (disk_change(current_drive)) raw_cmd->flags |= FD_RAW_DISK_CHANGE; else raw_cmd->flags &= ~FD_RAW_DISK_CHANGE; if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER) motor_off_callback(&motor_off_timer[current_drive]); if (raw_cmd->next && (!(raw_cmd->flags & FD_RAW_FAILURE) || !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) && ((raw_cmd->flags & FD_RAW_FAILURE) || !(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) { raw_cmd = raw_cmd->next; return; } } generic_done(flag); } static const struct cont_t raw_cmd_cont = { .interrupt = success_and_wakeup, .redo = floppy_start, .error = generic_failure, .done = raw_cmd_done }; static int raw_cmd_copyout(int cmd, void __user *param, struct floppy_raw_cmd *ptr) { int ret; while (ptr) { struct floppy_raw_cmd cmd = *ptr; cmd.next = NULL; cmd.kernel_data = NULL; ret = copy_to_user(param, &cmd, sizeof(cmd)); if (ret) return -EFAULT; param += sizeof(struct floppy_raw_cmd); if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) { if (ptr->length >= 0 && ptr->length <= ptr->buffer_length) { long length = ptr->buffer_length - ptr->length; ret = fd_copyout(ptr->data, ptr->kernel_data, length); if (ret) return ret; } } ptr = ptr->next; } return 0; } static void raw_cmd_free(struct floppy_raw_cmd **ptr) { struct floppy_raw_cmd *next; struct floppy_raw_cmd *this; this = *ptr; *ptr = NULL; while (this) { if (this->buffer_length) { fd_dma_mem_free((unsigned long)this->kernel_data, this->buffer_length); this->buffer_length = 0; } next = this->next; kfree(this); this = next; } } static int raw_cmd_copyin(int cmd, void __user *param, struct floppy_raw_cmd **rcmd) { struct floppy_raw_cmd *ptr; int ret; int i; *rcmd = NULL; loop: ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_KERNEL); if (!ptr) return -ENOMEM; *rcmd = ptr; ret = copy_from_user(ptr, param, sizeof(*ptr)); ptr->next = NULL; ptr->buffer_length = 0; ptr->kernel_data = NULL; if (ret) return -EFAULT; param += sizeof(struct floppy_raw_cmd); if (ptr->cmd_count > 33) /* the command may now also take up the space * initially intended for the reply & the * reply count. Needed for long 82078 commands * such as RESTORE, which takes ... 17 command * bytes. Murphy's law #137: When you reserve * 16 bytes for a structure, you'll one day * discover that you really need 17... */ return -EINVAL; for (i = 0; i < 16; i++) ptr->reply[i] = 0; ptr->resultcode = 0; if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) { if (ptr->length <= 0) return -EINVAL; ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length); fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length); if (!ptr->kernel_data) return -ENOMEM; ptr->buffer_length = ptr->length; } if (ptr->flags & FD_RAW_WRITE) { ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length); if (ret) return ret; } if (ptr->flags & FD_RAW_MORE) { rcmd = &(ptr->next); ptr->rate &= 0x43; goto loop; } return 0; } static int raw_cmd_ioctl(int cmd, void __user *param) { struct floppy_raw_cmd *my_raw_cmd; int drive; int ret2; int ret; if (fdc_state[current_fdc].rawcmd <= 1) fdc_state[current_fdc].rawcmd = 1; for (drive = 0; drive < N_DRIVE; drive++) { if (FDC(drive) != current_fdc) continue; if (drive == current_drive) { if (drive_state[drive].fd_ref > 1) { fdc_state[current_fdc].rawcmd = 2; break; } } else if (drive_state[drive].fd_ref) { fdc_state[current_fdc].rawcmd = 2; break; } } if (fdc_state[current_fdc].reset) return -EIO; ret = raw_cmd_copyin(cmd, param, &my_raw_cmd); if (ret) { raw_cmd_free(&my_raw_cmd); return ret; } raw_cmd = my_raw_cmd; cont = &raw_cmd_cont; ret = wait_til_done(floppy_start, true); debug_dcl(drive_params[current_drive].flags, "calling disk change from raw_cmd ioctl\n"); if (ret != -EINTR && fdc_state[current_fdc].reset) ret = -EIO; drive_state[current_drive].track = NO_TRACK; ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd); if (!ret) ret = ret2; raw_cmd_free(&my_raw_cmd); return ret; } static int invalidate_drive(struct block_device *bdev) { /* invalidate the buffer track to force a reread */ set_bit((long)bdev->bd_disk->private_data, &fake_change); process_fd_request(); check_disk_change(bdev); return 0; } static int set_geometry(unsigned int cmd, struct floppy_struct *g, int drive, int type, struct block_device *bdev) { int cnt; /* sanity checking for parameters. */ if ((int)g->sect <= 0 || (int)g->head <= 0 || /* check for overflow in max_sector */ (int)(g->sect * g->head) <= 0 || /* check for zero in raw_cmd->cmd[F_SECT_PER_TRACK] */ (unsigned char)((g->sect << 2) >> FD_SIZECODE(g)) == 0 || g->track <= 0 || g->track > drive_params[drive].tracks >> STRETCH(g) || /* check if reserved bits are set */ (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0) return -EINVAL; if (type) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&open_lock); if (lock_fdc(drive)) { mutex_unlock(&open_lock); return -EINTR; } floppy_type[type] = *g; floppy_type[type].name = "user format"; for (cnt = type << 2; cnt < (type << 2) + 4; cnt++) floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] = floppy_type[type].size + 1; process_fd_request(); for (cnt = 0; cnt < N_DRIVE; cnt++) { struct block_device *bdev = opened_bdev[cnt]; if (!bdev || ITYPE(drive_state[cnt].fd_device) != type) continue; __invalidate_device(bdev, true); } mutex_unlock(&open_lock); } else { int oldStretch; if (lock_fdc(drive)) return -EINTR; if (cmd != FDDEFPRM) { /* notice a disk change immediately, else * we lose our settings immediately*/ if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) return -EINTR; } oldStretch = g->stretch; user_params[drive] = *g; if (buffer_drive == drive) SUPBOUND(buffer_max, user_params[drive].sect); current_type[drive] = &user_params[drive]; floppy_sizes[drive] = user_params[drive].size; if (cmd == FDDEFPRM) drive_state[current_drive].keep_data = -1; else drive_state[current_drive].keep_data = 1; /* invalidation. Invalidate only when needed, i.e. * when there are already sectors in the buffer cache * whose number will change. This is useful, because * mtools often changes the geometry of the disk after * looking at the boot block */ if (drive_state[current_drive].maxblock > user_params[drive].sect || drive_state[current_drive].maxtrack || ((user_params[drive].sect ^ oldStretch) & (FD_SWAPSIDES | FD_SECTBASEMASK))) invalidate_drive(bdev); else process_fd_request(); } return 0; } /* handle obsolete ioctl's */ static unsigned int ioctl_table[] = { FDCLRPRM, FDSETPRM, FDDEFPRM, FDGETPRM, FDMSGON, FDMSGOFF, FDFMTBEG, FDFMTTRK, FDFMTEND, FDSETEMSGTRESH, FDFLUSH, FDSETMAXERRS, FDGETMAXERRS, FDGETDRVTYP, FDSETDRVPRM, FDGETDRVPRM, FDGETDRVSTAT, FDPOLLDRVSTAT, FDRESET, FDGETFDCSTAT, FDWERRORCLR, FDWERRORGET, FDRAWCMD, FDEJECT, FDTWADDLE }; static int normalize_ioctl(unsigned int *cmd, int *size) { int i; for (i = 0; i < ARRAY_SIZE(ioctl_table); i++) { if ((*cmd & 0xffff) == (ioctl_table[i] & 0xffff)) { *size = _IOC_SIZE(*cmd); *cmd = ioctl_table[i]; if (*size > _IOC_SIZE(*cmd)) { pr_info("ioctl not yet supported\n"); return -EFAULT; } return 0; } } return -EINVAL; } static int get_floppy_geometry(int drive, int type, struct floppy_struct **g) { if (type) *g = &floppy_type[type]; else { if (lock_fdc(drive)) return -EINTR; if (poll_drive(false, 0) == -EINTR) return -EINTR; process_fd_request(); *g = current_type[drive]; } if (!*g) return -ENODEV; return 0; } static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { int drive = (long)bdev->bd_disk->private_data; int type = ITYPE(drive_state[drive].fd_device); struct floppy_struct *g; int ret; ret = get_floppy_geometry(drive, type, &g); if (ret) return ret; geo->heads = g->head; geo->sectors = g->sect; geo->cylinders = g->track; return 0; } static bool valid_floppy_drive_params(const short autodetect[8], int native_format) { size_t floppy_type_size = ARRAY_SIZE(floppy_type); size_t i = 0; for (i = 0; i < 8; ++i) { if (autodetect[i] < 0 || autodetect[i] >= floppy_type_size) return false; } if (native_format < 0 || native_format >= floppy_type_size) return false; return true; } static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int drive = (long)bdev->bd_disk->private_data; int type = ITYPE(drive_state[drive].fd_device); int i; int ret; int size; union inparam { struct floppy_struct g; /* geometry */ struct format_descr f; struct floppy_max_errors max_errors; struct floppy_drive_params dp; } inparam; /* parameters coming from user space */ const void *outparam; /* parameters passed back to user space */ /* convert compatibility eject ioctls into floppy eject ioctl. * We do this in order to provide a means to eject floppy disks before * installing the new fdutils package */ if (cmd == CDROMEJECT || /* CD-ROM eject */ cmd == 0x6470) { /* SunOS floppy eject */ DPRINT("obsolete eject ioctl\n"); DPRINT("please use floppycontrol --eject\n"); cmd = FDEJECT; } if (!((cmd & 0xff00) == 0x0200)) return -EINVAL; /* convert the old style command into a new style command */ ret = normalize_ioctl(&cmd, &size); if (ret) return ret; /* permission checks */ if (((cmd & 0x40) && !(mode & (FMODE_WRITE | FMODE_WRITE_IOCTL))) || ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))) return -EPERM; if (WARN_ON(size < 0 || size > sizeof(inparam))) return -EINVAL; /* copyin */ memset(&inparam, 0, sizeof(inparam)); if (_IOC_DIR(cmd) & _IOC_WRITE) { ret = fd_copyin((void __user *)param, &inparam, size); if (ret) return ret; } switch (cmd) { case FDEJECT: if (drive_state[drive].fd_ref != 1) /* somebody else has this drive open */ return -EBUSY; if (lock_fdc(drive)) return -EINTR; /* do the actual eject. Fails on * non-Sparc architectures */ ret = fd_eject(UNIT(drive)); set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); process_fd_request(); return ret; case FDCLRPRM: if (lock_fdc(drive)) return -EINTR; current_type[drive] = NULL; floppy_sizes[drive] = MAX_DISK_SIZE << 1; drive_state[drive].keep_data = 0; return invalidate_drive(bdev); case FDSETPRM: case FDDEFPRM: return set_geometry(cmd, &inparam.g, drive, type, bdev); case FDGETPRM: ret = get_floppy_geometry(drive, type, (struct floppy_struct **)&outparam); if (ret) return ret; memcpy(&inparam.g, outparam, offsetof(struct floppy_struct, name)); outparam = &inparam.g; break; case FDMSGON: drive_params[drive].flags |= FTD_MSG; return 0; case FDMSGOFF: drive_params[drive].flags &= ~FTD_MSG; return 0; case FDFMTBEG: if (lock_fdc(drive)) return -EINTR; if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) return -EINTR; ret = drive_state[drive].flags; process_fd_request(); if (ret & FD_VERIFY) return -ENODEV; if (!(ret & FD_DISK_WRITABLE)) return -EROFS; return 0; case FDFMTTRK: if (drive_state[drive].fd_ref != 1) return -EBUSY; return do_format(drive, &inparam.f); case FDFMTEND: case FDFLUSH: if (lock_fdc(drive)) return -EINTR; return invalidate_drive(bdev); case FDSETEMSGTRESH: drive_params[drive].max_errors.reporting = (unsigned short)(param & 0x0f); return 0; case FDGETMAXERRS: outparam = &drive_params[drive].max_errors; break; case FDSETMAXERRS: drive_params[drive].max_errors = inparam.max_errors; break; case FDGETDRVTYP: outparam = drive_name(type, drive); SUPBOUND(size, strlen((const char *)outparam) + 1); break; case FDSETDRVPRM: if (!valid_floppy_drive_params(inparam.dp.autodetect, inparam.dp.native_format)) return -EINVAL; drive_params[drive] = inparam.dp; break; case FDGETDRVPRM: outparam = &drive_params[drive]; break; case FDPOLLDRVSTAT: if (lock_fdc(drive)) return -EINTR; if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) return -EINTR; process_fd_request(); /* fall through */ case FDGETDRVSTAT: outparam = &drive_state[drive]; break; case FDRESET: return user_reset_fdc(drive, (int)param, true); case FDGETFDCSTAT: outparam = &fdc_state[FDC(drive)]; break; case FDWERRORCLR: memset(&write_errors[drive], 0, sizeof(write_errors[drive])); return 0; case FDWERRORGET: outparam = &write_errors[drive]; break; case FDRAWCMD: if (type) return -EINVAL; if (lock_fdc(drive)) return -EINTR; set_floppy(drive); i = raw_cmd_ioctl(cmd, (void __user *)param); if (i == -EINTR) return -EINTR; process_fd_request(); return i; case FDTWADDLE: if (lock_fdc(drive)) return -EINTR; twaddle(current_fdc, current_drive); process_fd_request(); return 0; default: return -EINVAL; } if (_IOC_DIR(cmd) & _IOC_READ) return fd_copyout((void __user *)param, outparam, size); return 0; } static int fd_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int ret; mutex_lock(&floppy_mutex); ret = fd_locked_ioctl(bdev, mode, cmd, param); mutex_unlock(&floppy_mutex); return ret; } #ifdef CONFIG_COMPAT struct compat_floppy_drive_params { char cmos; compat_ulong_t max_dtr; compat_ulong_t hlt; compat_ulong_t hut; compat_ulong_t srt; compat_ulong_t spinup; compat_ulong_t spindown; unsigned char spindown_offset; unsigned char select_delay; unsigned char rps; unsigned char tracks; compat_ulong_t timeout; unsigned char interleave_sect; struct floppy_max_errors max_errors; char flags; char read_track; short autodetect[8]; compat_int_t checkfreq; compat_int_t native_format; }; struct compat_floppy_drive_struct { signed char flags; compat_ulong_t spinup_date; compat_ulong_t select_date; compat_ulong_t first_read_date; short probed_format; short track; short maxblock; short maxtrack; compat_int_t generation; compat_int_t keep_data; compat_int_t fd_ref; compat_int_t fd_device; compat_int_t last_checked; compat_caddr_t dmabuf; compat_int_t bufblocks; }; struct compat_floppy_fdc_state { compat_int_t spec1; compat_int_t spec2; compat_int_t dtr; unsigned char version; unsigned char dor; compat_ulong_t address; unsigned int rawcmd:2; unsigned int reset:1; unsigned int need_configure:1; unsigned int perp_mode:2; unsigned int has_fifo:1; unsigned int driver_version; unsigned char track[4]; }; struct compat_floppy_write_errors { unsigned int write_errors; compat_ulong_t first_error_sector; compat_int_t first_error_generation; compat_ulong_t last_error_sector; compat_int_t last_error_generation; compat_uint_t badness; }; #define FDSETPRM32 _IOW(2, 0x42, struct compat_floppy_struct) #define FDDEFPRM32 _IOW(2, 0x43, struct compat_floppy_struct) #define FDSETDRVPRM32 _IOW(2, 0x90, struct compat_floppy_drive_params) #define FDGETDRVPRM32 _IOR(2, 0x11, struct compat_floppy_drive_params) #define FDGETDRVSTAT32 _IOR(2, 0x12, struct compat_floppy_drive_struct) #define FDPOLLDRVSTAT32 _IOR(2, 0x13, struct compat_floppy_drive_struct) #define FDGETFDCSTAT32 _IOR(2, 0x15, struct compat_floppy_fdc_state) #define FDWERRORGET32 _IOR(2, 0x17, struct compat_floppy_write_errors) static int compat_set_geometry(struct block_device *bdev, fmode_t mode, unsigned int cmd, struct compat_floppy_struct __user *arg) { struct floppy_struct v; int drive, type; int err; BUILD_BUG_ON(offsetof(struct floppy_struct, name) != offsetof(struct compat_floppy_struct, name)); if (!(mode & (FMODE_WRITE | FMODE_WRITE_IOCTL))) return -EPERM; memset(&v, 0, sizeof(struct floppy_struct)); if (copy_from_user(&v, arg, offsetof(struct floppy_struct, name))) return -EFAULT; mutex_lock(&floppy_mutex); drive = (long)bdev->bd_disk->private_data; type = ITYPE(drive_state[drive].fd_device); err = set_geometry(cmd == FDSETPRM32 ? FDSETPRM : FDDEFPRM, &v, drive, type, bdev); mutex_unlock(&floppy_mutex); return err; } static int compat_get_prm(int drive, struct compat_floppy_struct __user *arg) { struct compat_floppy_struct v; struct floppy_struct *p; int err; memset(&v, 0, sizeof(v)); mutex_lock(&floppy_mutex); err = get_floppy_geometry(drive, ITYPE(drive_state[drive].fd_device), &p); if (err) { mutex_unlock(&floppy_mutex); return err; } memcpy(&v, p, offsetof(struct floppy_struct, name)); mutex_unlock(&floppy_mutex); if (copy_to_user(arg, &v, sizeof(struct compat_floppy_struct))) return -EFAULT; return 0; } static int compat_setdrvprm(int drive, struct compat_floppy_drive_params __user *arg) { struct compat_floppy_drive_params v; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&v, arg, sizeof(struct compat_floppy_drive_params))) return -EFAULT; if (!valid_floppy_drive_params(v.autodetect, v.native_format)) return -EINVAL; mutex_lock(&floppy_mutex); drive_params[drive].cmos = v.cmos; drive_params[drive].max_dtr = v.max_dtr; drive_params[drive].hlt = v.hlt; drive_params[drive].hut = v.hut; drive_params[drive].srt = v.srt; drive_params[drive].spinup = v.spinup; drive_params[drive].spindown = v.spindown; drive_params[drive].spindown_offset = v.spindown_offset; drive_params[drive].select_delay = v.select_delay; drive_params[drive].rps = v.rps; drive_params[drive].tracks = v.tracks; drive_params[drive].timeout = v.timeout; drive_params[drive].interleave_sect = v.interleave_sect; drive_params[drive].max_errors = v.max_errors; drive_params[drive].flags = v.flags; drive_params[drive].read_track = v.read_track; memcpy(drive_params[drive].autodetect, v.autodetect, sizeof(v.autodetect)); drive_params[drive].checkfreq = v.checkfreq; drive_params[drive].native_format = v.native_format; mutex_unlock(&floppy_mutex); return 0; } static int compat_getdrvprm(int drive, struct compat_floppy_drive_params __user *arg) { struct compat_floppy_drive_params v; memset(&v, 0, sizeof(struct compat_floppy_drive_params)); mutex_lock(&floppy_mutex); v.cmos = drive_params[drive].cmos; v.max_dtr = drive_params[drive].max_dtr; v.hlt = drive_params[drive].hlt; v.hut = drive_params[drive].hut; v.srt = drive_params[drive].srt; v.spinup = drive_params[drive].spinup; v.spindown = drive_params[drive].spindown; v.spindown_offset = drive_params[drive].spindown_offset; v.select_delay = drive_params[drive].select_delay; v.rps = drive_params[drive].rps; v.tracks = drive_params[drive].tracks; v.timeout = drive_params[drive].timeout; v.interleave_sect = drive_params[drive].interleave_sect; v.max_errors = drive_params[drive].max_errors; v.flags = drive_params[drive].flags; v.read_track = drive_params[drive].read_track; memcpy(v.autodetect, drive_params[drive].autodetect, sizeof(v.autodetect)); v.checkfreq = drive_params[drive].checkfreq; v.native_format = drive_params[drive].native_format; mutex_unlock(&floppy_mutex); if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_params))) return -EFAULT; return 0; } static int compat_getdrvstat(int drive, bool poll, struct compat_floppy_drive_struct __user *arg) { struct compat_floppy_drive_struct v; memset(&v, 0, sizeof(struct compat_floppy_drive_struct)); mutex_lock(&floppy_mutex); if (poll) { if (lock_fdc(drive)) goto Eintr; if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) goto Eintr; process_fd_request(); } v.spinup_date = drive_state[drive].spinup_date; v.select_date = drive_state[drive].select_date; v.first_read_date = drive_state[drive].first_read_date; v.probed_format = drive_state[drive].probed_format; v.track = drive_state[drive].track; v.maxblock = drive_state[drive].maxblock; v.maxtrack = drive_state[drive].maxtrack; v.generation = drive_state[drive].generation; v.keep_data = drive_state[drive].keep_data; v.fd_ref = drive_state[drive].fd_ref; v.fd_device = drive_state[drive].fd_device; v.last_checked = drive_state[drive].last_checked; v.dmabuf = (uintptr_t) drive_state[drive].dmabuf; v.bufblocks = drive_state[drive].bufblocks; mutex_unlock(&floppy_mutex); if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_struct))) return -EFAULT; return 0; Eintr: mutex_unlock(&floppy_mutex); return -EINTR; } static int compat_getfdcstat(int drive, struct compat_floppy_fdc_state __user *arg) { struct compat_floppy_fdc_state v32; struct floppy_fdc_state v; mutex_lock(&floppy_mutex); v = fdc_state[FDC(drive)]; mutex_unlock(&floppy_mutex); memset(&v32, 0, sizeof(struct compat_floppy_fdc_state)); v32.spec1 = v.spec1; v32.spec2 = v.spec2; v32.dtr = v.dtr; v32.version = v.version; v32.dor = v.dor; v32.address = v.address; v32.rawcmd = v.rawcmd; v32.reset = v.reset; v32.need_configure = v.need_configure; v32.perp_mode = v.perp_mode; v32.has_fifo = v.has_fifo; v32.driver_version = v.driver_version; memcpy(v32.track, v.track, 4); if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_fdc_state))) return -EFAULT; return 0; } static int compat_werrorget(int drive, struct compat_floppy_write_errors __user *arg) { struct compat_floppy_write_errors v32; struct floppy_write_errors v; memset(&v32, 0, sizeof(struct compat_floppy_write_errors)); mutex_lock(&floppy_mutex); v = write_errors[drive]; mutex_unlock(&floppy_mutex); v32.write_errors = v.write_errors; v32.first_error_sector = v.first_error_sector; v32.first_error_generation = v.first_error_generation; v32.last_error_sector = v.last_error_sector; v32.last_error_generation = v.last_error_generation; v32.badness = v.badness; if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_write_errors))) return -EFAULT; return 0; } static int fd_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int drive = (long)bdev->bd_disk->private_data; switch (cmd) { case CDROMEJECT: /* CD-ROM eject */ case 0x6470: /* SunOS floppy eject */ case FDMSGON: case FDMSGOFF: case FDSETEMSGTRESH: case FDFLUSH: case FDWERRORCLR: case FDEJECT: case FDCLRPRM: case FDFMTBEG: case FDRESET: case FDTWADDLE: return fd_ioctl(bdev, mode, cmd, param); case FDSETMAXERRS: case FDGETMAXERRS: case FDGETDRVTYP: case FDFMTEND: case FDFMTTRK: case FDRAWCMD: return fd_ioctl(bdev, mode, cmd, (unsigned long)compat_ptr(param)); case FDSETPRM32: case FDDEFPRM32: return compat_set_geometry(bdev, mode, cmd, compat_ptr(param)); case FDGETPRM32: return compat_get_prm(drive, compat_ptr(param)); case FDSETDRVPRM32: return compat_setdrvprm(drive, compat_ptr(param)); case FDGETDRVPRM32: return compat_getdrvprm(drive, compat_ptr(param)); case FDPOLLDRVSTAT32: return compat_getdrvstat(drive, true, compat_ptr(param)); case FDGETDRVSTAT32: return compat_getdrvstat(drive, false, compat_ptr(param)); case FDGETFDCSTAT32: return compat_getfdcstat(drive, compat_ptr(param)); case FDWERRORGET32: return compat_werrorget(drive, compat_ptr(param)); } return -EINVAL; } #endif static void __init config_types(void) { bool has_drive = false; int drive; /* read drive info out of physical CMOS */ drive = 0; if (!drive_params[drive].cmos) drive_params[drive].cmos = FLOPPY0_TYPE; drive = 1; if (!drive_params[drive].cmos) drive_params[drive].cmos = FLOPPY1_TYPE; /* FIXME: additional physical CMOS drive detection should go here */ for (drive = 0; drive < N_DRIVE; drive++) { unsigned int type = drive_params[drive].cmos; struct floppy_drive_params *params; const char *name = NULL; char temparea[32]; if (type < ARRAY_SIZE(default_drive_params)) { params = &default_drive_params[type].params; if (type) { name = default_drive_params[type].name; allowed_drive_mask |= 1 << drive; } else allowed_drive_mask &= ~(1 << drive); } else { params = &default_drive_params[0].params; snprintf(temparea, sizeof(temparea), "unknown type %d (usb?)", type); name = temparea; } if (name) { const char *prepend; if (!has_drive) { prepend = ""; has_drive = true; pr_info("Floppy drive(s):"); } else { prepend = ","; } pr_cont("%s fd%d is %s", prepend, drive, name); } drive_params[drive] = *params; } if (has_drive) pr_cont("\n"); } static void floppy_release(struct gendisk *disk, fmode_t mode) { int drive = (long)disk->private_data; mutex_lock(&floppy_mutex); mutex_lock(&open_lock); if (!drive_state[drive].fd_ref--) { DPRINT("floppy_release with fd_ref == 0"); drive_state[drive].fd_ref = 0; } if (!drive_state[drive].fd_ref) opened_bdev[drive] = NULL; mutex_unlock(&open_lock); mutex_unlock(&floppy_mutex); } /* * floppy_open check for aliasing (/dev/fd0 can be the same as * /dev/PS0 etc), and disallows simultaneous access to the same * drive with different device numbers. */ static int floppy_open(struct block_device *bdev, fmode_t mode) { int drive = (long)bdev->bd_disk->private_data; int old_dev, new_dev; int try; int res = -EBUSY; char *tmp; mutex_lock(&floppy_mutex); mutex_lock(&open_lock); old_dev = drive_state[drive].fd_device; if (opened_bdev[drive] && opened_bdev[drive] != bdev) goto out2; if (!drive_state[drive].fd_ref && (drive_params[drive].flags & FD_BROKEN_DCL)) { set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); } drive_state[drive].fd_ref++; opened_bdev[drive] = bdev; res = -ENXIO; if (!floppy_track_buffer) { /* if opening an ED drive, reserve a big buffer, * else reserve a small one */ if ((drive_params[drive].cmos == 6) || (drive_params[drive].cmos == 5)) try = 64; /* Only 48 actually useful */ else try = 32; /* Only 24 actually useful */ tmp = (char *)fd_dma_mem_alloc(1024 * try); if (!tmp && !floppy_track_buffer) { try >>= 1; /* buffer only one side */ INFBOUND(try, 16); tmp = (char *)fd_dma_mem_alloc(1024 * try); } if (!tmp && !floppy_track_buffer) fallback_on_nodma_alloc(&tmp, 2048 * try); if (!tmp && !floppy_track_buffer) { DPRINT("Unable to allocate DMA memory\n"); goto out; } if (floppy_track_buffer) { if (tmp) fd_dma_mem_free((unsigned long)tmp, try * 1024); } else { buffer_min = buffer_max = -1; floppy_track_buffer = tmp; max_buffer_sectors = try; } } new_dev = MINOR(bdev->bd_dev); drive_state[drive].fd_device = new_dev; set_capacity(disks[drive], floppy_sizes[new_dev]); if (old_dev != -1 && old_dev != new_dev) { if (buffer_drive == drive) buffer_track = -1; } if (fdc_state[FDC(drive)].rawcmd == 1) fdc_state[FDC(drive)].rawcmd = 2; if (!(mode & FMODE_NDELAY)) { if (mode & (FMODE_READ|FMODE_WRITE)) { drive_state[drive].last_checked = 0; clear_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags); check_disk_change(bdev); if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags)) goto out; if (test_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags)) goto out; } res = -EROFS; if ((mode & FMODE_WRITE) && !test_bit(FD_DISK_WRITABLE_BIT, &drive_state[drive].flags)) goto out; } mutex_unlock(&open_lock); mutex_unlock(&floppy_mutex); return 0; out: drive_state[drive].fd_ref--; if (!drive_state[drive].fd_ref) opened_bdev[drive] = NULL; out2: mutex_unlock(&open_lock); mutex_unlock(&floppy_mutex); return res; } /* * Check if the disk has been changed or if a change has been faked. */ static unsigned int floppy_check_events(struct gendisk *disk, unsigned int clearing) { int drive = (long)disk->private_data; if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)) return DISK_EVENT_MEDIA_CHANGE; if (time_after(jiffies, drive_state[drive].last_checked + drive_params[drive].checkfreq)) { if (lock_fdc(drive)) return 0; poll_drive(false, 0); process_fd_request(); } if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) || test_bit(drive, &fake_change) || drive_no_geom(drive)) return DISK_EVENT_MEDIA_CHANGE; return 0; } /* * This implements "read block 0" for floppy_revalidate(). * Needed for format autodetection, checking whether there is * a disk in the drive, and whether that disk is writable. */ struct rb0_cbdata { int drive; struct completion complete; }; static void floppy_rb0_cb(struct bio *bio) { struct rb0_cbdata *cbdata = (struct rb0_cbdata *)bio->bi_private; int drive = cbdata->drive; if (bio->bi_status) { pr_info("floppy: error %d while reading block 0\n", bio->bi_status); set_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags); } complete(&cbdata->complete); } static int __floppy_read_block_0(struct block_device *bdev, int drive) { struct bio bio; struct bio_vec bio_vec; struct page *page; struct rb0_cbdata cbdata; size_t size; page = alloc_page(GFP_NOIO); if (!page) { process_fd_request(); return -ENOMEM; } size = bdev->bd_block_size; if (!size) size = 1024; cbdata.drive = drive; bio_init(&bio, &bio_vec, 1); bio_set_dev(&bio, bdev); bio_add_page(&bio, page, size, 0); bio.bi_iter.bi_sector = 0; bio.bi_flags |= (1 << BIO_QUIET); bio.bi_private = &cbdata; bio.bi_end_io = floppy_rb0_cb; bio_set_op_attrs(&bio, REQ_OP_READ, 0); init_completion(&cbdata.complete); submit_bio(&bio); process_fd_request(); wait_for_completion(&cbdata.complete); __free_page(page); return 0; } /* revalidate the floppy disk, i.e. trigger format autodetection by reading * the bootblock (block 0). "Autodetection" is also needed to check whether * there is a disk in the drive at all... Thus we also do it for fixed * geometry formats */ static int floppy_revalidate(struct gendisk *disk) { int drive = (long)disk->private_data; int cf; int res = 0; if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) || test_bit(drive, &fake_change) || drive_no_geom(drive)) { if (WARN(atomic_read(&usage_count) == 0, "VFS: revalidate called on non-open device.\n")) return -EFAULT; res = lock_fdc(drive); if (res) return res; cf = (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) || test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)); if (!(cf || test_bit(drive, &fake_change) || drive_no_geom(drive))) { process_fd_request(); /*already done by another thread */ return 0; } drive_state[drive].maxblock = 0; drive_state[drive].maxtrack = 0; if (buffer_drive == drive) buffer_track = -1; clear_bit(drive, &fake_change); clear_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); if (cf) drive_state[drive].generation++; if (drive_no_geom(drive)) { /* auto-sensing */ res = __floppy_read_block_0(opened_bdev[drive], drive); } else { if (cf) poll_drive(false, FD_RAW_NEED_DISK); process_fd_request(); } } set_capacity(disk, floppy_sizes[drive_state[drive].fd_device]); return res; } static const struct block_device_operations floppy_fops = { .owner = THIS_MODULE, .open = floppy_open, .release = floppy_release, .ioctl = fd_ioctl, .getgeo = fd_getgeo, .check_events = floppy_check_events, .revalidate_disk = floppy_revalidate, #ifdef CONFIG_COMPAT .compat_ioctl = fd_compat_ioctl, #endif }; /* * Floppy Driver initialization * ============================= */ /* Determine the floppy disk controller type */ /* This routine was written by David C. Niemi */ static char __init get_fdc_version(void) { int r; output_byte(FD_DUMPREGS); /* 82072 and better know DUMPREGS */ if (fdc_state[current_fdc].reset) return FDC_NONE; r = result(); if (r <= 0x00) return FDC_NONE; /* No FDC present ??? */ if ((r == 1) && (reply_buffer[0] == 0x80)) { pr_info("FDC %d is an 8272A\n", current_fdc); return FDC_8272A; /* 8272a/765 don't know DUMPREGS */ } if (r != 10) { pr_info("FDC %d init: DUMPREGS: unexpected return of %d bytes.\n", current_fdc, r); return FDC_UNKNOWN; } if (!fdc_configure()) { pr_info("FDC %d is an 82072\n", current_fdc); return FDC_82072; /* 82072 doesn't know CONFIGURE */ } output_byte(FD_PERPENDICULAR); if (need_more_output() == MORE_OUTPUT) { output_byte(0); } else { pr_info("FDC %d is an 82072A\n", current_fdc); return FDC_82072A; /* 82072A as found on Sparcs. */ } output_byte(FD_UNLOCK); r = result(); if ((r == 1) && (reply_buffer[0] == 0x80)) { pr_info("FDC %d is a pre-1991 82077\n", current_fdc); return FDC_82077_ORIG; /* Pre-1991 82077, doesn't know * LOCK/UNLOCK */ } if ((r != 1) || (reply_buffer[0] != 0x00)) { pr_info("FDC %d init: UNLOCK: unexpected return of %d bytes.\n", current_fdc, r); return FDC_UNKNOWN; } output_byte(FD_PARTID); r = result(); if (r != 1) { pr_info("FDC %d init: PARTID: unexpected return of %d bytes.\n", current_fdc, r); return FDC_UNKNOWN; } if (reply_buffer[0] == 0x80) { pr_info("FDC %d is a post-1991 82077\n", current_fdc); return FDC_82077; /* Revised 82077AA passes all the tests */ } switch (reply_buffer[0] >> 5) { case 0x0: /* Either a 82078-1 or a 82078SL running at 5Volt */ pr_info("FDC %d is an 82078.\n", current_fdc); return FDC_82078; case 0x1: pr_info("FDC %d is a 44pin 82078\n", current_fdc); return FDC_82078; case 0x2: pr_info("FDC %d is a S82078B\n", current_fdc); return FDC_S82078B; case 0x3: pr_info("FDC %d is a National Semiconductor PC87306\n", current_fdc); return FDC_87306; default: pr_info("FDC %d init: 82078 variant with unknown PARTID=%d.\n", current_fdc, reply_buffer[0] >> 5); return FDC_82078_UNKN; } } /* get_fdc_version */ /* lilo configuration */ static void __init floppy_set_flags(int *ints, int param, int param2) { int i; for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) { if (param) default_drive_params[i].params.flags |= param2; else default_drive_params[i].params.flags &= ~param2; } DPRINT("%s flag 0x%x\n", param2 ? "Setting" : "Clearing", param); } static void __init daring(int *ints, int param, int param2) { int i; for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) { if (param) { default_drive_params[i].params.select_delay = 0; default_drive_params[i].params.flags |= FD_SILENT_DCL_CLEAR; } else { default_drive_params[i].params.select_delay = 2 * HZ / 100; default_drive_params[i].params.flags &= ~FD_SILENT_DCL_CLEAR; } } DPRINT("Assuming %s floppy hardware\n", param ? "standard" : "broken"); } static void __init set_cmos(int *ints, int dummy, int dummy2) { int current_drive = 0; if (ints[0] != 2) { DPRINT("wrong number of parameters for CMOS\n"); return; } current_drive = ints[1]; if (current_drive < 0 || current_drive >= 8) { DPRINT("bad drive for set_cmos\n"); return; } #if N_FDC > 1 if (current_drive >= 4 && !FDC2) FDC2 = 0x370; #endif drive_params[current_drive].cmos = ints[2]; DPRINT("setting CMOS code to %d\n", ints[2]); } static struct param_table { const char *name; void (*fn) (int *ints, int param, int param2); int *var; int def_param; int param2; } config_params[] __initdata = { {"allowed_drive_mask", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */ {"all_drives", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */ {"asus_pci", NULL, &allowed_drive_mask, 0x33, 0}, {"irq", NULL, &FLOPPY_IRQ, 6, 0}, {"dma", NULL, &FLOPPY_DMA, 2, 0}, {"daring", daring, NULL, 1, 0}, #if N_FDC > 1 {"two_fdc", NULL, &FDC2, 0x370, 0}, {"one_fdc", NULL, &FDC2, 0, 0}, #endif {"thinkpad", floppy_set_flags, NULL, 1, FD_INVERTED_DCL}, {"broken_dcl", floppy_set_flags, NULL, 1, FD_BROKEN_DCL}, {"messages", floppy_set_flags, NULL, 1, FTD_MSG}, {"silent_dcl_clear", floppy_set_flags, NULL, 1, FD_SILENT_DCL_CLEAR}, {"debug", floppy_set_flags, NULL, 1, FD_DEBUG}, {"nodma", NULL, &can_use_virtual_dma, 1, 0}, {"omnibook", NULL, &can_use_virtual_dma, 1, 0}, {"yesdma", NULL, &can_use_virtual_dma, 0, 0}, {"fifo_depth", NULL, &fifo_depth, 0xa, 0}, {"nofifo", NULL, &no_fifo, 0x20, 0}, {"usefifo", NULL, &no_fifo, 0, 0}, {"cmos", set_cmos, NULL, 0, 0}, {"slow", NULL, &slow_floppy, 1, 0}, {"unexpected_interrupts", NULL, &print_unex, 1, 0}, {"no_unexpected_interrupts", NULL, &print_unex, 0, 0}, {"L40SX", NULL, &print_unex, 0, 0} EXTRA_FLOPPY_PARAMS }; static int __init floppy_setup(char *str) { int i; int param; int ints[11]; str = get_options(str, ARRAY_SIZE(ints), ints); if (str) { for (i = 0; i < ARRAY_SIZE(config_params); i++) { if (strcmp(str, config_params[i].name) == 0) { if (ints[0]) param = ints[1]; else param = config_params[i].def_param; if (config_params[i].fn) config_params[i].fn(ints, param, config_params[i]. param2); if (config_params[i].var) { DPRINT("%s=%d\n", str, param); *config_params[i].var = param; } return 1; } } } if (str) { DPRINT("unknown floppy option [%s]\n", str); DPRINT("allowed options are:"); for (i = 0; i < ARRAY_SIZE(config_params); i++) pr_cont(" %s", config_params[i].name); pr_cont("\n"); } else DPRINT("botched floppy option\n"); DPRINT("Read Documentation/admin-guide/blockdev/floppy.rst\n"); return 0; } static int have_no_fdc = -ENODEV; static ssize_t floppy_cmos_show(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *p = to_platform_device(dev); int drive; drive = p->id; return sprintf(buf, "%X\n", drive_params[drive].cmos); } static DEVICE_ATTR(cmos, 0444, floppy_cmos_show, NULL); static struct attribute *floppy_dev_attrs[] = { &dev_attr_cmos.attr, NULL }; ATTRIBUTE_GROUPS(floppy_dev); static void floppy_device_release(struct device *dev) { } static int floppy_resume(struct device *dev) { int fdc; for (fdc = 0; fdc < N_FDC; fdc++) if (fdc_state[fdc].address != -1) user_reset_fdc(-1, FD_RESET_ALWAYS, false); return 0; } static const struct dev_pm_ops floppy_pm_ops = { .resume = floppy_resume, .restore = floppy_resume, }; static struct platform_driver floppy_driver = { .driver = { .name = "floppy", .pm = &floppy_pm_ops, }, }; static const struct blk_mq_ops floppy_mq_ops = { .queue_rq = floppy_queue_rq, }; static struct platform_device floppy_device[N_DRIVE]; static bool floppy_available(int drive) { if (!(allowed_drive_mask & (1 << drive))) return false; if (fdc_state[FDC(drive)].version == FDC_NONE) return false; return true; } static struct kobject *floppy_find(dev_t dev, int *part, void *data) { int drive = (*part & 3) | ((*part & 0x80) >> 5); if (drive >= N_DRIVE || !floppy_available(drive)) return NULL; if (((*part >> 2) & 0x1f) >= ARRAY_SIZE(floppy_type)) return NULL; *part = 0; return get_disk_and_module(disks[drive]); } static int __init do_floppy_init(void) { int i, unit, drive, err; set_debugt(); interruptjiffies = resultjiffies = jiffies; #if defined(CONFIG_PPC) if (check_legacy_ioport(FDC1)) return -ENODEV; #endif raw_cmd = NULL; floppy_wq = alloc_ordered_workqueue("floppy", 0); if (!floppy_wq) return -ENOMEM; for (drive = 0; drive < N_DRIVE; drive++) { disks[drive] = alloc_disk(1); if (!disks[drive]) { err = -ENOMEM; goto out_put_disk; } disks[drive]->queue = blk_mq_init_sq_queue(&tag_sets[drive], &floppy_mq_ops, 2, BLK_MQ_F_SHOULD_MERGE); if (IS_ERR(disks[drive]->queue)) { err = PTR_ERR(disks[drive]->queue); disks[drive]->queue = NULL; goto out_put_disk; } blk_queue_bounce_limit(disks[drive]->queue, BLK_BOUNCE_HIGH); blk_queue_max_hw_sectors(disks[drive]->queue, 64); disks[drive]->major = FLOPPY_MAJOR; disks[drive]->first_minor = TOMINOR(drive); disks[drive]->fops = &floppy_fops; disks[drive]->events = DISK_EVENT_MEDIA_CHANGE; sprintf(disks[drive]->disk_name, "fd%d", drive); timer_setup(&motor_off_timer[drive], motor_off_callback, 0); } err = register_blkdev(FLOPPY_MAJOR, "fd"); if (err) goto out_put_disk; err = platform_driver_register(&floppy_driver); if (err) goto out_unreg_blkdev; blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, floppy_find, NULL, NULL); for (i = 0; i < 256; i++) if (ITYPE(i)) floppy_sizes[i] = floppy_type[ITYPE(i)].size; else floppy_sizes[i] = MAX_DISK_SIZE << 1; reschedule_timeout(MAXTIMEOUT, "floppy init"); config_types(); for (i = 0; i < N_FDC; i++) { current_fdc = i; memset(&fdc_state[current_fdc], 0, sizeof(*fdc_state)); fdc_state[current_fdc].dtr = -1; fdc_state[current_fdc].dor = 0x4; #if defined(__sparc__) || defined(__mc68000__) /*sparcs/sun3x don't have a DOR reset which we can fall back on to */ #ifdef __mc68000__ if (MACH_IS_SUN3X) #endif fdc_state[current_fdc].version = FDC_82072A; #endif } use_virtual_dma = can_use_virtual_dma & 1; fdc_state[0].address = FDC1; if (fdc_state[0].address == -1) { cancel_delayed_work(&fd_timeout); err = -ENODEV; goto out_unreg_region; } #if N_FDC > 1 fdc_state[1].address = FDC2; #endif current_fdc = 0; /* reset fdc in case of unexpected interrupt */ err = floppy_grab_irq_and_dma(); if (err) { cancel_delayed_work(&fd_timeout); err = -EBUSY; goto out_unreg_region; } /* initialise drive state */ for (drive = 0; drive < N_DRIVE; drive++) { memset(&drive_state[drive], 0, sizeof(drive_state[drive])); memset(&write_errors[drive], 0, sizeof(write_errors[drive])); set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags); set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags); set_bit(FD_VERIFY_BIT, &drive_state[drive].flags); drive_state[drive].fd_device = -1; floppy_track_buffer = NULL; max_buffer_sectors = 0; } /* * Small 10 msec delay to let through any interrupt that * initialization might have triggered, to not * confuse detection: */ msleep(10); for (i = 0; i < N_FDC; i++) { current_fdc = i; fdc_state[current_fdc].driver_version = FD_DRIVER_VERSION; for (unit = 0; unit < 4; unit++) fdc_state[current_fdc].track[unit] = 0; if (fdc_state[current_fdc].address == -1) continue; fdc_state[current_fdc].rawcmd = 2; if (user_reset_fdc(-1, FD_RESET_ALWAYS, false)) { /* free ioports reserved by floppy_grab_irq_and_dma() */ floppy_release_regions(current_fdc); fdc_state[current_fdc].address = -1; fdc_state[current_fdc].version = FDC_NONE; continue; } /* Try to determine the floppy controller type */ fdc_state[current_fdc].version = get_fdc_version(); if (fdc_state[current_fdc].version == FDC_NONE) { /* free ioports reserved by floppy_grab_irq_and_dma() */ floppy_release_regions(current_fdc); fdc_state[current_fdc].address = -1; continue; } if (can_use_virtual_dma == 2 && fdc_state[current_fdc].version < FDC_82072A) can_use_virtual_dma = 0; have_no_fdc = 0; /* Not all FDCs seem to be able to handle the version command * properly, so force a reset for the standard FDC clones, * to avoid interrupt garbage. */ user_reset_fdc(-1, FD_RESET_ALWAYS, false); } current_fdc = 0; cancel_delayed_work(&fd_timeout); current_drive = 0; initialized = true; if (have_no_fdc) { DPRINT("no floppy controllers found\n"); err = have_no_fdc; goto out_release_dma; } for (drive = 0; drive < N_DRIVE; drive++) { if (!floppy_available(drive)) continue; floppy_device[drive].name = floppy_device_name; floppy_device[drive].id = drive; floppy_device[drive].dev.release = floppy_device_release; floppy_device[drive].dev.groups = floppy_dev_groups; err = platform_device_register(&floppy_device[drive]); if (err) goto out_remove_drives; /* to be cleaned up... */ disks[drive]->private_data = (void *)(long)drive; disks[drive]->flags |= GENHD_FL_REMOVABLE; device_add_disk(&floppy_device[drive].dev, disks[drive], NULL); } return 0; out_remove_drives: while (drive--) { if (floppy_available(drive)) { del_gendisk(disks[drive]); platform_device_unregister(&floppy_device[drive]); } } out_release_dma: if (atomic_read(&usage_count)) floppy_release_irq_and_dma(); out_unreg_region: blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); platform_driver_unregister(&floppy_driver); out_unreg_blkdev: unregister_blkdev(FLOPPY_MAJOR, "fd"); out_put_disk: destroy_workqueue(floppy_wq); for (drive = 0; drive < N_DRIVE; drive++) { if (!disks[drive]) break; if (disks[drive]->queue) { del_timer_sync(&motor_off_timer[drive]); blk_cleanup_queue(disks[drive]->queue); disks[drive]->queue = NULL; blk_mq_free_tag_set(&tag_sets[drive]); } put_disk(disks[drive]); } return err; } #ifndef MODULE static __init void floppy_async_init(void *data, async_cookie_t cookie) { do_floppy_init(); } #endif static int __init floppy_init(void) { #ifdef MODULE return do_floppy_init(); #else /* Don't hold up the bootup by the floppy initialization */ async_schedule(floppy_async_init, NULL); return 0; #endif } static const struct io_region { int offset; int size; } io_regions[] = { { 2, 1 }, /* address + 3 is sometimes reserved by pnp bios for motherboard */ { 4, 2 }, /* address + 6 is reserved, and may be taken by IDE. * Unfortunately, Adaptec doesn't know this :-(, */ { 7, 1 }, }; static void floppy_release_allocated_regions(int fdc, const struct io_region *p) { while (p != io_regions) { p--; release_region(fdc_state[fdc].address + p->offset, p->size); } } #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)])) static int floppy_request_regions(int fdc) { const struct io_region *p; for (p = io_regions; p < ARRAY_END(io_regions); p++) { if (!request_region(fdc_state[fdc].address + p->offset, p->size, "floppy")) { DPRINT("Floppy io-port 0x%04lx in use\n", fdc_state[fdc].address + p->offset); floppy_release_allocated_regions(fdc, p); return -EBUSY; } } return 0; } static void floppy_release_regions(int fdc) { floppy_release_allocated_regions(fdc, ARRAY_END(io_regions)); } static int floppy_grab_irq_and_dma(void) { if (atomic_inc_return(&usage_count) > 1) return 0; /* * We might have scheduled a free_irq(), wait it to * drain first: */ flush_workqueue(floppy_wq); if (fd_request_irq()) { DPRINT("Unable to grab IRQ%d for the floppy driver\n", FLOPPY_IRQ); atomic_dec(&usage_count); return -1; } if (fd_request_dma()) { DPRINT("Unable to grab DMA%d for the floppy driver\n", FLOPPY_DMA); if (can_use_virtual_dma & 2) use_virtual_dma = can_use_virtual_dma = 1; if (!(can_use_virtual_dma & 1)) { fd_free_irq(); atomic_dec(&usage_count); return -1; } } for (current_fdc = 0; current_fdc < N_FDC; current_fdc++) { if (fdc_state[current_fdc].address != -1) { if (floppy_request_regions(current_fdc)) goto cleanup; } } for (current_fdc = 0; current_fdc < N_FDC; current_fdc++) { if (fdc_state[current_fdc].address != -1) { reset_fdc_info(current_fdc, 1); fdc_outb(fdc_state[current_fdc].dor, current_fdc, FD_DOR); } } current_fdc = 0; set_dor(0, ~0, 8); /* avoid immediate interrupt */ for (current_fdc = 0; current_fdc < N_FDC; current_fdc++) if (fdc_state[current_fdc].address != -1) fdc_outb(fdc_state[current_fdc].dor, current_fdc, FD_DOR); /* * The driver will try and free resources and relies on us * to know if they were allocated or not. */ current_fdc = 0; irqdma_allocated = 1; return 0; cleanup: fd_free_irq(); fd_free_dma(); while (--current_fdc >= 0) floppy_release_regions(current_fdc); atomic_dec(&usage_count); return -1; } static void floppy_release_irq_and_dma(void) { int old_fdc; #ifndef __sparc__ int drive; #endif long tmpsize; unsigned long tmpaddr; if (!atomic_dec_and_test(&usage_count)) return; if (irqdma_allocated) { fd_disable_dma(); fd_free_dma(); fd_free_irq(); irqdma_allocated = 0; } set_dor(0, ~0, 8); #if N_FDC > 1 set_dor(1, ~8, 0); #endif if (floppy_track_buffer && max_buffer_sectors) { tmpsize = max_buffer_sectors * 1024; tmpaddr = (unsigned long)floppy_track_buffer; floppy_track_buffer = NULL; max_buffer_sectors = 0; buffer_min = buffer_max = -1; fd_dma_mem_free(tmpaddr, tmpsize); } #ifndef __sparc__ for (drive = 0; drive < N_FDC * 4; drive++) if (timer_pending(motor_off_timer + drive)) pr_info("motor off timer %d still active\n", drive); #endif if (delayed_work_pending(&fd_timeout)) pr_info("floppy timer still active:%s\n", timeout_message); if (delayed_work_pending(&fd_timer)) pr_info("auxiliary floppy timer still active\n"); if (work_pending(&floppy_work)) pr_info("work still pending\n"); old_fdc = current_fdc; for (current_fdc = 0; current_fdc < N_FDC; current_fdc++) if (fdc_state[current_fdc].address != -1) floppy_release_regions(current_fdc); current_fdc = old_fdc; } #ifdef MODULE static char *floppy; static void __init parse_floppy_cfg_string(char *cfg) { char *ptr; while (*cfg) { ptr = cfg; while (*cfg && *cfg != ' ' && *cfg != '\t') cfg++; if (*cfg) { *cfg = '\0'; cfg++; } if (*ptr) floppy_setup(ptr); } } static int __init floppy_module_init(void) { if (floppy) parse_floppy_cfg_string(floppy); return floppy_init(); } module_init(floppy_module_init); static void __exit floppy_module_exit(void) { int drive; blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); unregister_blkdev(FLOPPY_MAJOR, "fd"); platform_driver_unregister(&floppy_driver); destroy_workqueue(floppy_wq); for (drive = 0; drive < N_DRIVE; drive++) { del_timer_sync(&motor_off_timer[drive]); if (floppy_available(drive)) { del_gendisk(disks[drive]); platform_device_unregister(&floppy_device[drive]); } blk_cleanup_queue(disks[drive]->queue); blk_mq_free_tag_set(&tag_sets[drive]); /* * These disks have not called add_disk(). Don't put down * queue reference in put_disk(). */ if (!(allowed_drive_mask & (1 << drive)) || fdc_state[FDC(drive)].version == FDC_NONE) disks[drive]->queue = NULL; put_disk(disks[drive]); } cancel_delayed_work_sync(&fd_timeout); cancel_delayed_work_sync(&fd_timer); if (atomic_read(&usage_count)) floppy_release_irq_and_dma(); /* eject disk, if any */ fd_eject(0); } module_exit(floppy_module_exit); module_param(floppy, charp, 0); module_param(FLOPPY_IRQ, int, 0); module_param(FLOPPY_DMA, int, 0); MODULE_AUTHOR("Alain L. Knaff"); MODULE_SUPPORTED_DEVICE("fd"); MODULE_LICENSE("GPL"); /* This doesn't actually get used other than for module information */ static const struct pnp_device_id floppy_pnpids[] = { {"PNP0700", 0}, {} }; MODULE_DEVICE_TABLE(pnp, floppy_pnpids); #else __setup("floppy=", floppy_setup); module_init(floppy_init) #endif MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);