/* * Copyright © 2012-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * Daniel Vetter * */ #include #include #include #include "i915_drv.h" /** * DOC: runtime pm * * The i915 driver supports dynamic enabling and disabling of entire hardware * blocks at runtime. This is especially important on the display side where * software is supposed to control many power gates manually on recent hardware, * since on the GT side a lot of the power management is done by the hardware. * But even there some manual control at the device level is required. * * Since i915 supports a diverse set of platforms with a unified codebase and * hardware engineers just love to shuffle functionality around between power * domains there's a sizeable amount of indirection required. This file provides * generic functions to the driver for grabbing and releasing references for * abstract power domains. It then maps those to the actual power wells * present for a given platform. */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) #include #define STACKDEPTH 8 static noinline depot_stack_handle_t __save_depot_stack(void) { unsigned long entries[STACKDEPTH]; unsigned int n; n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN); } static void __print_depot_stack(depot_stack_handle_t stack, char *buf, int sz, int indent) { unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(stack, &entries); stack_trace_snprint(buf, sz, entries, nr_entries, indent); } static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { spin_lock_init(&rpm->debug.lock); } static noinline depot_stack_handle_t track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { depot_stack_handle_t stack, *stacks; unsigned long flags; if (!rpm->available) return -1; stack = __save_depot_stack(); if (!stack) return -1; spin_lock_irqsave(&rpm->debug.lock, flags); if (!rpm->debug.count) rpm->debug.last_acquire = stack; stacks = krealloc(rpm->debug.owners, (rpm->debug.count + 1) * sizeof(*stacks), GFP_NOWAIT | __GFP_NOWARN); if (stacks) { stacks[rpm->debug.count++] = stack; rpm->debug.owners = stacks; } else { stack = -1; } spin_unlock_irqrestore(&rpm->debug.lock, flags); return stack; } static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, depot_stack_handle_t stack) { unsigned long flags, n; bool found = false; if (unlikely(stack == -1)) return; spin_lock_irqsave(&rpm->debug.lock, flags); for (n = rpm->debug.count; n--; ) { if (rpm->debug.owners[n] == stack) { memmove(rpm->debug.owners + n, rpm->debug.owners + n + 1, (--rpm->debug.count - n) * sizeof(stack)); found = true; break; } } spin_unlock_irqrestore(&rpm->debug.lock, flags); if (WARN(!found, "Unmatched wakeref (tracking %lu), count %u\n", rpm->debug.count, atomic_read(&rpm->wakeref_count))) { char *buf; buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN); if (!buf) return; __print_depot_stack(stack, buf, PAGE_SIZE, 2); DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf); stack = READ_ONCE(rpm->debug.last_release); if (stack) { __print_depot_stack(stack, buf, PAGE_SIZE, 2); DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf); } kfree(buf); } } static int cmphandle(const void *_a, const void *_b) { const depot_stack_handle_t * const a = _a, * const b = _b; if (*a < *b) return -1; else if (*a > *b) return 1; else return 0; } static void __print_intel_runtime_pm_wakeref(struct drm_printer *p, const struct intel_runtime_pm_debug *dbg) { unsigned long i; char *buf; buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN); if (!buf) return; if (dbg->last_acquire) { __print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref last acquired:\n%s", buf); } if (dbg->last_release) { __print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref last released:\n%s", buf); } drm_printf(p, "Wakeref count: %lu\n", dbg->count); sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL); for (i = 0; i < dbg->count; i++) { depot_stack_handle_t stack = dbg->owners[i]; unsigned long rep; rep = 1; while (i + 1 < dbg->count && dbg->owners[i + 1] == stack) rep++, i++; __print_depot_stack(stack, buf, PAGE_SIZE, 2); drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf); } kfree(buf); } static noinline void __untrack_all_wakerefs(struct intel_runtime_pm_debug *debug, struct intel_runtime_pm_debug *saved) { *saved = *debug; debug->owners = NULL; debug->count = 0; debug->last_release = __save_depot_stack(); } static void dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug) { if (debug->count) { struct drm_printer p = drm_debug_printer("i915"); __print_intel_runtime_pm_wakeref(&p, debug); } kfree(debug->owners); } static noinline void __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) { struct intel_runtime_pm_debug dbg = {}; unsigned long flags; if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count, &rpm->debug.lock, flags)) return; __untrack_all_wakerefs(&rpm->debug, &dbg); spin_unlock_irqrestore(&rpm->debug.lock, flags); dump_and_free_wakeref_tracking(&dbg); } static noinline void untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) { struct intel_runtime_pm_debug dbg = {}; unsigned long flags; spin_lock_irqsave(&rpm->debug.lock, flags); __untrack_all_wakerefs(&rpm->debug, &dbg); spin_unlock_irqrestore(&rpm->debug.lock, flags); dump_and_free_wakeref_tracking(&dbg); } void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, struct drm_printer *p) { struct intel_runtime_pm_debug dbg = {}; do { unsigned long alloc = dbg.count; depot_stack_handle_t *s; spin_lock_irq(&rpm->debug.lock); dbg.count = rpm->debug.count; if (dbg.count <= alloc) { memcpy(dbg.owners, rpm->debug.owners, dbg.count * sizeof(*s)); } dbg.last_acquire = rpm->debug.last_acquire; dbg.last_release = rpm->debug.last_release; spin_unlock_irq(&rpm->debug.lock); if (dbg.count <= alloc) break; s = krealloc(dbg.owners, dbg.count * sizeof(*s), GFP_NOWAIT | __GFP_NOWARN); if (!s) goto out; dbg.owners = s; } while (1); __print_intel_runtime_pm_wakeref(p, &dbg); out: kfree(dbg.owners); } #else static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { } static depot_stack_handle_t track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm) { return -1; } static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm, intel_wakeref_t wref) { } static void __intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm) { atomic_dec(&rpm->wakeref_count); } static void untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm) { } #endif static void intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock) { if (wakelock) { atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); assert_rpm_wakelock_held(rpm); } else { atomic_inc(&rpm->wakeref_count); assert_rpm_raw_wakeref_held(rpm); } } static void intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock) { if (wakelock) { assert_rpm_wakelock_held(rpm); atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count); } else { assert_rpm_raw_wakeref_held(rpm); } __intel_wakeref_dec_and_check_tracking(rpm); } static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm, bool wakelock) { int ret; ret = pm_runtime_get_sync(rpm->kdev); WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); intel_runtime_pm_acquire(rpm, wakelock); return track_intel_runtime_pm_wakeref(rpm); } /** * intel_runtime_pm_get_raw - grab a raw runtime pm reference * @rpm: the intel_runtime_pm structure * * This is the unlocked version of intel_display_power_is_enabled() and should * only be used from error capture and recovery code where deadlocks are * possible. * This function grabs a device-level runtime pm reference (mostly used for * asynchronous PM management from display code) and ensures that it is powered * up. Raw references are not considered during wakelock assert checks. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put_raw() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates * as True if the wakeref was acquired, or False otherwise. */ intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get(rpm, false); } /** * intel_runtime_pm_get - grab a runtime pm reference * @rpm: the intel_runtime_pm structure * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on) and ensures that it is powered up. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm) { return __intel_runtime_pm_get(rpm, true); } /** * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use * @rpm: the intel_runtime_pm structure * * This function grabs a device-level runtime pm reference if the device is * already in use and ensures that it is powered up. It is illegal to try * and access the HW should intel_runtime_pm_get_if_in_use() report failure. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates * as True if the wakeref was acquired, or False otherwise. */ intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm) { if (IS_ENABLED(CONFIG_PM)) { /* * In cases runtime PM is disabled by the RPM core and we get * an -EINVAL return value we are not supposed to call this * function, since the power state is undefined. This applies * atm to the late/early system suspend/resume handlers. */ if (pm_runtime_get_if_in_use(rpm->kdev) <= 0) return 0; } intel_runtime_pm_acquire(rpm, true); return track_intel_runtime_pm_wakeref(rpm); } /** * intel_runtime_pm_get_noresume - grab a runtime pm reference * @rpm: the intel_runtime_pm structure * * This function grabs a device-level runtime pm reference (mostly used for GEM * code to ensure the GTT or GT is on). * * It will _not_ power up the device but instead only check that it's powered * on. Therefore it is only valid to call this functions from contexts where * the device is known to be powered up and where trying to power it up would * result in hilarity and deadlocks. That pretty much means only the system * suspend/resume code where this is used to grab runtime pm references for * delayed setup down in work items. * * Any runtime pm reference obtained by this function must have a symmetric * call to intel_runtime_pm_put() to release the reference again. * * Returns: the wakeref cookie to pass to intel_runtime_pm_put() */ intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm) { assert_rpm_wakelock_held(rpm); pm_runtime_get_noresume(rpm->kdev); intel_runtime_pm_acquire(rpm, true); return track_intel_runtime_pm_wakeref(rpm); } static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref, bool wakelock) { struct device *kdev = rpm->kdev; untrack_intel_runtime_pm_wakeref(rpm, wref); intel_runtime_pm_release(rpm, wakelock); pm_runtime_mark_last_busy(kdev); pm_runtime_put_autosuspend(kdev); } /** * intel_runtime_pm_put_raw - release a raw runtime pm reference * @rpm: the intel_runtime_pm structure * @wref: wakeref acquired for the reference that is being released * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get_raw() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref) { __intel_runtime_pm_put(rpm, wref, false); } /** * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference * @rpm: the intel_runtime_pm structure * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. * * This function exists only for historical reasons and should be avoided in * new code, as the correctness of its use cannot be checked. Always use * intel_runtime_pm_put() instead. */ void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm) { __intel_runtime_pm_put(rpm, -1, true); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) /** * intel_runtime_pm_put - release a runtime pm reference * @rpm: the intel_runtime_pm structure * @wref: wakeref acquired for the reference that is being released * * This function drops the device-level runtime pm reference obtained by * intel_runtime_pm_get() and might power down the corresponding * hardware block right away if this is the last reference. */ void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref) { __intel_runtime_pm_put(rpm, wref, true); } #endif /** * intel_runtime_pm_enable - enable runtime pm * @rpm: the intel_runtime_pm structure * * This function enables runtime pm at the end of the driver load sequence. * * Note that this function does currently not enable runtime pm for the * subordinate display power domains. That is done by * intel_power_domains_enable(). */ void intel_runtime_pm_enable(struct intel_runtime_pm *rpm) { struct device *kdev = rpm->kdev; /* * Disable the system suspend direct complete optimization, which can * leave the device suspended skipping the driver's suspend handlers * if the device was already runtime suspended. This is needed due to * the difference in our runtime and system suspend sequence and * becaue the HDA driver may require us to enable the audio power * domain during system suspend. */ dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP); pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */ pm_runtime_mark_last_busy(kdev); /* * Take a permanent reference to disable the RPM functionality and drop * it only when unloading the driver. Use the low level get/put helpers, * so the driver's own RPM reference tracking asserts also work on * platforms without RPM support. */ if (!rpm->available) { int ret; pm_runtime_dont_use_autosuspend(kdev); ret = pm_runtime_get_sync(kdev); WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret); } else { pm_runtime_use_autosuspend(kdev); } /* * The core calls the driver load handler with an RPM reference held. * We drop that here and will reacquire it during unloading in * intel_power_domains_fini(). */ pm_runtime_put_autosuspend(kdev); } void intel_runtime_pm_disable(struct intel_runtime_pm *rpm) { struct device *kdev = rpm->kdev; /* Transfer rpm ownership back to core */ WARN(pm_runtime_get_sync(kdev) < 0, "Failed to pass rpm ownership back to core\n"); pm_runtime_dont_use_autosuspend(kdev); if (!rpm->available) pm_runtime_put(kdev); } void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm) { int count = atomic_read(&rpm->wakeref_count); WARN(count, "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n", intel_rpm_raw_wakeref_count(count), intel_rpm_wakelock_count(count)); untrack_all_intel_runtime_pm_wakerefs(rpm); } void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm) { struct drm_i915_private *i915 = container_of(rpm, struct drm_i915_private, runtime_pm); struct pci_dev *pdev = i915->drm.pdev; struct device *kdev = &pdev->dev; rpm->kdev = kdev; rpm->available = HAS_RUNTIME_PM(i915); init_intel_runtime_pm_wakeref(rpm); }