// SPDX-License-Identifier: GPL-2.0 /* * PCI Message Signaled Interrupt (MSI) * * Copyright (C) 2003-2004 Intel * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com) * Copyright (C) 2016 Christoph Hellwig. */ #include <linux/err.h> #include <linux/mm.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/msi.h> #include <linux/smp.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/acpi_iort.h> #include <linux/slab.h> #include <linux/irqdomain.h> #include <linux/of_irq.h> #include "pci.h" static int pci_msi_enable = 1; int pci_msi_ignore_mask; #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { struct irq_domain *domain; domain = dev_get_msi_domain(&dev->dev); if (domain && irq_domain_is_hierarchy(domain)) return msi_domain_alloc_irqs(domain, &dev->dev, nvec); return arch_setup_msi_irqs(dev, nvec, type); } static void pci_msi_teardown_msi_irqs(struct pci_dev *dev) { struct irq_domain *domain; domain = dev_get_msi_domain(&dev->dev); if (domain && irq_domain_is_hierarchy(domain)) msi_domain_free_irqs(domain, &dev->dev); else arch_teardown_msi_irqs(dev); } #else #define pci_msi_setup_msi_irqs arch_setup_msi_irqs #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs #endif /* Arch hooks */ int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct msi_controller *chip = dev->bus->msi; int err; if (!chip || !chip->setup_irq) return -EINVAL; err = chip->setup_irq(chip, dev, desc); if (err < 0) return err; irq_set_chip_data(desc->irq, chip); return 0; } void __weak arch_teardown_msi_irq(unsigned int irq) { struct msi_controller *chip = irq_get_chip_data(irq); if (!chip || !chip->teardown_irq) return; chip->teardown_irq(chip, irq); } int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { struct msi_controller *chip = dev->bus->msi; struct msi_desc *entry; int ret; if (chip && chip->setup_irqs) return chip->setup_irqs(chip, dev, nvec, type); /* * If an architecture wants to support multiple MSI, it needs to * override arch_setup_msi_irqs() */ if (type == PCI_CAP_ID_MSI && nvec > 1) return 1; for_each_pci_msi_entry(entry, dev) { ret = arch_setup_msi_irq(dev, entry); if (ret < 0) return ret; if (ret > 0) return -ENOSPC; } return 0; } /* * We have a default implementation available as a separate non-weak * function, as it is used by the Xen x86 PCI code */ void default_teardown_msi_irqs(struct pci_dev *dev) { int i; struct msi_desc *entry; for_each_pci_msi_entry(entry, dev) if (entry->irq) for (i = 0; i < entry->nvec_used; i++) arch_teardown_msi_irq(entry->irq + i); } void __weak arch_teardown_msi_irqs(struct pci_dev *dev) { return default_teardown_msi_irqs(dev); } static void default_restore_msi_irq(struct pci_dev *dev, int irq) { struct msi_desc *entry; entry = NULL; if (dev->msix_enabled) { for_each_pci_msi_entry(entry, dev) { if (irq == entry->irq) break; } } else if (dev->msi_enabled) { entry = irq_get_msi_desc(irq); } if (entry) __pci_write_msi_msg(entry, &entry->msg); } void __weak arch_restore_msi_irqs(struct pci_dev *dev) { return default_restore_msi_irqs(dev); } static inline __attribute_const__ u32 msi_mask(unsigned x) { /* Don't shift by >= width of type */ if (x >= 5) return 0xffffffff; return (1 << (1 << x)) - 1; } /* * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to * mask all MSI interrupts by clearing the MSI enable bit does not work * reliably as devices without an INTx disable bit will then generate a * level IRQ which will never be cleared. */ u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag) { u32 mask_bits = desc->masked; if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit) return 0; mask_bits &= ~mask; mask_bits |= flag; pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos, mask_bits); return mask_bits; } static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag) { desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag); } static void __iomem *pci_msix_desc_addr(struct msi_desc *desc) { if (desc->msi_attrib.is_virtual) return NULL; return desc->mask_base + desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE; } /* * This internal function does not flush PCI writes to the device. * All users must ensure that they read from the device before either * assuming that the device state is up to date, or returning out of this * file. This saves a few milliseconds when initialising devices with lots * of MSI-X interrupts. */ u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag) { u32 mask_bits = desc->masked; void __iomem *desc_addr; if (pci_msi_ignore_mask) return 0; desc_addr = pci_msix_desc_addr(desc); if (!desc_addr) return 0; mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT; if (flag & PCI_MSIX_ENTRY_CTRL_MASKBIT) mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT; writel(mask_bits, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL); return mask_bits; } static void msix_mask_irq(struct msi_desc *desc, u32 flag) { desc->masked = __pci_msix_desc_mask_irq(desc, flag); } static void msi_set_mask_bit(struct irq_data *data, u32 flag) { struct msi_desc *desc = irq_data_get_msi_desc(data); if (desc->msi_attrib.is_msix) { msix_mask_irq(desc, flag); readl(desc->mask_base); /* Flush write to device */ } else { unsigned offset = data->irq - desc->irq; msi_mask_irq(desc, 1 << offset, flag << offset); } } /** * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts * @data: pointer to irqdata associated to that interrupt */ void pci_msi_mask_irq(struct irq_data *data) { msi_set_mask_bit(data, 1); } EXPORT_SYMBOL_GPL(pci_msi_mask_irq); /** * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts * @data: pointer to irqdata associated to that interrupt */ void pci_msi_unmask_irq(struct irq_data *data) { msi_set_mask_bit(data, 0); } EXPORT_SYMBOL_GPL(pci_msi_unmask_irq); void default_restore_msi_irqs(struct pci_dev *dev) { struct msi_desc *entry; for_each_pci_msi_entry(entry, dev) default_restore_msi_irq(dev, entry->irq); } void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { struct pci_dev *dev = msi_desc_to_pci_dev(entry); BUG_ON(dev->current_state != PCI_D0); if (entry->msi_attrib.is_msix) { void __iomem *base = pci_msix_desc_addr(entry); if (!base) { WARN_ON(1); return; } msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR); msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR); msg->data = readl(base + PCI_MSIX_ENTRY_DATA); } else { int pos = dev->msi_cap; u16 data; pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, &msg->address_lo); if (entry->msi_attrib.is_64) { pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, &msg->address_hi); pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data); } else { msg->address_hi = 0; pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data); } msg->data = data; } } void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { struct pci_dev *dev = msi_desc_to_pci_dev(entry); if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) { /* Don't touch the hardware now */ } else if (entry->msi_attrib.is_msix) { void __iomem *base = pci_msix_desc_addr(entry); if (!base) goto skip; writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR); writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR); writel(msg->data, base + PCI_MSIX_ENTRY_DATA); } else { int pos = dev->msi_cap; u16 msgctl; pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); msgctl &= ~PCI_MSI_FLAGS_QSIZE; msgctl |= entry->msi_attrib.multiple << 4; pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl); pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, msg->address_lo); if (entry->msi_attrib.is_64) { pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, msg->address_hi); pci_write_config_word(dev, pos + PCI_MSI_DATA_64, msg->data); } else { pci_write_config_word(dev, pos + PCI_MSI_DATA_32, msg->data); } } skip: entry->msg = *msg; if (entry->write_msi_msg) entry->write_msi_msg(entry, entry->write_msi_msg_data); } void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg) { struct msi_desc *entry = irq_get_msi_desc(irq); __pci_write_msi_msg(entry, msg); } EXPORT_SYMBOL_GPL(pci_write_msi_msg); static void free_msi_irqs(struct pci_dev *dev) { struct list_head *msi_list = dev_to_msi_list(&dev->dev); struct msi_desc *entry, *tmp; struct attribute **msi_attrs; struct device_attribute *dev_attr; int i, count = 0; for_each_pci_msi_entry(entry, dev) if (entry->irq) for (i = 0; i < entry->nvec_used; i++) BUG_ON(irq_has_action(entry->irq + i)); pci_msi_teardown_msi_irqs(dev); list_for_each_entry_safe(entry, tmp, msi_list, list) { if (entry->msi_attrib.is_msix) { if (list_is_last(&entry->list, msi_list)) iounmap(entry->mask_base); } list_del(&entry->list); free_msi_entry(entry); } if (dev->msi_irq_groups) { sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups); msi_attrs = dev->msi_irq_groups[0]->attrs; while (msi_attrs[count]) { dev_attr = container_of(msi_attrs[count], struct device_attribute, attr); kfree(dev_attr->attr.name); kfree(dev_attr); ++count; } kfree(msi_attrs); kfree(dev->msi_irq_groups[0]); kfree(dev->msi_irq_groups); dev->msi_irq_groups = NULL; } } static void pci_intx_for_msi(struct pci_dev *dev, int enable) { if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG)) pci_intx(dev, enable); } static void __pci_restore_msi_state(struct pci_dev *dev) { u16 control; struct msi_desc *entry; if (!dev->msi_enabled) return; entry = irq_get_msi_desc(dev->irq); pci_intx_for_msi(dev, 0); pci_msi_set_enable(dev, 0); arch_restore_msi_irqs(dev); pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap), entry->masked); control &= ~PCI_MSI_FLAGS_QSIZE; control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static void __pci_restore_msix_state(struct pci_dev *dev) { struct msi_desc *entry; if (!dev->msix_enabled) return; BUG_ON(list_empty(dev_to_msi_list(&dev->dev))); /* route the table */ pci_intx_for_msi(dev, 0); pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL); arch_restore_msi_irqs(dev); for_each_pci_msi_entry(entry, dev) msix_mask_irq(entry, entry->masked); pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); } void pci_restore_msi_state(struct pci_dev *dev) { __pci_restore_msi_state(dev); __pci_restore_msix_state(dev); } EXPORT_SYMBOL_GPL(pci_restore_msi_state); static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct msi_desc *entry; unsigned long irq; int retval; retval = kstrtoul(attr->attr.name, 10, &irq); if (retval) return retval; entry = irq_get_msi_desc(irq); if (entry) return sprintf(buf, "%s\n", entry->msi_attrib.is_msix ? "msix" : "msi"); return -ENODEV; } static int populate_msi_sysfs(struct pci_dev *pdev) { struct attribute **msi_attrs; struct attribute *msi_attr; struct device_attribute *msi_dev_attr; struct attribute_group *msi_irq_group; const struct attribute_group **msi_irq_groups; struct msi_desc *entry; int ret = -ENOMEM; int num_msi = 0; int count = 0; int i; /* Determine how many msi entries we have */ for_each_pci_msi_entry(entry, pdev) num_msi += entry->nvec_used; if (!num_msi) return 0; /* Dynamically create the MSI attributes for the PCI device */ msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL); if (!msi_attrs) return -ENOMEM; for_each_pci_msi_entry(entry, pdev) { for (i = 0; i < entry->nvec_used; i++) { msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL); if (!msi_dev_attr) goto error_attrs; msi_attrs[count] = &msi_dev_attr->attr; sysfs_attr_init(&msi_dev_attr->attr); msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d", entry->irq + i); if (!msi_dev_attr->attr.name) goto error_attrs; msi_dev_attr->attr.mode = S_IRUGO; msi_dev_attr->show = msi_mode_show; ++count; } } msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL); if (!msi_irq_group) goto error_attrs; msi_irq_group->name = "msi_irqs"; msi_irq_group->attrs = msi_attrs; msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL); if (!msi_irq_groups) goto error_irq_group; msi_irq_groups[0] = msi_irq_group; ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups); if (ret) goto error_irq_groups; pdev->msi_irq_groups = msi_irq_groups; return 0; error_irq_groups: kfree(msi_irq_groups); error_irq_group: kfree(msi_irq_group); error_attrs: count = 0; msi_attr = msi_attrs[count]; while (msi_attr) { msi_dev_attr = container_of(msi_attr, struct device_attribute, attr); kfree(msi_attr->name); kfree(msi_dev_attr); ++count; msi_attr = msi_attrs[count]; } kfree(msi_attrs); return ret; } static struct msi_desc * msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd) { struct irq_affinity_desc *masks = NULL; struct msi_desc *entry; u16 control; if (affd) masks = irq_create_affinity_masks(nvec, affd); /* MSI Entry Initialization */ entry = alloc_msi_entry(&dev->dev, nvec, masks); if (!entry) goto out; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); entry->msi_attrib.is_msix = 0; entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT); entry->msi_attrib.is_virtual = 0; entry->msi_attrib.entry_nr = 0; entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT); entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */ entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1; entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec)); if (control & PCI_MSI_FLAGS_64BIT) entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64; else entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32; /* Save the initial mask status */ if (entry->msi_attrib.maskbit) pci_read_config_dword(dev, entry->mask_pos, &entry->masked); out: kfree(masks); return entry; } static int msi_verify_entries(struct pci_dev *dev) { struct msi_desc *entry; for_each_pci_msi_entry(entry, dev) { if (!dev->no_64bit_msi || !entry->msg.address_hi) continue; pci_err(dev, "Device has broken 64-bit MSI but arch" " tried to assign one above 4G\n"); return -EIO; } return 0; } /** * msi_capability_init - configure device's MSI capability structure * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: number of interrupts to allocate * @affd: description of automatic IRQ affinity assignments (may be %NULL) * * Setup the MSI capability structure of the device with the requested * number of interrupts. A return value of zero indicates the successful * setup of an entry with the new MSI IRQ. A negative return value indicates * an error, and a positive return value indicates the number of interrupts * which could have been allocated. */ static int msi_capability_init(struct pci_dev *dev, int nvec, struct irq_affinity *affd) { struct msi_desc *entry; int ret; unsigned mask; pci_msi_set_enable(dev, 0); /* Disable MSI during set up */ entry = msi_setup_entry(dev, nvec, affd); if (!entry) return -ENOMEM; /* All MSIs are unmasked by default; mask them all */ mask = msi_mask(entry->msi_attrib.multi_cap); msi_mask_irq(entry, mask, mask); list_add_tail(&entry->list, dev_to_msi_list(&dev->dev)); /* Configure MSI capability structure */ ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI); if (ret) { msi_mask_irq(entry, mask, ~mask); free_msi_irqs(dev); return ret; } ret = msi_verify_entries(dev); if (ret) { msi_mask_irq(entry, mask, ~mask); free_msi_irqs(dev); return ret; } ret = populate_msi_sysfs(dev); if (ret) { msi_mask_irq(entry, mask, ~mask); free_msi_irqs(dev); return ret; } /* Set MSI enabled bits */ pci_intx_for_msi(dev, 0); pci_msi_set_enable(dev, 1); dev->msi_enabled = 1; pcibios_free_irq(dev); dev->irq = entry->irq; return 0; } static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries) { resource_size_t phys_addr; u32 table_offset; unsigned long flags; u8 bir; pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE, &table_offset); bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR); flags = pci_resource_flags(dev, bir); if (!flags || (flags & IORESOURCE_UNSET)) return NULL; table_offset &= PCI_MSIX_TABLE_OFFSET; phys_addr = pci_resource_start(dev, bir) + table_offset; return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE); } static int msix_setup_entries(struct pci_dev *dev, void __iomem *base, struct msix_entry *entries, int nvec, struct irq_affinity *affd) { struct irq_affinity_desc *curmsk, *masks = NULL; struct msi_desc *entry; int ret, i; int vec_count = pci_msix_vec_count(dev); if (affd) masks = irq_create_affinity_masks(nvec, affd); for (i = 0, curmsk = masks; i < nvec; i++) { entry = alloc_msi_entry(&dev->dev, 1, curmsk); if (!entry) { if (!i) iounmap(base); else free_msi_irqs(dev); /* No enough memory. Don't try again */ ret = -ENOMEM; goto out; } entry->msi_attrib.is_msix = 1; entry->msi_attrib.is_64 = 1; if (entries) entry->msi_attrib.entry_nr = entries[i].entry; else entry->msi_attrib.entry_nr = i; entry->msi_attrib.is_virtual = entry->msi_attrib.entry_nr >= vec_count; entry->msi_attrib.default_irq = dev->irq; entry->mask_base = base; list_add_tail(&entry->list, dev_to_msi_list(&dev->dev)); if (masks) curmsk++; } ret = 0; out: kfree(masks); return ret; } static void msix_program_entries(struct pci_dev *dev, struct msix_entry *entries) { struct msi_desc *entry; int i = 0; void __iomem *desc_addr; for_each_pci_msi_entry(entry, dev) { if (entries) entries[i++].vector = entry->irq; desc_addr = pci_msix_desc_addr(entry); if (desc_addr) entry->masked = readl(desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL); else entry->masked = 0; msix_mask_irq(entry, 1); } } /** * msix_capability_init - configure device's MSI-X capability * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of struct msix_entry entries * @nvec: number of @entries * @affd: Optional pointer to enable automatic affinity assignment * * Setup the MSI-X capability structure of device function with a * single MSI-X IRQ. A return of zero indicates the successful setup of * requested MSI-X entries with allocated IRQs or non-zero for otherwise. **/ static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries, int nvec, struct irq_affinity *affd) { int ret; u16 control; void __iomem *base; /* Ensure MSI-X is disabled while it is set up */ pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0); pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); /* Request & Map MSI-X table region */ base = msix_map_region(dev, msix_table_size(control)); if (!base) return -ENOMEM; ret = msix_setup_entries(dev, base, entries, nvec, affd); if (ret) return ret; ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX); if (ret) goto out_avail; /* Check if all MSI entries honor device restrictions */ ret = msi_verify_entries(dev); if (ret) goto out_free; /* * Some devices require MSI-X to be enabled before we can touch the * MSI-X registers. We need to mask all the vectors to prevent * interrupts coming in before they're fully set up. */ pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE); msix_program_entries(dev, entries); ret = populate_msi_sysfs(dev); if (ret) goto out_free; /* Set MSI-X enabled bits and unmask the function */ pci_intx_for_msi(dev, 0); dev->msix_enabled = 1; pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); pcibios_free_irq(dev); return 0; out_avail: if (ret < 0) { /* * If we had some success, report the number of IRQs * we succeeded in setting up. */ struct msi_desc *entry; int avail = 0; for_each_pci_msi_entry(entry, dev) { if (entry->irq != 0) avail++; } if (avail != 0) ret = avail; } out_free: free_msi_irqs(dev); return ret; } /** * pci_msi_supported - check whether MSI may be enabled on a device * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: how many MSIs have been requested? * * Look at global flags, the device itself, and its parent buses * to determine if MSI/-X are supported for the device. If MSI/-X is * supported return 1, else return 0. **/ static int pci_msi_supported(struct pci_dev *dev, int nvec) { struct pci_bus *bus; /* MSI must be globally enabled and supported by the device */ if (!pci_msi_enable) return 0; if (!dev || dev->no_msi) return 0; /* * You can't ask to have 0 or less MSIs configured. * a) it's stupid .. * b) the list manipulation code assumes nvec >= 1. */ if (nvec < 1) return 0; /* * Any bridge which does NOT route MSI transactions from its * secondary bus to its primary bus must set NO_MSI flag on * the secondary pci_bus. * We expect only arch-specific PCI host bus controller driver * or quirks for specific PCI bridges to be setting NO_MSI. */ for (bus = dev->bus; bus; bus = bus->parent) if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI) return 0; return 1; } /** * pci_msi_vec_count - Return the number of MSI vectors a device can send * @dev: device to report about * * This function returns the number of MSI vectors a device requested via * Multiple Message Capable register. It returns a negative errno if the * device is not capable sending MSI interrupts. Otherwise, the call succeeds * and returns a power of two, up to a maximum of 2^5 (32), according to the * MSI specification. **/ int pci_msi_vec_count(struct pci_dev *dev) { int ret; u16 msgctl; if (!dev->msi_cap) return -EINVAL; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl); ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1); return ret; } EXPORT_SYMBOL(pci_msi_vec_count); static void pci_msi_shutdown(struct pci_dev *dev) { struct msi_desc *desc; u32 mask; if (!pci_msi_enable || !dev || !dev->msi_enabled) return; BUG_ON(list_empty(dev_to_msi_list(&dev->dev))); desc = first_pci_msi_entry(dev); pci_msi_set_enable(dev, 0); pci_intx_for_msi(dev, 1); dev->msi_enabled = 0; /* Return the device with MSI unmasked as initial states */ mask = msi_mask(desc->msi_attrib.multi_cap); /* Keep cached state to be restored */ __pci_msi_desc_mask_irq(desc, mask, ~mask); /* Restore dev->irq to its default pin-assertion IRQ */ dev->irq = desc->msi_attrib.default_irq; pcibios_alloc_irq(dev); } void pci_disable_msi(struct pci_dev *dev) { if (!pci_msi_enable || !dev || !dev->msi_enabled) return; pci_msi_shutdown(dev); free_msi_irqs(dev); } EXPORT_SYMBOL(pci_disable_msi); /** * pci_msix_vec_count - return the number of device's MSI-X table entries * @dev: pointer to the pci_dev data structure of MSI-X device function * This function returns the number of device's MSI-X table entries and * therefore the number of MSI-X vectors device is capable of sending. * It returns a negative errno if the device is not capable of sending MSI-X * interrupts. **/ int pci_msix_vec_count(struct pci_dev *dev) { u16 control; if (!dev->msix_cap) return -EINVAL; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); return msix_table_size(control); } EXPORT_SYMBOL(pci_msix_vec_count); static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec, struct irq_affinity *affd, int flags) { int nr_entries; int i, j; if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0) return -EINVAL; nr_entries = pci_msix_vec_count(dev); if (nr_entries < 0) return nr_entries; if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL)) return nr_entries; if (entries) { /* Check for any invalid entries */ for (i = 0; i < nvec; i++) { if (entries[i].entry >= nr_entries) return -EINVAL; /* invalid entry */ for (j = i + 1; j < nvec; j++) { if (entries[i].entry == entries[j].entry) return -EINVAL; /* duplicate entry */ } } } /* Check whether driver already requested for MSI IRQ */ if (dev->msi_enabled) { pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n"); return -EINVAL; } return msix_capability_init(dev, entries, nvec, affd); } static void pci_msix_shutdown(struct pci_dev *dev) { struct msi_desc *entry; if (!pci_msi_enable || !dev || !dev->msix_enabled) return; if (pci_dev_is_disconnected(dev)) { dev->msix_enabled = 0; return; } /* Return the device with MSI-X masked as initial states */ for_each_pci_msi_entry(entry, dev) { /* Keep cached states to be restored */ __pci_msix_desc_mask_irq(entry, 1); } pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0); pci_intx_for_msi(dev, 1); dev->msix_enabled = 0; pcibios_alloc_irq(dev); } void pci_disable_msix(struct pci_dev *dev) { if (!pci_msi_enable || !dev || !dev->msix_enabled) return; pci_msix_shutdown(dev); free_msi_irqs(dev); } EXPORT_SYMBOL(pci_disable_msix); void pci_no_msi(void) { pci_msi_enable = 0; } /** * pci_msi_enabled - is MSI enabled? * * Returns true if MSI has not been disabled by the command-line option * pci=nomsi. **/ int pci_msi_enabled(void) { return pci_msi_enable; } EXPORT_SYMBOL(pci_msi_enabled); static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec, struct irq_affinity *affd) { int nvec; int rc; if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0) return -EINVAL; /* Check whether driver already requested MSI-X IRQs */ if (dev->msix_enabled) { pci_info(dev, "can't enable MSI (MSI-X already enabled)\n"); return -EINVAL; } if (maxvec < minvec) return -ERANGE; if (WARN_ON_ONCE(dev->msi_enabled)) return -EINVAL; nvec = pci_msi_vec_count(dev); if (nvec < 0) return nvec; if (nvec < minvec) return -ENOSPC; if (nvec > maxvec) nvec = maxvec; for (;;) { if (affd) { nvec = irq_calc_affinity_vectors(minvec, nvec, affd); if (nvec < minvec) return -ENOSPC; } rc = msi_capability_init(dev, nvec, affd); if (rc == 0) return nvec; if (rc < 0) return rc; if (rc < minvec) return -ENOSPC; nvec = rc; } } /* deprecated, don't use */ int pci_enable_msi(struct pci_dev *dev) { int rc = __pci_enable_msi_range(dev, 1, 1, NULL); if (rc < 0) return rc; return 0; } EXPORT_SYMBOL(pci_enable_msi); static int __pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec, int maxvec, struct irq_affinity *affd, int flags) { int rc, nvec = maxvec; if (maxvec < minvec) return -ERANGE; if (WARN_ON_ONCE(dev->msix_enabled)) return -EINVAL; for (;;) { if (affd) { nvec = irq_calc_affinity_vectors(minvec, nvec, affd); if (nvec < minvec) return -ENOSPC; } rc = __pci_enable_msix(dev, entries, nvec, affd, flags); if (rc == 0) return nvec; if (rc < 0) return rc; if (rc < minvec) return -ENOSPC; nvec = rc; } } /** * pci_enable_msix_range - configure device's MSI-X capability structure * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of MSI-X entries * @minvec: minimum number of MSI-X IRQs requested * @maxvec: maximum number of MSI-X IRQs requested * * Setup the MSI-X capability structure of device function with a maximum * possible number of interrupts in the range between @minvec and @maxvec * upon its software driver call to request for MSI-X mode enabled on its * hardware device function. It returns a negative errno if an error occurs. * If it succeeds, it returns the actual number of interrupts allocated and * indicates the successful configuration of MSI-X capability structure * with new allocated MSI-X interrupts. **/ int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec, int maxvec) { return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0); } EXPORT_SYMBOL(pci_enable_msix_range); /** * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device * @dev: PCI device to operate on * @min_vecs: minimum number of vectors required (must be >= 1) * @max_vecs: maximum (desired) number of vectors * @flags: flags or quirks for the allocation * @affd: optional description of the affinity requirements * * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI * vectors if available, and fall back to a single legacy vector * if neither is available. Return the number of vectors allocated, * (which might be smaller than @max_vecs) if successful, or a negative * error code on error. If less than @min_vecs interrupt vectors are * available for @dev the function will fail with -ENOSPC. * * To get the Linux IRQ number used for a vector that can be passed to * request_irq() use the pci_irq_vector() helper. */ int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs, unsigned int max_vecs, unsigned int flags, struct irq_affinity *affd) { struct irq_affinity msi_default_affd = {0}; int msix_vecs = -ENOSPC; int msi_vecs = -ENOSPC; if (flags & PCI_IRQ_AFFINITY) { if (!affd) affd = &msi_default_affd; } else { if (WARN_ON(affd)) affd = NULL; } if (flags & PCI_IRQ_MSIX) { msix_vecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs, affd, flags); if (msix_vecs > 0) return msix_vecs; } if (flags & PCI_IRQ_MSI) { msi_vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd); if (msi_vecs > 0) return msi_vecs; } /* use legacy IRQ if allowed */ if (flags & PCI_IRQ_LEGACY) { if (min_vecs == 1 && dev->irq) { /* * Invoke the affinity spreading logic to ensure that * the device driver can adjust queue configuration * for the single interrupt case. */ if (affd) irq_create_affinity_masks(1, affd); pci_intx(dev, 1); return 1; } } if (msix_vecs == -ENOSPC) return -ENOSPC; return msi_vecs; } EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity); /** * pci_free_irq_vectors - free previously allocated IRQs for a device * @dev: PCI device to operate on * * Undoes the allocations and enabling in pci_alloc_irq_vectors(). */ void pci_free_irq_vectors(struct pci_dev *dev) { pci_disable_msix(dev); pci_disable_msi(dev); } EXPORT_SYMBOL(pci_free_irq_vectors); /** * pci_irq_vector - return Linux IRQ number of a device vector * @dev: PCI device to operate on * @nr: device-relative interrupt vector index (0-based). */ int pci_irq_vector(struct pci_dev *dev, unsigned int nr) { if (dev->msix_enabled) { struct msi_desc *entry; int i = 0; for_each_pci_msi_entry(entry, dev) { if (i == nr) return entry->irq; i++; } WARN_ON_ONCE(1); return -EINVAL; } if (dev->msi_enabled) { struct msi_desc *entry = first_pci_msi_entry(dev); if (WARN_ON_ONCE(nr >= entry->nvec_used)) return -EINVAL; } else { if (WARN_ON_ONCE(nr > 0)) return -EINVAL; } return dev->irq + nr; } EXPORT_SYMBOL(pci_irq_vector); /** * pci_irq_get_affinity - return the affinity of a particular MSI vector * @dev: PCI device to operate on * @nr: device-relative interrupt vector index (0-based). */ const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr) { if (dev->msix_enabled) { struct msi_desc *entry; int i = 0; for_each_pci_msi_entry(entry, dev) { if (i == nr) return &entry->affinity->mask; i++; } WARN_ON_ONCE(1); return NULL; } else if (dev->msi_enabled) { struct msi_desc *entry = first_pci_msi_entry(dev); if (WARN_ON_ONCE(!entry || !entry->affinity || nr >= entry->nvec_used)) return NULL; return &entry->affinity[nr].mask; } else { return cpu_possible_mask; } } EXPORT_SYMBOL(pci_irq_get_affinity); struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc) { return to_pci_dev(desc->dev); } EXPORT_SYMBOL(msi_desc_to_pci_dev); void *msi_desc_to_pci_sysdata(struct msi_desc *desc) { struct pci_dev *dev = msi_desc_to_pci_dev(desc); return dev->bus->sysdata; } EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata); #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN /** * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space * @irq_data: Pointer to interrupt data of the MSI interrupt * @msg: Pointer to the message */ void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg) { struct msi_desc *desc = irq_data_get_msi_desc(irq_data); /* * For MSI-X desc->irq is always equal to irq_data->irq. For * MSI only the first interrupt of MULTI MSI passes the test. */ if (desc->irq == irq_data->irq) __pci_write_msi_msg(desc, msg); } /** * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source * @dev: Pointer to the PCI device * @desc: Pointer to the MSI descriptor * * The ID number is only used within the irqdomain. */ irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev, struct msi_desc *desc) { return (irq_hw_number_t)desc->msi_attrib.entry_nr | pci_dev_id(dev) << 11 | (pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27; } static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc) { return !desc->msi_attrib.is_msix && desc->nvec_used > 1; } /** * pci_msi_domain_check_cap - Verify that @domain supports the capabilities * for @dev * @domain: The interrupt domain to check * @info: The domain info for verification * @dev: The device to check * * Returns: * 0 if the functionality is supported * 1 if Multi MSI is requested, but the domain does not support it * -ENOTSUPP otherwise */ int pci_msi_domain_check_cap(struct irq_domain *domain, struct msi_domain_info *info, struct device *dev) { struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev)); /* Special handling to support __pci_enable_msi_range() */ if (pci_msi_desc_is_multi_msi(desc) && !(info->flags & MSI_FLAG_MULTI_PCI_MSI)) return 1; else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX)) return -ENOTSUPP; return 0; } static int pci_msi_domain_handle_error(struct irq_domain *domain, struct msi_desc *desc, int error) { /* Special handling to support __pci_enable_msi_range() */ if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC) return 1; return error; } #ifdef GENERIC_MSI_DOMAIN_OPS static void pci_msi_domain_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) { arg->desc = desc; arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc), desc); } #else #define pci_msi_domain_set_desc NULL #endif static struct msi_domain_ops pci_msi_domain_ops_default = { .set_desc = pci_msi_domain_set_desc, .msi_check = pci_msi_domain_check_cap, .handle_error = pci_msi_domain_handle_error, }; static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info) { struct msi_domain_ops *ops = info->ops; if (ops == NULL) { info->ops = &pci_msi_domain_ops_default; } else { if (ops->set_desc == NULL) ops->set_desc = pci_msi_domain_set_desc; if (ops->msi_check == NULL) ops->msi_check = pci_msi_domain_check_cap; if (ops->handle_error == NULL) ops->handle_error = pci_msi_domain_handle_error; } } static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info) { struct irq_chip *chip = info->chip; BUG_ON(!chip); if (!chip->irq_write_msi_msg) chip->irq_write_msi_msg = pci_msi_domain_write_msg; if (!chip->irq_mask) chip->irq_mask = pci_msi_mask_irq; if (!chip->irq_unmask) chip->irq_unmask = pci_msi_unmask_irq; } /** * pci_msi_create_irq_domain - Create a MSI interrupt domain * @fwnode: Optional fwnode of the interrupt controller * @info: MSI domain info * @parent: Parent irq domain * * Updates the domain and chip ops and creates a MSI interrupt domain. * * Returns: * A domain pointer or NULL in case of failure. */ struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode, struct msi_domain_info *info, struct irq_domain *parent) { struct irq_domain *domain; if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE)) info->flags &= ~MSI_FLAG_LEVEL_CAPABLE; if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS) pci_msi_domain_update_dom_ops(info); if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS) pci_msi_domain_update_chip_ops(info); info->flags |= MSI_FLAG_ACTIVATE_EARLY; if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) info->flags |= MSI_FLAG_MUST_REACTIVATE; /* PCI-MSI is oneshot-safe */ info->chip->flags |= IRQCHIP_ONESHOT_SAFE; domain = msi_create_irq_domain(fwnode, info, parent); if (!domain) return NULL; irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI); return domain; } EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain); /* * Users of the generic MSI infrastructure expect a device to have a single ID, * so with DMA aliases we have to pick the least-worst compromise. Devices with * DMA phantom functions tend to still emit MSIs from the real function number, * so we ignore those and only consider topological aliases where either the * alias device or RID appears on a different bus number. We also make the * reasonable assumption that bridges are walked in an upstream direction (so * the last one seen wins), and the much braver assumption that the most likely * case is that of PCI->PCIe so we should always use the alias RID. This echoes * the logic from intel_irq_remapping's set_msi_sid(), which presumably works * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions * for taking ownership all we can really do is close our eyes and hope... */ static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data) { u32 *pa = data; u8 bus = PCI_BUS_NUM(*pa); if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus) *pa = alias; return 0; } /** * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID) * @domain: The interrupt domain * @pdev: The PCI device. * * The RID for a device is formed from the alias, with a firmware * supplied mapping applied * * Returns: The RID. */ u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev) { struct device_node *of_node; u32 rid = pci_dev_id(pdev); pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid); of_node = irq_domain_get_of_node(domain); rid = of_node ? of_msi_map_rid(&pdev->dev, of_node, rid) : iort_msi_map_rid(&pdev->dev, rid); return rid; } /** * pci_msi_get_device_domain - Get the MSI domain for a given PCI device * @pdev: The PCI device * * Use the firmware data to find a device-specific MSI domain * (i.e. not one that is set as a default). * * Returns: The corresponding MSI domain or NULL if none has been found. */ struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev) { struct irq_domain *dom; u32 rid = pci_dev_id(pdev); pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid); dom = of_msi_map_get_device_domain(&pdev->dev, rid); if (!dom) dom = iort_get_device_domain(&pdev->dev, rid); return dom; } #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */