/* * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time * chips. * * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>. * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>. * * References: * DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10. * DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10. * DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105. * Application Note 90, Using the Multiplex Bus RTC Extended Features. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bcd.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/rtc.h> #include <linux/workqueue.h> #include <linux/rtc/ds1685.h> #ifdef CONFIG_PROC_FS #include <linux/proc_fs.h> #endif /* ----------------------------------------------------------------------- */ /* Standard read/write functions if platform does not provide overrides */ /** * ds1685_read - read a value from an rtc register. * @rtc: pointer to the ds1685 rtc structure. * @reg: the register address to read. */ static u8 ds1685_read(struct ds1685_priv *rtc, int reg) { return readb((u8 __iomem *)rtc->regs + (reg * rtc->regstep)); } /** * ds1685_write - write a value to an rtc register. * @rtc: pointer to the ds1685 rtc structure. * @reg: the register address to write. * @value: value to write to the register. */ static void ds1685_write(struct ds1685_priv *rtc, int reg, u8 value) { writeb(value, ((u8 __iomem *)rtc->regs + (reg * rtc->regstep))); } /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* Inlined functions */ /** * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD. * @rtc: pointer to the ds1685 rtc structure. * @val: u8 time value to consider converting. * @bcd_mask: u8 mask value if BCD mode is used. * @bin_mask: u8 mask value if BIN mode is used. * * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE. */ static inline u8 ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask) { if (rtc->bcd_mode) return (bcd2bin(val) & bcd_mask); return (val & bin_mask); } /** * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD. * @rtc: pointer to the ds1685 rtc structure. * @val: u8 time value to consider converting. * @bin_mask: u8 mask value if BIN mode is used. * @bcd_mask: u8 mask value if BCD mode is used. * * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE. */ static inline u8 ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask) { if (rtc->bcd_mode) return (bin2bcd(val) & bcd_mask); return (val & bin_mask); } /** * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0. * @rtc: pointer to the ds1685 rtc structure. */ static inline void ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc) { rtc->write(rtc, RTC_CTRL_A, (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0))); } /** * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1. * @rtc: pointer to the ds1685 rtc structure. */ static inline void ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc) { rtc->write(rtc, RTC_CTRL_A, (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0)); } /** * ds1685_rtc_begin_data_access - prepare the rtc for data access. * @rtc: pointer to the ds1685 rtc structure. * * This takes several steps to prepare the rtc for access to get/set time * and alarm values from the rtc registers: * - Sets the SET bit in Control Register B. * - Reads Ext Control Register 4A and checks the INCR bit. * - If INCR is active, a short delay is added before Ext Control Register 4A * is read again in a loop until INCR is inactive. * - Switches the rtc to bank 1. This allows access to all relevant * data for normal rtc operation, as bank 0 contains only the nvram. */ static inline void ds1685_rtc_begin_data_access(struct ds1685_priv *rtc) { /* Set the SET bit in Ctrl B */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET)); /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */ while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR) cpu_relax(); /* Switch to Bank 1 */ ds1685_rtc_switch_to_bank1(rtc); } /** * ds1685_rtc_end_data_access - end data access on the rtc. * @rtc: pointer to the ds1685 rtc structure. * * This ends what was started by ds1685_rtc_begin_data_access: * - Switches the rtc back to bank 0. * - Clears the SET bit in Control Register B. */ static inline void ds1685_rtc_end_data_access(struct ds1685_priv *rtc) { /* Switch back to Bank 0 */ ds1685_rtc_switch_to_bank1(rtc); /* Clear the SET bit in Ctrl B */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET))); } /** * ds1685_rtc_begin_ctrl_access - prepare the rtc for ctrl access. * @rtc: pointer to the ds1685 rtc structure. * @flags: irq flags variable for spin_lock_irqsave. * * This takes several steps to prepare the rtc for access to read just the * control registers: * - Sets a spinlock on the rtc IRQ. * - Switches the rtc to bank 1. This allows access to the two extended * control registers. * * Only use this where you are certain another lock will not be held. */ static inline void ds1685_rtc_begin_ctrl_access(struct ds1685_priv *rtc, unsigned long *flags) { spin_lock_irqsave(&rtc->lock, *flags); ds1685_rtc_switch_to_bank1(rtc); } /** * ds1685_rtc_end_ctrl_access - end ctrl access on the rtc. * @rtc: pointer to the ds1685 rtc structure. * @flags: irq flags variable for spin_unlock_irqrestore. * * This ends what was started by ds1685_rtc_begin_ctrl_access: * - Switches the rtc back to bank 0. * - Unsets the spinlock on the rtc IRQ. */ static inline void ds1685_rtc_end_ctrl_access(struct ds1685_priv *rtc, unsigned long flags) { ds1685_rtc_switch_to_bank0(rtc); spin_unlock_irqrestore(&rtc->lock, flags); } /** * ds1685_rtc_get_ssn - retrieve the silicon serial number. * @rtc: pointer to the ds1685 rtc structure. * @ssn: u8 array to hold the bits of the silicon serial number. * * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The * first byte is the model number, the next six bytes are the serial number * digits, and the final byte is a CRC check byte. Together, they form the * silicon serial number. * * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be * called first before calling this function, else data will be read out of * the bank0 NVRAM. Be sure to call ds1685_rtc_switch_to_bank0 when done. */ static inline void ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn) { ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL); ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1); ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2); ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3); ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4); ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5); ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6); ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC); } /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* Read/Set Time & Alarm functions */ /** * ds1685_rtc_read_time - reads the time registers. * @dev: pointer to device structure. * @tm: pointer to rtc_time structure. */ static int ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrlb, century; u8 seconds, minutes, hours, wday, mday, month, years; /* Fetch the time info from the RTC registers. */ ds1685_rtc_begin_data_access(rtc); seconds = rtc->read(rtc, RTC_SECS); minutes = rtc->read(rtc, RTC_MINS); hours = rtc->read(rtc, RTC_HRS); wday = rtc->read(rtc, RTC_WDAY); mday = rtc->read(rtc, RTC_MDAY); month = rtc->read(rtc, RTC_MONTH); years = rtc->read(rtc, RTC_YEAR); century = rtc->read(rtc, RTC_CENTURY); ctrlb = rtc->read(rtc, RTC_CTRL_B); ds1685_rtc_end_data_access(rtc); /* bcd2bin if needed, perform fixups, and store to rtc_time. */ years = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK, RTC_YEAR_BIN_MASK); century = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK, RTC_CENTURY_MASK); tm->tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK, RTC_SECS_BIN_MASK); tm->tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK, RTC_MINS_BIN_MASK); tm->tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK, RTC_HRS_24_BIN_MASK); tm->tm_wday = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK, RTC_WDAY_MASK) - 1); tm->tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK, RTC_MDAY_BIN_MASK); tm->tm_mon = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK, RTC_MONTH_BIN_MASK) - 1); tm->tm_year = ((years + (century * 100)) - 1900); tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year); tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */ return rtc_valid_tm(tm); } /** * ds1685_rtc_set_time - sets the time registers. * @dev: pointer to device structure. * @tm: pointer to rtc_time structure. */ static int ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century; /* Fetch the time info from rtc_time. */ seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK, RTC_SECS_BCD_MASK); minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK, RTC_MINS_BCD_MASK); hours = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK, RTC_HRS_24_BCD_MASK); wday = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK, RTC_WDAY_MASK); mday = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK, RTC_MDAY_BCD_MASK); month = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK, RTC_MONTH_BCD_MASK); years = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100), RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK); century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100), RTC_CENTURY_MASK, RTC_CENTURY_MASK); /* * Perform Sanity Checks: * - Months: !> 12, Month Day != 0. * - Month Day !> Max days in current month. * - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7. */ if ((tm->tm_mon > 11) || (mday == 0)) return -EDOM; if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year)) return -EDOM; if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) || (tm->tm_sec >= 60) || (wday > 7)) return -EDOM; /* * Set the data mode to use and store the time values in the * RTC registers. */ ds1685_rtc_begin_data_access(rtc); ctrlb = rtc->read(rtc, RTC_CTRL_B); if (rtc->bcd_mode) ctrlb &= ~(RTC_CTRL_B_DM); else ctrlb |= RTC_CTRL_B_DM; rtc->write(rtc, RTC_CTRL_B, ctrlb); rtc->write(rtc, RTC_SECS, seconds); rtc->write(rtc, RTC_MINS, minutes); rtc->write(rtc, RTC_HRS, hours); rtc->write(rtc, RTC_WDAY, wday); rtc->write(rtc, RTC_MDAY, mday); rtc->write(rtc, RTC_MONTH, month); rtc->write(rtc, RTC_YEAR, years); rtc->write(rtc, RTC_CENTURY, century); ds1685_rtc_end_data_access(rtc); return 0; } /** * ds1685_rtc_read_alarm - reads the alarm registers. * @dev: pointer to device structure. * @alrm: pointer to rtc_wkalrm structure. * * There are three primary alarm registers: seconds, minutes, and hours. * A fourth alarm register for the month date is also available in bank1 for * kickstart/wakeup features. The DS1685/DS1687 manual states that a * "don't care" value ranging from 0xc0 to 0xff may be written into one or * more of the three alarm bytes to act as a wildcard value. The fourth * byte doesn't support a "don't care" value. */ static int ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 seconds, minutes, hours, mday, ctrlb, ctrlc; /* Fetch the alarm info from the RTC alarm registers. */ ds1685_rtc_begin_data_access(rtc); seconds = rtc->read(rtc, RTC_SECS_ALARM); minutes = rtc->read(rtc, RTC_MINS_ALARM); hours = rtc->read(rtc, RTC_HRS_ALARM); mday = rtc->read(rtc, RTC_MDAY_ALARM); ctrlb = rtc->read(rtc, RTC_CTRL_B); ctrlc = rtc->read(rtc, RTC_CTRL_C); ds1685_rtc_end_data_access(rtc); /* Check month date. */ if (!(mday >= 1) && (mday <= 31)) return -EDOM; /* * Check the three alarm bytes. * * The Linux RTC system doesn't support the "don't care" capability * of this RTC chip. We check for it anyways in case support is * added in the future. */ if (unlikely(seconds >= 0xc0)) alrm->time.tm_sec = -1; else alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK, RTC_SECS_BIN_MASK); if (unlikely(minutes >= 0xc0)) alrm->time.tm_min = -1; else alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK, RTC_MINS_BIN_MASK); if (unlikely(hours >= 0xc0)) alrm->time.tm_hour = -1; else alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK, RTC_HRS_24_BIN_MASK); /* Write the data to rtc_wkalrm. */ alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK, RTC_MDAY_BIN_MASK); alrm->time.tm_mon = -1; alrm->time.tm_year = -1; alrm->time.tm_wday = -1; alrm->time.tm_yday = -1; alrm->time.tm_isdst = -1; alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE); alrm->pending = !!(ctrlc & RTC_CTRL_C_AF); return 0; } /** * ds1685_rtc_set_alarm - sets the alarm in registers. * @dev: pointer to device structure. * @alrm: pointer to rtc_wkalrm structure. */ static int ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrlb, seconds, minutes, hours, mday; /* Fetch the alarm info and convert to BCD. */ seconds = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec, RTC_SECS_BIN_MASK, RTC_SECS_BCD_MASK); minutes = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min, RTC_MINS_BIN_MASK, RTC_MINS_BCD_MASK); hours = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour, RTC_HRS_24_BIN_MASK, RTC_HRS_24_BCD_MASK); mday = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday, RTC_MDAY_BIN_MASK, RTC_MDAY_BCD_MASK); /* Check the month date for validity. */ if (!(mday >= 1) && (mday <= 31)) return -EDOM; /* * Check the three alarm bytes. * * The Linux RTC system doesn't support the "don't care" capability * of this RTC chip because rtc_valid_tm tries to validate every * field, and we only support four fields. We put the support * here anyways for the future. */ if (unlikely(seconds >= 0xc0)) seconds = 0xff; if (unlikely(minutes >= 0xc0)) minutes = 0xff; if (unlikely(hours >= 0xc0)) hours = 0xff; alrm->time.tm_mon = -1; alrm->time.tm_year = -1; alrm->time.tm_wday = -1; alrm->time.tm_yday = -1; alrm->time.tm_isdst = -1; /* Disable the alarm interrupt first. */ ds1685_rtc_begin_data_access(rtc); ctrlb = rtc->read(rtc, RTC_CTRL_B); rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE))); /* Read ctrlc to clear RTC_CTRL_C_AF. */ rtc->read(rtc, RTC_CTRL_C); /* * Set the data mode to use and store the time values in the * RTC registers. */ ctrlb = rtc->read(rtc, RTC_CTRL_B); if (rtc->bcd_mode) ctrlb &= ~(RTC_CTRL_B_DM); else ctrlb |= RTC_CTRL_B_DM; rtc->write(rtc, RTC_CTRL_B, ctrlb); rtc->write(rtc, RTC_SECS_ALARM, seconds); rtc->write(rtc, RTC_MINS_ALARM, minutes); rtc->write(rtc, RTC_HRS_ALARM, hours); rtc->write(rtc, RTC_MDAY_ALARM, mday); /* Re-enable the alarm if needed. */ if (alrm->enabled) { ctrlb = rtc->read(rtc, RTC_CTRL_B); ctrlb |= RTC_CTRL_B_AIE; rtc->write(rtc, RTC_CTRL_B, ctrlb); } /* Done! */ ds1685_rtc_end_data_access(rtc); return 0; } /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* /dev/rtcX Interface functions */ /** * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off. * @dev: pointer to device structure. * @enabled: flag indicating whether to enable or disable. */ static int ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct ds1685_priv *rtc = dev_get_drvdata(dev); unsigned long flags = 0; /* Enable/disable the Alarm IRQ-Enable flag. */ spin_lock_irqsave(&rtc->lock, flags); /* Flip the requisite interrupt-enable bit. */ if (enabled) rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_AIE)); else rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_AIE))); /* Read Control C to clear all the flag bits. */ rtc->read(rtc, RTC_CTRL_C); spin_unlock_irqrestore(&rtc->lock, flags); return 0; } /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* IRQ handler & workqueue. */ /** * ds1685_rtc_irq_handler - IRQ handler. * @irq: IRQ number. * @dev_id: platform device pointer. */ static irqreturn_t ds1685_rtc_irq_handler(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrlb, ctrlc; unsigned long events = 0; u8 num_irqs = 0; /* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */ if (unlikely(!rtc)) return IRQ_HANDLED; /* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */ spin_lock(&rtc->lock); ctrlb = rtc->read(rtc, RTC_CTRL_B); ctrlc = rtc->read(rtc, RTC_CTRL_C); /* Is the IRQF bit set? */ if (likely(ctrlc & RTC_CTRL_C_IRQF)) { /* * We need to determine if it was one of the standard * events: PF, AF, or UF. If so, we handle them and * update the RTC core. */ if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) { events = RTC_IRQF; /* Check for a periodic interrupt. */ if ((ctrlb & RTC_CTRL_B_PIE) && (ctrlc & RTC_CTRL_C_PF)) { events |= RTC_PF; num_irqs++; } /* Check for an alarm interrupt. */ if ((ctrlb & RTC_CTRL_B_AIE) && (ctrlc & RTC_CTRL_C_AF)) { events |= RTC_AF; num_irqs++; } /* Check for an update interrupt. */ if ((ctrlb & RTC_CTRL_B_UIE) && (ctrlc & RTC_CTRL_C_UF)) { events |= RTC_UF; num_irqs++; } rtc_update_irq(rtc->dev, num_irqs, events); } else { /* * One of the "extended" interrupts was received that * is not recognized by the RTC core. These need to * be handled in task context as they can call other * functions and the time spent in irq context needs * to be minimized. Schedule them into a workqueue * and inform the RTC core that the IRQs were handled. */ spin_unlock(&rtc->lock); schedule_work(&rtc->work); rtc_update_irq(rtc->dev, 0, 0); return IRQ_HANDLED; } } spin_unlock(&rtc->lock); return events ? IRQ_HANDLED : IRQ_NONE; } /** * ds1685_rtc_work_queue - work queue handler. * @work: work_struct containing data to work on in task context. */ static void ds1685_rtc_work_queue(struct work_struct *work) { struct ds1685_priv *rtc = container_of(work, struct ds1685_priv, work); struct platform_device *pdev = to_platform_device(&rtc->dev->dev); struct mutex *rtc_mutex = &rtc->dev->ops_lock; u8 ctrl4a, ctrl4b; mutex_lock(rtc_mutex); ds1685_rtc_switch_to_bank1(rtc); ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); /* * Check for a kickstart interrupt. With Vcc applied, this * typically means that the power button was pressed, so we * begin the shutdown sequence. */ if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) { /* Briefly disable kickstarts to debounce button presses. */ rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_KSE))); /* Clear the kickstart flag. */ rtc->write(rtc, RTC_EXT_CTRL_4A, (ctrl4a & ~(RTC_CTRL_4A_KF))); /* * Sleep 500ms before re-enabling kickstarts. This allows * adequate time to avoid reading signal jitter as additional * button presses. */ msleep(500); rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE)); /* Call the platform pre-poweroff function. Else, shutdown. */ if (rtc->prepare_poweroff != NULL) rtc->prepare_poweroff(); else ds1685_rtc_poweroff(pdev); } /* * Check for a wake-up interrupt. With Vcc applied, this is * essentially a second alarm interrupt, except it takes into * account the 'date' register in bank1 in addition to the * standard three alarm registers. */ if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) { rtc->write(rtc, RTC_EXT_CTRL_4A, (ctrl4a & ~(RTC_CTRL_4A_WF))); /* Call the platform wake_alarm function if defined. */ if (rtc->wake_alarm != NULL) rtc->wake_alarm(); else dev_warn(&pdev->dev, "Wake Alarm IRQ just occurred!\n"); } /* * Check for a ram-clear interrupt. This happens if RIE=1 and RF=0 * when RCE=1 in 4B. This clears all NVRAM bytes in bank0 by setting * each byte to a logic 1. This has no effect on any extended * NV-SRAM that might be present, nor on the time/calendar/alarm * registers. After a ram-clear is completed, there is a minimum * recovery time of ~150ms in which all reads/writes are locked out. * NOTE: A ram-clear can still occur if RCE=1 and RIE=0. We cannot * catch this scenario. */ if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) { rtc->write(rtc, RTC_EXT_CTRL_4A, (ctrl4a & ~(RTC_CTRL_4A_RF))); msleep(150); /* Call the platform post_ram_clear function if defined. */ if (rtc->post_ram_clear != NULL) rtc->post_ram_clear(); else dev_warn(&pdev->dev, "RAM-Clear IRQ just occurred!\n"); } ds1685_rtc_switch_to_bank0(rtc); mutex_unlock(rtc_mutex); } /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* ProcFS interface */ #ifdef CONFIG_PROC_FS #define NUM_REGS 6 /* Num of control registers. */ #define NUM_BITS 8 /* Num bits per register. */ #define NUM_SPACES 4 /* Num spaces between each bit. */ /* * Periodic Interrupt Rates. */ static const char *ds1685_rtc_pirq_rate[16] = { "none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms", "0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms", "15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms" }; /* * Square-Wave Output Frequencies. */ static const char *ds1685_rtc_sqw_freq[16] = { "none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz", "512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz" }; #ifdef CONFIG_RTC_DS1685_PROC_REGS /** * ds1685_rtc_print_regs - helper function to print register values. * @hex: hex byte to convert into binary bits. * @dest: destination char array. * * This is basically a hex->binary function, just with extra spacing between * the digits. It only works on 1-byte values (8 bits). */ static char* ds1685_rtc_print_regs(u8 hex, char *dest) { u32 i, j; char *tmp = dest; for (i = 0; i < NUM_BITS; i++) { *tmp++ = ((hex & 0x80) != 0 ? '1' : '0'); for (j = 0; j < NUM_SPACES; j++) *tmp++ = ' '; hex <<= 1; } *tmp++ = '\0'; return dest; } #endif /** * ds1685_rtc_proc - procfs access function. * @dev: pointer to device structure. * @seq: pointer to seq_file structure. */ static int ds1685_rtc_proc(struct device *dev, struct seq_file *seq) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrla, ctrlb, ctrlc, ctrld, ctrl4a, ctrl4b, ssn[8]; char *model; #ifdef CONFIG_RTC_DS1685_PROC_REGS char bits[NUM_REGS][(NUM_BITS * NUM_SPACES) + NUM_BITS + 1]; #endif /* Read all the relevant data from the control registers. */ ds1685_rtc_switch_to_bank1(rtc); ds1685_rtc_get_ssn(rtc, ssn); ctrla = rtc->read(rtc, RTC_CTRL_A); ctrlb = rtc->read(rtc, RTC_CTRL_B); ctrlc = rtc->read(rtc, RTC_CTRL_C); ctrld = rtc->read(rtc, RTC_CTRL_D); ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); ds1685_rtc_switch_to_bank0(rtc); /* Determine the RTC model. */ switch (ssn[0]) { case RTC_MODEL_DS1685: model = "DS1685/DS1687\0"; break; case RTC_MODEL_DS1689: model = "DS1689/DS1693\0"; break; case RTC_MODEL_DS17285: model = "DS17285/DS17287\0"; break; case RTC_MODEL_DS17485: model = "DS17485/DS17487\0"; break; case RTC_MODEL_DS17885: model = "DS17885/DS17887\0"; break; default: model = "Unknown\0"; break; } /* Print out the information. */ seq_printf(seq, "Model\t\t: %s\n" "Oscillator\t: %s\n" "12/24hr\t\t: %s\n" "DST\t\t: %s\n" "Data mode\t: %s\n" "Battery\t\t: %s\n" "Aux batt\t: %s\n" "Update IRQ\t: %s\n" "Periodic IRQ\t: %s\n" "Periodic Rate\t: %s\n" "SQW Freq\t: %s\n" #ifdef CONFIG_RTC_DS1685_PROC_REGS "Serial #\t: %8phC\n" "Register Status\t:\n" " Ctrl A\t: UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0\n" "\t\t: %s\n" " Ctrl B\t: SET PIE AIE UIE SQWE DM 2412 DSE\n" "\t\t: %s\n" " Ctrl C\t: IRQF PF AF UF --- --- --- ---\n" "\t\t: %s\n" " Ctrl D\t: VRT --- --- --- --- --- --- ---\n" "\t\t: %s\n" #if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) " Ctrl 4A\t: VRT2 INCR BME --- PAB RF WF KF\n" #else " Ctrl 4A\t: VRT2 INCR --- --- PAB RF WF KF\n" #endif "\t\t: %s\n" " Ctrl 4B\t: ABE E32k CS RCE PRS RIE WIE KSE\n" "\t\t: %s\n", #else "Serial #\t: %8phC\n", #endif model, ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"), ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"), ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"), ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"), ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"), ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"), ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"), ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"), (!(ctrl4b & RTC_CTRL_4B_E32K) ? ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"), (!((ctrl4b & RTC_CTRL_4B_E32K)) ? ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"), #ifdef CONFIG_RTC_DS1685_PROC_REGS ssn, ds1685_rtc_print_regs(ctrla, bits[0]), ds1685_rtc_print_regs(ctrlb, bits[1]), ds1685_rtc_print_regs(ctrlc, bits[2]), ds1685_rtc_print_regs(ctrld, bits[3]), ds1685_rtc_print_regs(ctrl4a, bits[4]), ds1685_rtc_print_regs(ctrl4b, bits[5])); #else ssn); #endif return 0; } #else #define ds1685_rtc_proc NULL #endif /* CONFIG_PROC_FS */ /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* RTC Class operations */ static const struct rtc_class_ops ds1685_rtc_ops = { .proc = ds1685_rtc_proc, .read_time = ds1685_rtc_read_time, .set_time = ds1685_rtc_set_time, .read_alarm = ds1685_rtc_read_alarm, .set_alarm = ds1685_rtc_set_alarm, .alarm_irq_enable = ds1685_rtc_alarm_irq_enable, }; /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* SysFS interface */ #ifdef CONFIG_SYSFS /** * ds1685_rtc_sysfs_nvram_read - reads rtc nvram via sysfs. * @file: pointer to file structure. * @kobj: pointer to kobject structure. * @bin_attr: pointer to bin_attribute structure. * @buf: pointer to char array to hold the output. * @pos: current file position pointer. * @size: size of the data to read. */ static ssize_t ds1685_rtc_sysfs_nvram_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t size) { struct platform_device *pdev = to_platform_device(container_of(kobj, struct device, kobj)); struct ds1685_priv *rtc = platform_get_drvdata(pdev); ssize_t count; unsigned long flags = 0; spin_lock_irqsave(&rtc->lock, flags); ds1685_rtc_switch_to_bank0(rtc); /* Read NVRAM in time and bank0 registers. */ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0; count++, size--) { if (count < NVRAM_SZ_TIME) *buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++)); else *buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++)); } #ifndef CONFIG_RTC_DRV_DS1689 if (size > 0) { ds1685_rtc_switch_to_bank1(rtc); #ifndef CONFIG_RTC_DRV_DS1685 /* Enable burst-mode on DS17x85/DS17x87 */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) | RTC_CTRL_4A_BME)); /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start * reading with burst-mode */ rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB, (pos - NVRAM_TOTAL_SZ_BANK0)); #endif /* Read NVRAM in bank1 registers. */ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ; count++, size--) { #ifdef CONFIG_RTC_DRV_DS1685 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR * before each read. */ rtc->write(rtc, RTC_BANK1_RAM_ADDR, (pos - NVRAM_TOTAL_SZ_BANK0)); #endif *buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT); pos++; } #ifndef CONFIG_RTC_DRV_DS1685 /* Disable burst-mode on DS17x85/DS17x87 */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_BME))); #endif ds1685_rtc_switch_to_bank0(rtc); } #endif /* !CONFIG_RTC_DRV_DS1689 */ spin_unlock_irqrestore(&rtc->lock, flags); /* * XXX: Bug? this appears to cause the function to get executed * several times in succession. But it's the only way to actually get * data written out to a file. */ return count; } /** * ds1685_rtc_sysfs_nvram_write - writes rtc nvram via sysfs. * @file: pointer to file structure. * @kobj: pointer to kobject structure. * @bin_attr: pointer to bin_attribute structure. * @buf: pointer to char array to hold the input. * @pos: current file position pointer. * @size: size of the data to write. */ static ssize_t ds1685_rtc_sysfs_nvram_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t size) { struct platform_device *pdev = to_platform_device(container_of(kobj, struct device, kobj)); struct ds1685_priv *rtc = platform_get_drvdata(pdev); ssize_t count; unsigned long flags = 0; spin_lock_irqsave(&rtc->lock, flags); ds1685_rtc_switch_to_bank0(rtc); /* Write NVRAM in time and bank0 registers. */ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0; count++, size--) if (count < NVRAM_SZ_TIME) rtc->write(rtc, (NVRAM_TIME_BASE + pos++), *buf++); else rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++); #ifndef CONFIG_RTC_DRV_DS1689 if (size > 0) { ds1685_rtc_switch_to_bank1(rtc); #ifndef CONFIG_RTC_DRV_DS1685 /* Enable burst-mode on DS17x85/DS17x87 */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) | RTC_CTRL_4A_BME)); /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start * writing with burst-mode */ rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB, (pos - NVRAM_TOTAL_SZ_BANK0)); #endif /* Write NVRAM in bank1 registers. */ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ; count++, size--) { #ifdef CONFIG_RTC_DRV_DS1685 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR * before each read. */ rtc->write(rtc, RTC_BANK1_RAM_ADDR, (pos - NVRAM_TOTAL_SZ_BANK0)); #endif rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++); pos++; } #ifndef CONFIG_RTC_DRV_DS1685 /* Disable burst-mode on DS17x85/DS17x87 */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_BME))); #endif ds1685_rtc_switch_to_bank0(rtc); } #endif /* !CONFIG_RTC_DRV_DS1689 */ spin_unlock_irqrestore(&rtc->lock, flags); return count; } /** * struct ds1685_rtc_sysfs_nvram_attr - sysfs attributes for rtc nvram. * @attr: nvram attributes. * @read: nvram read function. * @write: nvram write function. * @size: nvram total size (bank0 + extended). */ static struct bin_attribute ds1685_rtc_sysfs_nvram_attr = { .attr = { .name = "nvram", .mode = S_IRUGO | S_IWUSR, }, .read = ds1685_rtc_sysfs_nvram_read, .write = ds1685_rtc_sysfs_nvram_write, .size = NVRAM_TOTAL_SZ }; /** * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. */ static ssize_t ds1685_rtc_sysfs_battery_show(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrld; ctrld = rtc->read(rtc, RTC_CTRL_D); return sprintf(buf, "%s\n", (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A"); } static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL); /** * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. */ static ssize_t ds1685_rtc_sysfs_auxbatt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ctrl4a; ds1685_rtc_switch_to_bank1(rtc); ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); ds1685_rtc_switch_to_bank0(rtc); return sprintf(buf, "%s\n", (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A"); } static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL); /** * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. */ static ssize_t ds1685_rtc_sysfs_serial_show(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *pdev = to_platform_device(dev); struct ds1685_priv *rtc = platform_get_drvdata(pdev); u8 ssn[8]; ds1685_rtc_switch_to_bank1(rtc); ds1685_rtc_get_ssn(rtc, ssn); ds1685_rtc_switch_to_bank0(rtc); return sprintf(buf, "%8phC\n", ssn); } static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL); /** * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features. */ static struct attribute* ds1685_rtc_sysfs_misc_attrs[] = { &dev_attr_battery.attr, &dev_attr_auxbatt.attr, &dev_attr_serial.attr, NULL, }; /** * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features. */ static const struct attribute_group ds1685_rtc_sysfs_misc_grp = { .name = "misc", .attrs = ds1685_rtc_sysfs_misc_attrs, }; #ifdef CONFIG_RTC_DS1685_SYSFS_REGS /** * struct ds1685_rtc_ctrl_regs. * @name: char pointer for the bit name. * @reg: control register the bit is in. * @bit: the bit's offset in the register. */ struct ds1685_rtc_ctrl_regs { const char *name; const u8 reg; const u8 bit; }; /* * Ctrl register bit lookup table. */ static const struct ds1685_rtc_ctrl_regs ds1685_ctrl_regs_table[] = { { "uip", RTC_CTRL_A, RTC_CTRL_A_UIP }, { "dv2", RTC_CTRL_A, RTC_CTRL_A_DV2 }, { "dv1", RTC_CTRL_A, RTC_CTRL_A_DV1 }, { "dv0", RTC_CTRL_A, RTC_CTRL_A_DV0 }, { "rs3", RTC_CTRL_A, RTC_CTRL_A_RS3 }, { "rs2", RTC_CTRL_A, RTC_CTRL_A_RS2 }, { "rs1", RTC_CTRL_A, RTC_CTRL_A_RS1 }, { "rs0", RTC_CTRL_A, RTC_CTRL_A_RS0 }, { "set", RTC_CTRL_B, RTC_CTRL_B_SET }, { "pie", RTC_CTRL_B, RTC_CTRL_B_PIE }, { "aie", RTC_CTRL_B, RTC_CTRL_B_AIE }, { "uie", RTC_CTRL_B, RTC_CTRL_B_UIE }, { "sqwe", RTC_CTRL_B, RTC_CTRL_B_SQWE }, { "dm", RTC_CTRL_B, RTC_CTRL_B_DM }, { "2412", RTC_CTRL_B, RTC_CTRL_B_2412 }, { "dse", RTC_CTRL_B, RTC_CTRL_B_DSE }, { "irqf", RTC_CTRL_C, RTC_CTRL_C_IRQF }, { "pf", RTC_CTRL_C, RTC_CTRL_C_PF }, { "af", RTC_CTRL_C, RTC_CTRL_C_AF }, { "uf", RTC_CTRL_C, RTC_CTRL_C_UF }, { "vrt", RTC_CTRL_D, RTC_CTRL_D_VRT }, { "vrt2", RTC_EXT_CTRL_4A, RTC_CTRL_4A_VRT2 }, { "incr", RTC_EXT_CTRL_4A, RTC_CTRL_4A_INCR }, { "pab", RTC_EXT_CTRL_4A, RTC_CTRL_4A_PAB }, { "rf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_RF }, { "wf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_WF }, { "kf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_KF }, #if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) { "bme", RTC_EXT_CTRL_4A, RTC_CTRL_4A_BME }, #endif { "abe", RTC_EXT_CTRL_4B, RTC_CTRL_4B_ABE }, { "e32k", RTC_EXT_CTRL_4B, RTC_CTRL_4B_E32K }, { "cs", RTC_EXT_CTRL_4B, RTC_CTRL_4B_CS }, { "rce", RTC_EXT_CTRL_4B, RTC_CTRL_4B_RCE }, { "prs", RTC_EXT_CTRL_4B, RTC_CTRL_4B_PRS }, { "rie", RTC_EXT_CTRL_4B, RTC_CTRL_4B_RIE }, { "wie", RTC_EXT_CTRL_4B, RTC_CTRL_4B_WIE }, { "kse", RTC_EXT_CTRL_4B, RTC_CTRL_4B_KSE }, { NULL, 0, 0 }, }; /** * ds1685_rtc_sysfs_ctrl_regs_lookup - ctrl register bit lookup function. * @name: ctrl register bit to look up in ds1685_ctrl_regs_table. */ static const struct ds1685_rtc_ctrl_regs* ds1685_rtc_sysfs_ctrl_regs_lookup(const char *name) { const struct ds1685_rtc_ctrl_regs *p = ds1685_ctrl_regs_table; for (; p->name != NULL; ++p) if (strcmp(p->name, name) == 0) return p; return NULL; } /** * ds1685_rtc_sysfs_ctrl_regs_show - reads a ctrl register bit via sysfs. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. */ static ssize_t ds1685_rtc_sysfs_ctrl_regs_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 tmp; struct ds1685_priv *rtc = dev_get_drvdata(dev); const struct ds1685_rtc_ctrl_regs *reg_info = ds1685_rtc_sysfs_ctrl_regs_lookup(attr->attr.name); /* Make sure we actually matched something. */ if (!reg_info) return -EINVAL; /* No spinlock during a read -- mutex is already held. */ ds1685_rtc_switch_to_bank1(rtc); tmp = rtc->read(rtc, reg_info->reg) & reg_info->bit; ds1685_rtc_switch_to_bank0(rtc); return sprintf(buf, "%d\n", (tmp ? 1 : 0)); } /** * ds1685_rtc_sysfs_ctrl_regs_store - writes a ctrl register bit via sysfs. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. * @count: number of bytes written. */ static ssize_t ds1685_rtc_sysfs_ctrl_regs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ds1685_priv *rtc = dev_get_drvdata(dev); u8 reg = 0, bit = 0, tmp; unsigned long flags; long int val = 0; const struct ds1685_rtc_ctrl_regs *reg_info = ds1685_rtc_sysfs_ctrl_regs_lookup(attr->attr.name); /* We only accept numbers. */ if (kstrtol(buf, 10, &val) < 0) return -EINVAL; /* bits are binary, 0 or 1 only. */ if ((val != 0) && (val != 1)) return -ERANGE; /* Make sure we actually matched something. */ if (!reg_info) return -EINVAL; reg = reg_info->reg; bit = reg_info->bit; /* Safe to spinlock during a write. */ ds1685_rtc_begin_ctrl_access(rtc, &flags); tmp = rtc->read(rtc, reg); rtc->write(rtc, reg, (val ? (tmp | bit) : (tmp & ~(bit)))); ds1685_rtc_end_ctrl_access(rtc, flags); return count; } /** * DS1685_RTC_SYSFS_CTRL_REG_RO - device_attribute for read-only register bit. * @bit: bit to read. */ #define DS1685_RTC_SYSFS_CTRL_REG_RO(bit) \ static DEVICE_ATTR(bit, S_IRUGO, \ ds1685_rtc_sysfs_ctrl_regs_show, NULL) /** * DS1685_RTC_SYSFS_CTRL_REG_RW - device_attribute for read-write register bit. * @bit: bit to read or write. */ #define DS1685_RTC_SYSFS_CTRL_REG_RW(bit) \ static DEVICE_ATTR(bit, S_IRUGO | S_IWUSR, \ ds1685_rtc_sysfs_ctrl_regs_show, \ ds1685_rtc_sysfs_ctrl_regs_store) /* * Control Register A bits. */ DS1685_RTC_SYSFS_CTRL_REG_RO(uip); DS1685_RTC_SYSFS_CTRL_REG_RW(dv2); DS1685_RTC_SYSFS_CTRL_REG_RW(dv1); DS1685_RTC_SYSFS_CTRL_REG_RO(dv0); DS1685_RTC_SYSFS_CTRL_REG_RW(rs3); DS1685_RTC_SYSFS_CTRL_REG_RW(rs2); DS1685_RTC_SYSFS_CTRL_REG_RW(rs1); DS1685_RTC_SYSFS_CTRL_REG_RW(rs0); static struct attribute* ds1685_rtc_sysfs_ctrla_attrs[] = { &dev_attr_uip.attr, &dev_attr_dv2.attr, &dev_attr_dv1.attr, &dev_attr_dv0.attr, &dev_attr_rs3.attr, &dev_attr_rs2.attr, &dev_attr_rs1.attr, &dev_attr_rs0.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrla_grp = { .name = "ctrla", .attrs = ds1685_rtc_sysfs_ctrla_attrs, }; /* * Control Register B bits. */ DS1685_RTC_SYSFS_CTRL_REG_RO(set); DS1685_RTC_SYSFS_CTRL_REG_RW(pie); DS1685_RTC_SYSFS_CTRL_REG_RW(aie); DS1685_RTC_SYSFS_CTRL_REG_RW(uie); DS1685_RTC_SYSFS_CTRL_REG_RW(sqwe); DS1685_RTC_SYSFS_CTRL_REG_RO(dm); DS1685_RTC_SYSFS_CTRL_REG_RO(2412); DS1685_RTC_SYSFS_CTRL_REG_RO(dse); static struct attribute* ds1685_rtc_sysfs_ctrlb_attrs[] = { &dev_attr_set.attr, &dev_attr_pie.attr, &dev_attr_aie.attr, &dev_attr_uie.attr, &dev_attr_sqwe.attr, &dev_attr_dm.attr, &dev_attr_2412.attr, &dev_attr_dse.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrlb_grp = { .name = "ctrlb", .attrs = ds1685_rtc_sysfs_ctrlb_attrs, }; /* * Control Register C bits. * * Reading Control C clears these bits! Reading them individually can * possibly cause an interrupt to be missed. Use the /proc interface * to see all the bits in this register simultaneously. */ DS1685_RTC_SYSFS_CTRL_REG_RO(irqf); DS1685_RTC_SYSFS_CTRL_REG_RO(pf); DS1685_RTC_SYSFS_CTRL_REG_RO(af); DS1685_RTC_SYSFS_CTRL_REG_RO(uf); static struct attribute* ds1685_rtc_sysfs_ctrlc_attrs[] = { &dev_attr_irqf.attr, &dev_attr_pf.attr, &dev_attr_af.attr, &dev_attr_uf.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrlc_grp = { .name = "ctrlc", .attrs = ds1685_rtc_sysfs_ctrlc_attrs, }; /* * Control Register D bits. */ DS1685_RTC_SYSFS_CTRL_REG_RO(vrt); static struct attribute* ds1685_rtc_sysfs_ctrld_attrs[] = { &dev_attr_vrt.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrld_grp = { .name = "ctrld", .attrs = ds1685_rtc_sysfs_ctrld_attrs, }; /* * Control Register 4A bits. */ DS1685_RTC_SYSFS_CTRL_REG_RO(vrt2); DS1685_RTC_SYSFS_CTRL_REG_RO(incr); DS1685_RTC_SYSFS_CTRL_REG_RW(pab); DS1685_RTC_SYSFS_CTRL_REG_RW(rf); DS1685_RTC_SYSFS_CTRL_REG_RW(wf); DS1685_RTC_SYSFS_CTRL_REG_RW(kf); #if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) DS1685_RTC_SYSFS_CTRL_REG_RO(bme); #endif static struct attribute* ds1685_rtc_sysfs_ctrl4a_attrs[] = { &dev_attr_vrt2.attr, &dev_attr_incr.attr, &dev_attr_pab.attr, &dev_attr_rf.attr, &dev_attr_wf.attr, &dev_attr_kf.attr, #if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) &dev_attr_bme.attr, #endif NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrl4a_grp = { .name = "ctrl4a", .attrs = ds1685_rtc_sysfs_ctrl4a_attrs, }; /* * Control Register 4B bits. */ DS1685_RTC_SYSFS_CTRL_REG_RW(abe); DS1685_RTC_SYSFS_CTRL_REG_RW(e32k); DS1685_RTC_SYSFS_CTRL_REG_RO(cs); DS1685_RTC_SYSFS_CTRL_REG_RW(rce); DS1685_RTC_SYSFS_CTRL_REG_RW(prs); DS1685_RTC_SYSFS_CTRL_REG_RW(rie); DS1685_RTC_SYSFS_CTRL_REG_RW(wie); DS1685_RTC_SYSFS_CTRL_REG_RW(kse); static struct attribute* ds1685_rtc_sysfs_ctrl4b_attrs[] = { &dev_attr_abe.attr, &dev_attr_e32k.attr, &dev_attr_cs.attr, &dev_attr_rce.attr, &dev_attr_prs.attr, &dev_attr_rie.attr, &dev_attr_wie.attr, &dev_attr_kse.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_ctrl4b_grp = { .name = "ctrl4b", .attrs = ds1685_rtc_sysfs_ctrl4b_attrs, }; /** * struct ds1685_rtc_ctrl_regs. * @name: char pointer for the bit name. * @reg: control register the bit is in. * @bit: the bit's offset in the register. */ struct ds1685_rtc_time_regs { const char *name; const u8 reg; const u8 mask; const u8 min; const u8 max; }; /* * Time/Date register lookup tables. */ static const struct ds1685_rtc_time_regs ds1685_time_regs_bcd_table[] = { { "seconds", RTC_SECS, RTC_SECS_BCD_MASK, 0, 59 }, { "minutes", RTC_MINS, RTC_MINS_BCD_MASK, 0, 59 }, { "hours", RTC_HRS, RTC_HRS_24_BCD_MASK, 0, 23 }, { "wday", RTC_WDAY, RTC_WDAY_MASK, 1, 7 }, { "mday", RTC_MDAY, RTC_MDAY_BCD_MASK, 1, 31 }, { "month", RTC_MONTH, RTC_MONTH_BCD_MASK, 1, 12 }, { "year", RTC_YEAR, RTC_YEAR_BCD_MASK, 0, 99 }, { "century", RTC_CENTURY, RTC_CENTURY_MASK, 0, 99 }, { "alarm_seconds", RTC_SECS_ALARM, RTC_SECS_BCD_MASK, 0, 59 }, { "alarm_minutes", RTC_MINS_ALARM, RTC_MINS_BCD_MASK, 0, 59 }, { "alarm_hours", RTC_HRS_ALARM, RTC_HRS_24_BCD_MASK, 0, 23 }, { "alarm_mday", RTC_MDAY_ALARM, RTC_MDAY_ALARM_MASK, 1, 31 }, { NULL, 0, 0, 0, 0 }, }; static const struct ds1685_rtc_time_regs ds1685_time_regs_bin_table[] = { { "seconds", RTC_SECS, RTC_SECS_BIN_MASK, 0x00, 0x3b }, { "minutes", RTC_MINS, RTC_MINS_BIN_MASK, 0x00, 0x3b }, { "hours", RTC_HRS, RTC_HRS_24_BIN_MASK, 0x00, 0x17 }, { "wday", RTC_WDAY, RTC_WDAY_MASK, 0x01, 0x07 }, { "mday", RTC_MDAY, RTC_MDAY_BIN_MASK, 0x01, 0x1f }, { "month", RTC_MONTH, RTC_MONTH_BIN_MASK, 0x01, 0x0c }, { "year", RTC_YEAR, RTC_YEAR_BIN_MASK, 0x00, 0x63 }, { "century", RTC_CENTURY, RTC_CENTURY_MASK, 0x00, 0x63 }, { "alarm_seconds", RTC_SECS_ALARM, RTC_SECS_BIN_MASK, 0x00, 0x3b }, { "alarm_minutes", RTC_MINS_ALARM, RTC_MINS_BIN_MASK, 0x00, 0x3b }, { "alarm_hours", RTC_HRS_ALARM, RTC_HRS_24_BIN_MASK, 0x00, 0x17 }, { "alarm_mday", RTC_MDAY_ALARM, RTC_MDAY_ALARM_MASK, 0x01, 0x1f }, { NULL, 0, 0, 0x00, 0x00 }, }; /** * ds1685_rtc_sysfs_time_regs_bcd_lookup - time/date reg bit lookup function. * @name: register bit to look up in ds1685_time_regs_bcd_table. */ static const struct ds1685_rtc_time_regs* ds1685_rtc_sysfs_time_regs_lookup(const char *name, bool bcd_mode) { const struct ds1685_rtc_time_regs *p; if (bcd_mode) p = ds1685_time_regs_bcd_table; else p = ds1685_time_regs_bin_table; for (; p->name != NULL; ++p) if (strcmp(p->name, name) == 0) return p; return NULL; } /** * ds1685_rtc_sysfs_time_regs_show - reads a time/date register via sysfs. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. */ static ssize_t ds1685_rtc_sysfs_time_regs_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 tmp; struct ds1685_priv *rtc = dev_get_drvdata(dev); const struct ds1685_rtc_time_regs *bcd_reg_info = ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, true); const struct ds1685_rtc_time_regs *bin_reg_info = ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, false); /* Make sure we actually matched something. */ if (!bcd_reg_info || !bin_reg_info) return -EINVAL; /* bcd_reg_info->reg == bin_reg_info->reg. */ ds1685_rtc_begin_data_access(rtc); tmp = rtc->read(rtc, bcd_reg_info->reg); ds1685_rtc_end_data_access(rtc); tmp = ds1685_rtc_bcd2bin(rtc, tmp, bcd_reg_info->mask, bin_reg_info->mask); return sprintf(buf, "%d\n", tmp); } /** * ds1685_rtc_sysfs_time_regs_store - writes a time/date register via sysfs. * @dev: pointer to device structure. * @attr: pointer to device_attribute structure. * @buf: pointer to char array to hold the output. * @count: number of bytes written. */ static ssize_t ds1685_rtc_sysfs_time_regs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { long int val = 0; struct ds1685_priv *rtc = dev_get_drvdata(dev); const struct ds1685_rtc_time_regs *bcd_reg_info = ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, true); const struct ds1685_rtc_time_regs *bin_reg_info = ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, false); /* We only accept numbers. */ if (kstrtol(buf, 10, &val) < 0) return -EINVAL; /* Make sure we actually matched something. */ if (!bcd_reg_info || !bin_reg_info) return -EINVAL; /* Check for a valid range. */ if (rtc->bcd_mode) { if ((val < bcd_reg_info->min) || (val > bcd_reg_info->max)) return -ERANGE; } else { if ((val < bin_reg_info->min) || (val > bin_reg_info->max)) return -ERANGE; } val = ds1685_rtc_bin2bcd(rtc, val, bin_reg_info->mask, bcd_reg_info->mask); /* bcd_reg_info->reg == bin_reg_info->reg. */ ds1685_rtc_begin_data_access(rtc); rtc->write(rtc, bcd_reg_info->reg, val); ds1685_rtc_end_data_access(rtc); return count; } /** * DS1685_RTC_SYSFS_REG_RW - device_attribute for a read-write time register. * @reg: time/date register to read or write. */ #define DS1685_RTC_SYSFS_TIME_REG_RW(reg) \ static DEVICE_ATTR(reg, S_IRUGO | S_IWUSR, \ ds1685_rtc_sysfs_time_regs_show, \ ds1685_rtc_sysfs_time_regs_store) /* * Time/Date Register bits. */ DS1685_RTC_SYSFS_TIME_REG_RW(seconds); DS1685_RTC_SYSFS_TIME_REG_RW(minutes); DS1685_RTC_SYSFS_TIME_REG_RW(hours); DS1685_RTC_SYSFS_TIME_REG_RW(wday); DS1685_RTC_SYSFS_TIME_REG_RW(mday); DS1685_RTC_SYSFS_TIME_REG_RW(month); DS1685_RTC_SYSFS_TIME_REG_RW(year); DS1685_RTC_SYSFS_TIME_REG_RW(century); DS1685_RTC_SYSFS_TIME_REG_RW(alarm_seconds); DS1685_RTC_SYSFS_TIME_REG_RW(alarm_minutes); DS1685_RTC_SYSFS_TIME_REG_RW(alarm_hours); DS1685_RTC_SYSFS_TIME_REG_RW(alarm_mday); static struct attribute* ds1685_rtc_sysfs_time_attrs[] = { &dev_attr_seconds.attr, &dev_attr_minutes.attr, &dev_attr_hours.attr, &dev_attr_wday.attr, &dev_attr_mday.attr, &dev_attr_month.attr, &dev_attr_year.attr, &dev_attr_century.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_time_grp = { .name = "datetime", .attrs = ds1685_rtc_sysfs_time_attrs, }; static struct attribute* ds1685_rtc_sysfs_alarm_attrs[] = { &dev_attr_alarm_seconds.attr, &dev_attr_alarm_minutes.attr, &dev_attr_alarm_hours.attr, &dev_attr_alarm_mday.attr, NULL, }; static const struct attribute_group ds1685_rtc_sysfs_alarm_grp = { .name = "alarm", .attrs = ds1685_rtc_sysfs_alarm_attrs, }; #endif /* CONFIG_RTC_DS1685_SYSFS_REGS */ /** * ds1685_rtc_sysfs_register - register sysfs files. * @dev: pointer to device structure. */ static int ds1685_rtc_sysfs_register(struct device *dev) { int ret = 0; sysfs_bin_attr_init(&ds1685_rtc_sysfs_nvram_attr); ret = sysfs_create_bin_file(&dev->kobj, &ds1685_rtc_sysfs_nvram_attr); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_misc_grp); if (ret) return ret; #ifdef CONFIG_RTC_DS1685_SYSFS_REGS ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrla_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlb_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlc_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrld_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4a_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4b_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_time_grp); if (ret) return ret; ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_alarm_grp); if (ret) return ret; #endif return 0; } /** * ds1685_rtc_sysfs_unregister - unregister sysfs files. * @dev: pointer to device structure. */ static int ds1685_rtc_sysfs_unregister(struct device *dev) { sysfs_remove_bin_file(&dev->kobj, &ds1685_rtc_sysfs_nvram_attr); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_misc_grp); #ifdef CONFIG_RTC_DS1685_SYSFS_REGS sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrla_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlb_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlc_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrld_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4a_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4b_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_time_grp); sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_alarm_grp); #endif return 0; } #endif /* CONFIG_SYSFS */ /* ----------------------------------------------------------------------- */ /* Driver Probe/Removal */ /** * ds1685_rtc_probe - initializes rtc driver. * @pdev: pointer to platform_device structure. */ static int ds1685_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc_dev; struct resource *res; struct ds1685_priv *rtc; struct ds1685_rtc_platform_data *pdata; u8 ctrla, ctrlb, hours; unsigned char am_pm; int ret = 0; /* Get the platform data. */ pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data; if (!pdata) return -ENODEV; /* Allocate memory for the rtc device. */ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; /* * Allocate/setup any IORESOURCE_MEM resources, if required. Not all * platforms put the RTC in an easy-access place. Like the SGI Octane, * which attaches the RTC to a "ByteBus", hooked to a SuperIO chip * that sits behind the IOC3 PCI metadevice. */ if (pdata->alloc_io_resources) { /* Get the platform resources. */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; rtc->size = resource_size(res); /* Request a memory region. */ /* XXX: mmio-only for now. */ if (!devm_request_mem_region(&pdev->dev, res->start, rtc->size, pdev->name)) return -EBUSY; /* * Set the base address for the rtc, and ioremap its * registers. */ rtc->baseaddr = res->start; rtc->regs = devm_ioremap(&pdev->dev, res->start, rtc->size); if (!rtc->regs) return -ENOMEM; } rtc->alloc_io_resources = pdata->alloc_io_resources; /* Get the register step size. */ if (pdata->regstep > 0) rtc->regstep = pdata->regstep; else rtc->regstep = 1; /* Platform read function, else default if mmio setup */ if (pdata->plat_read) rtc->read = pdata->plat_read; else if (pdata->alloc_io_resources) rtc->read = ds1685_read; else return -ENXIO; /* Platform write function, else default if mmio setup */ if (pdata->plat_write) rtc->write = pdata->plat_write; else if (pdata->alloc_io_resources) rtc->write = ds1685_write; else return -ENXIO; /* Platform pre-shutdown function, if defined. */ if (pdata->plat_prepare_poweroff) rtc->prepare_poweroff = pdata->plat_prepare_poweroff; /* Platform wake_alarm function, if defined. */ if (pdata->plat_wake_alarm) rtc->wake_alarm = pdata->plat_wake_alarm; /* Platform post_ram_clear function, if defined. */ if (pdata->plat_post_ram_clear) rtc->post_ram_clear = pdata->plat_post_ram_clear; /* Init the spinlock, workqueue, & set the driver data. */ spin_lock_init(&rtc->lock); INIT_WORK(&rtc->work, ds1685_rtc_work_queue); platform_set_drvdata(pdev, rtc); /* Turn the oscillator on if is not already on (DV1 = 1). */ ctrla = rtc->read(rtc, RTC_CTRL_A); if (!(ctrla & RTC_CTRL_A_DV1)) ctrla |= RTC_CTRL_A_DV1; /* Enable the countdown chain (DV2 = 0) */ ctrla &= ~(RTC_CTRL_A_DV2); /* Clear RS3-RS0 in Control A. */ ctrla &= ~(RTC_CTRL_A_RS_MASK); /* * All done with Control A. Switch to Bank 1 for the remainder of * the RTC setup so we have access to the extended functions. */ ctrla |= RTC_CTRL_A_DV0; rtc->write(rtc, RTC_CTRL_A, ctrla); /* Default to 32768kHz output. */ rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K)); /* Set the SET bit in Control B so we can do some housekeeping. */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET)); /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */ while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR) cpu_relax(); /* * If the platform supports BCD mode, then set DM=0 in Control B. * Otherwise, set DM=1 for BIN mode. */ ctrlb = rtc->read(rtc, RTC_CTRL_B); if (pdata->bcd_mode) ctrlb &= ~(RTC_CTRL_B_DM); else ctrlb |= RTC_CTRL_B_DM; rtc->bcd_mode = pdata->bcd_mode; /* * Disable Daylight Savings Time (DSE = 0). * The RTC has hardcoded timezone information that is rendered * obselete. We'll let the OS deal with DST settings instead. */ if (ctrlb & RTC_CTRL_B_DSE) ctrlb &= ~(RTC_CTRL_B_DSE); /* Force 24-hour mode (2412 = 1). */ if (!(ctrlb & RTC_CTRL_B_2412)) { /* Reinitialize the time hours. */ hours = rtc->read(rtc, RTC_HRS); am_pm = hours & RTC_HRS_AMPM_MASK; hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK, RTC_HRS_12_BIN_MASK); hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours)); /* Enable 24-hour mode. */ ctrlb |= RTC_CTRL_B_2412; /* Write back to Control B, including DM & DSE bits. */ rtc->write(rtc, RTC_CTRL_B, ctrlb); /* Write the time hours back. */ rtc->write(rtc, RTC_HRS, ds1685_rtc_bin2bcd(rtc, hours, RTC_HRS_24_BIN_MASK, RTC_HRS_24_BCD_MASK)); /* Reinitialize the alarm hours. */ hours = rtc->read(rtc, RTC_HRS_ALARM); am_pm = hours & RTC_HRS_AMPM_MASK; hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK, RTC_HRS_12_BIN_MASK); hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours)); /* Write the alarm hours back. */ rtc->write(rtc, RTC_HRS_ALARM, ds1685_rtc_bin2bcd(rtc, hours, RTC_HRS_24_BIN_MASK, RTC_HRS_24_BCD_MASK)); } else { /* 24-hour mode is already set, so write Control B back. */ rtc->write(rtc, RTC_CTRL_B, ctrlb); } /* Unset the SET bit in Control B so the RTC can update. */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET))); /* Check the main battery. */ if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT)) dev_warn(&pdev->dev, "Main battery is exhausted! RTC may be invalid!\n"); /* Check the auxillary battery. It is optional. */ if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2)) dev_warn(&pdev->dev, "Aux battery is exhausted or not available.\n"); /* Read Ctrl B and clear PIE/AIE/UIE. */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK))); /* Reading Ctrl C auto-clears PF/AF/UF. */ rtc->read(rtc, RTC_CTRL_C); /* Read Ctrl 4B and clear RIE/WIE/KSE. */ rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK))); /* Clear RF/WF/KF in Ctrl 4A. */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK))); /* * Re-enable KSE to handle power button events. We do not enable * WIE or RIE by default. */ rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE)); /* * Fetch the IRQ and setup the interrupt handler. * * Not all platforms have the IRQF pin tied to something. If not, the * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but * there won't be an automatic way of notifying the kernel about it, * unless ctrlc is explicitly polled. */ if (!pdata->no_irq) { ret = platform_get_irq(pdev, 0); if (ret > 0) { rtc->irq_num = ret; /* Request an IRQ. */ ret = devm_request_irq(&pdev->dev, rtc->irq_num, ds1685_rtc_irq_handler, IRQF_SHARED, pdev->name, pdev); /* Check to see if something came back. */ if (unlikely(ret)) { dev_warn(&pdev->dev, "RTC interrupt not available\n"); rtc->irq_num = 0; } } else return ret; } rtc->no_irq = pdata->no_irq; /* Setup complete. */ ds1685_rtc_switch_to_bank0(rtc); /* Register the device as an RTC. */ rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &ds1685_rtc_ops, THIS_MODULE); /* Success? */ if (IS_ERR(rtc_dev)) return PTR_ERR(rtc_dev); /* Maximum periodic rate is 8192Hz (0.122070ms). */ rtc_dev->max_user_freq = RTC_MAX_USER_FREQ; /* See if the platform doesn't support UIE. */ if (pdata->uie_unsupported) rtc_dev->uie_unsupported = 1; rtc->uie_unsupported = pdata->uie_unsupported; rtc->dev = rtc_dev; #ifdef CONFIG_SYSFS ret = ds1685_rtc_sysfs_register(&pdev->dev); if (ret) rtc_device_unregister(rtc->dev); #endif /* Done! */ return ret; } /** * ds1685_rtc_remove - removes rtc driver. * @pdev: pointer to platform_device structure. */ static int ds1685_rtc_remove(struct platform_device *pdev) { struct ds1685_priv *rtc = platform_get_drvdata(pdev); #ifdef CONFIG_SYSFS ds1685_rtc_sysfs_unregister(&pdev->dev); #endif rtc_device_unregister(rtc->dev); /* Read Ctrl B and clear PIE/AIE/UIE. */ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK))); /* Reading Ctrl C auto-clears PF/AF/UF. */ rtc->read(rtc, RTC_CTRL_C); /* Read Ctrl 4B and clear RIE/WIE/KSE. */ rtc->write(rtc, RTC_EXT_CTRL_4B, (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK))); /* Manually clear RF/WF/KF in Ctrl 4A. */ rtc->write(rtc, RTC_EXT_CTRL_4A, (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK))); cancel_work_sync(&rtc->work); return 0; } /** * ds1685_rtc_driver - rtc driver properties. */ static struct platform_driver ds1685_rtc_driver = { .driver = { .name = "rtc-ds1685", }, .probe = ds1685_rtc_probe, .remove = ds1685_rtc_remove, }; module_platform_driver(ds1685_rtc_driver); /* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* Poweroff function */ /** * ds1685_rtc_poweroff - uses the RTC chip to power the system off. * @pdev: pointer to platform_device structure. */ void __noreturn ds1685_rtc_poweroff(struct platform_device *pdev) { u8 ctrla, ctrl4a, ctrl4b; struct ds1685_priv *rtc; /* Check for valid RTC data, else, spin forever. */ if (unlikely(!pdev)) { pr_emerg("platform device data not available, spinning forever ...\n"); while(1); unreachable(); } else { /* Get the rtc data. */ rtc = platform_get_drvdata(pdev); /* * Disable our IRQ. We're powering down, so we're not * going to worry about cleaning up. Most of that should * have been taken care of by the shutdown scripts and this * is the final function call. */ if (!rtc->no_irq) disable_irq_nosync(rtc->irq_num); /* Oscillator must be on and the countdown chain enabled. */ ctrla = rtc->read(rtc, RTC_CTRL_A); ctrla |= RTC_CTRL_A_DV1; ctrla &= ~(RTC_CTRL_A_DV2); rtc->write(rtc, RTC_CTRL_A, ctrla); /* * Read Control 4A and check the status of the auxillary * battery. This must be present and working (VRT2 = 1) * for wakeup and kickstart functionality to be useful. */ ds1685_rtc_switch_to_bank1(rtc); ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); if (ctrl4a & RTC_CTRL_4A_VRT2) { /* Clear all of the interrupt flags on Control 4A. */ ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK); rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a); /* * The auxillary battery is present and working. * Enable extended functions (ABE=1), enable * wake-up (WIE=1), and enable kickstart (KSE=1) * in Control 4B. */ ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE | RTC_CTRL_4B_KSE); rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b); } /* Set PAB to 1 in Control 4A to power the system down. */ dev_warn(&pdev->dev, "Powerdown.\n"); msleep(20); rtc->write(rtc, RTC_EXT_CTRL_4A, (ctrl4a | RTC_CTRL_4A_PAB)); /* Spin ... we do not switch back to bank0. */ while(1); unreachable(); } } EXPORT_SYMBOL(ds1685_rtc_poweroff); /* ----------------------------------------------------------------------- */ MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>"); MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>"); MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:rtc-ds1685");