/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * */ #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include "intel_ringbuffer.h" #include #include "i915_drv.h" enum { ACTIVE_LIST, INACTIVE_LIST, PINNED_LIST, }; static const char *yesno(int v) { return v ? "yes" : "no"; } /* As the drm_debugfs_init() routines are called before dev->dev_private is * allocated we need to hook into the minor for release. */ static int drm_add_fake_info_node(struct drm_minor *minor, struct dentry *ent, const void *key) { struct drm_info_node *node; node = kmalloc(sizeof(*node), GFP_KERNEL); if (node == NULL) { debugfs_remove(ent); return -ENOMEM; } node->minor = minor; node->dent = ent; node->info_ent = (void *) key; mutex_lock(&minor->debugfs_lock); list_add(&node->list, &minor->debugfs_list); mutex_unlock(&minor->debugfs_lock); return 0; } static int i915_capabilities(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; const struct intel_device_info *info = INTEL_INFO(dev); seq_printf(m, "gen: %d\n", info->gen); seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x)) #define SEP_SEMICOLON ; DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON); #undef PRINT_FLAG #undef SEP_SEMICOLON return 0; } static const char *get_pin_flag(struct drm_i915_gem_object *obj) { if (obj->user_pin_count > 0) return "P"; else if (obj->pin_count > 0) return "p"; else return " "; } static const char *get_tiling_flag(struct drm_i915_gem_object *obj) { switch (obj->tiling_mode) { default: case I915_TILING_NONE: return " "; case I915_TILING_X: return "X"; case I915_TILING_Y: return "Y"; } } static inline const char *get_global_flag(struct drm_i915_gem_object *obj) { return obj->has_global_gtt_mapping ? "g" : " "; } static void describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) { struct i915_vma *vma; seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s", &obj->base, get_pin_flag(obj), get_tiling_flag(obj), get_global_flag(obj), obj->base.size / 1024, obj->base.read_domains, obj->base.write_domain, obj->last_read_seqno, obj->last_write_seqno, obj->last_fenced_seqno, i915_cache_level_str(obj->cache_level), obj->dirty ? " dirty" : "", obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) seq_printf(m, " (name: %d)", obj->base.name); if (obj->pin_count) seq_printf(m, " (pinned x %d)", obj->pin_count); if (obj->pin_display) seq_printf(m, " (display)"); if (obj->fence_reg != I915_FENCE_REG_NONE) seq_printf(m, " (fence: %d)", obj->fence_reg); list_for_each_entry(vma, &obj->vma_list, vma_link) { if (!i915_is_ggtt(vma->vm)) seq_puts(m, " (pp"); else seq_puts(m, " (g"); seq_printf(m, "gtt offset: %08lx, size: %08lx)", vma->node.start, vma->node.size); } if (obj->stolen) seq_printf(m, " (stolen: %08lx)", obj->stolen->start); if (obj->pin_mappable || obj->fault_mappable) { char s[3], *t = s; if (obj->pin_mappable) *t++ = 'p'; if (obj->fault_mappable) *t++ = 'f'; *t = '\0'; seq_printf(m, " (%s mappable)", s); } if (obj->ring != NULL) seq_printf(m, " (%s)", obj->ring->name); } static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx) { seq_putc(m, ctx->is_initialized ? 'I' : 'i'); seq_putc(m, ctx->remap_slice ? 'R' : 'r'); seq_putc(m, ' '); } static int i915_gem_object_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; uintptr_t list = (uintptr_t) node->info_ent->data; struct list_head *head; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_address_space *vm = &dev_priv->gtt.base; struct i915_vma *vma; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; /* FIXME: the user of this interface might want more than just GGTT */ switch (list) { case ACTIVE_LIST: seq_puts(m, "Active:\n"); head = &vm->active_list; break; case INACTIVE_LIST: seq_puts(m, "Inactive:\n"); head = &vm->inactive_list; break; default: mutex_unlock(&dev->struct_mutex); return -EINVAL; } total_obj_size = total_gtt_size = count = 0; list_for_each_entry(vma, head, mm_list) { seq_printf(m, " "); describe_obj(m, vma->obj); seq_printf(m, "\n"); total_obj_size += vma->obj->base.size; total_gtt_size += vma->node.size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int obj_rank_by_stolen(void *priv, struct list_head *A, struct list_head *B) { struct drm_i915_gem_object *a = container_of(A, struct drm_i915_gem_object, obj_exec_link); struct drm_i915_gem_object *b = container_of(B, struct drm_i915_gem_object, obj_exec_link); return a->stolen->start - b->stolen->start; } static int i915_gem_stolen_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; LIST_HEAD(stolen); int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (obj->stolen == NULL) continue; list_add(&obj->obj_exec_link, &stolen); total_obj_size += obj->base.size; total_gtt_size += i915_gem_obj_ggtt_size(obj); count++; } list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { if (obj->stolen == NULL) continue; list_add(&obj->obj_exec_link, &stolen); total_obj_size += obj->base.size; count++; } list_sort(NULL, &stolen, obj_rank_by_stolen); seq_puts(m, "Stolen:\n"); while (!list_empty(&stolen)) { obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link); seq_puts(m, " "); describe_obj(m, obj); seq_putc(m, '\n'); list_del_init(&obj->obj_exec_link); } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } #define count_objects(list, member) do { \ list_for_each_entry(obj, list, member) { \ size += i915_gem_obj_ggtt_size(obj); \ ++count; \ if (obj->map_and_fenceable) { \ mappable_size += i915_gem_obj_ggtt_size(obj); \ ++mappable_count; \ } \ } \ } while (0) struct file_stats { int count; size_t total, active, inactive, unbound; }; static int per_file_stats(int id, void *ptr, void *data) { struct drm_i915_gem_object *obj = ptr; struct file_stats *stats = data; stats->count++; stats->total += obj->base.size; if (i915_gem_obj_ggtt_bound(obj)) { if (!list_empty(&obj->ring_list)) stats->active += obj->base.size; else stats->inactive += obj->base.size; } else { if (!list_empty(&obj->global_list)) stats->unbound += obj->base.size; } return 0; } #define count_vmas(list, member) do { \ list_for_each_entry(vma, list, member) { \ size += i915_gem_obj_ggtt_size(vma->obj); \ ++count; \ if (vma->obj->map_and_fenceable) { \ mappable_size += i915_gem_obj_ggtt_size(vma->obj); \ ++mappable_count; \ } \ } \ } while (0) static int i915_gem_object_info(struct seq_file *m, void* data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 count, mappable_count, purgeable_count; size_t size, mappable_size, purgeable_size; struct drm_i915_gem_object *obj; struct i915_address_space *vm = &dev_priv->gtt.base; struct drm_file *file; struct i915_vma *vma; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "%u objects, %zu bytes\n", dev_priv->mm.object_count, dev_priv->mm.object_memory); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.bound_list, global_list); seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_vmas(&vm->active_list, mm_list); seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_vmas(&vm->inactive_list, mm_list); seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = purgeable_size = purgeable_count = 0; list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { size += obj->base.size, ++count; if (obj->madv == I915_MADV_DONTNEED) purgeable_size += obj->base.size, ++purgeable_count; } seq_printf(m, "%u unbound objects, %zu bytes\n", count, size); size = count = mappable_size = mappable_count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (obj->fault_mappable) { size += i915_gem_obj_ggtt_size(obj); ++count; } if (obj->pin_mappable) { mappable_size += i915_gem_obj_ggtt_size(obj); ++mappable_count; } if (obj->madv == I915_MADV_DONTNEED) { purgeable_size += obj->base.size; ++purgeable_count; } } seq_printf(m, "%u purgeable objects, %zu bytes\n", purgeable_count, purgeable_size); seq_printf(m, "%u pinned mappable objects, %zu bytes\n", mappable_count, mappable_size); seq_printf(m, "%u fault mappable objects, %zu bytes\n", count, size); seq_printf(m, "%zu [%lu] gtt total\n", dev_priv->gtt.base.total, dev_priv->gtt.mappable_end - dev_priv->gtt.base.start); seq_putc(m, '\n'); list_for_each_entry_reverse(file, &dev->filelist, lhead) { struct file_stats stats; struct task_struct *task; memset(&stats, 0, sizeof(stats)); idr_for_each(&file->object_idr, per_file_stats, &stats); /* * Although we have a valid reference on file->pid, that does * not guarantee that the task_struct who called get_pid() is * still alive (e.g. get_pid(current) => fork() => exit()). * Therefore, we need to protect this ->comm access using RCU. */ rcu_read_lock(); task = pid_task(file->pid, PIDTYPE_PID); seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n", task ? task->comm : "", stats.count, stats.total, stats.active, stats.inactive, stats.unbound); rcu_read_unlock(); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_gtt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; uintptr_t list = (uintptr_t) node->info_ent->data; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (list == PINNED_LIST && obj->pin_count == 0) continue; seq_puts(m, " "); describe_obj(m, obj); seq_putc(m, '\n'); total_obj_size += obj->base.size; total_gtt_size += i915_gem_obj_ggtt_size(obj); count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int i915_gem_pageflip_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; unsigned long flags; struct intel_crtc *crtc; list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { const char pipe = pipe_name(crtc->pipe); const char plane = plane_name(crtc->plane); struct intel_unpin_work *work; spin_lock_irqsave(&dev->event_lock, flags); work = crtc->unpin_work; if (work == NULL) { seq_printf(m, "No flip due on pipe %c (plane %c)\n", pipe, plane); } else { if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { seq_printf(m, "Flip queued on pipe %c (plane %c)\n", pipe, plane); } else { seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", pipe, plane); } if (work->enable_stall_check) seq_puts(m, "Stall check enabled, "); else seq_puts(m, "Stall check waiting for page flip ioctl, "); seq_printf(m, "%d prepares\n", atomic_read(&work->pending)); if (work->old_fb_obj) { struct drm_i915_gem_object *obj = work->old_fb_obj; if (obj) seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n", i915_gem_obj_ggtt_offset(obj)); } if (work->pending_flip_obj) { struct drm_i915_gem_object *obj = work->pending_flip_obj; if (obj) seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n", i915_gem_obj_ggtt_offset(obj)); } } spin_unlock_irqrestore(&dev->event_lock, flags); } return 0; } static int i915_gem_request_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; struct drm_i915_gem_request *gem_request; int ret, count, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; count = 0; for_each_ring(ring, dev_priv, i) { if (list_empty(&ring->request_list)) continue; seq_printf(m, "%s requests:\n", ring->name); list_for_each_entry(gem_request, &ring->request_list, list) { seq_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } mutex_unlock(&dev->struct_mutex); if (count == 0) seq_puts(m, "No requests\n"); return 0; } static void i915_ring_seqno_info(struct seq_file *m, struct intel_ring_buffer *ring) { if (ring->get_seqno) { seq_printf(m, "Current sequence (%s): %u\n", ring->name, ring->get_seqno(ring, false)); } } static int i915_gem_seqno_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); for_each_ring(ring, dev_priv, i) i915_ring_seqno_info(m, ring); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_interrupt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i, pipe; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); if (INTEL_INFO(dev)->gen >= 8) { int i; seq_printf(m, "Master Interrupt Control:\t%08x\n", I915_READ(GEN8_MASTER_IRQ)); for (i = 0; i < 4; i++) { seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", i, I915_READ(GEN8_GT_IMR(i))); seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", i, I915_READ(GEN8_GT_IIR(i))); seq_printf(m, "GT Interrupt IER %d:\t%08x\n", i, I915_READ(GEN8_GT_IER(i))); } for_each_pipe(i) { seq_printf(m, "Pipe %c IMR:\t%08x\n", pipe_name(i), I915_READ(GEN8_DE_PIPE_IMR(i))); seq_printf(m, "Pipe %c IIR:\t%08x\n", pipe_name(i), I915_READ(GEN8_DE_PIPE_IIR(i))); seq_printf(m, "Pipe %c IER:\t%08x\n", pipe_name(i), I915_READ(GEN8_DE_PIPE_IER(i))); } seq_printf(m, "Display Engine port interrupt mask:\t%08x\n", I915_READ(GEN8_DE_PORT_IMR)); seq_printf(m, "Display Engine port interrupt identity:\t%08x\n", I915_READ(GEN8_DE_PORT_IIR)); seq_printf(m, "Display Engine port interrupt enable:\t%08x\n", I915_READ(GEN8_DE_PORT_IER)); seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n", I915_READ(GEN8_DE_MISC_IMR)); seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n", I915_READ(GEN8_DE_MISC_IIR)); seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n", I915_READ(GEN8_DE_MISC_IER)); seq_printf(m, "PCU interrupt mask:\t%08x\n", I915_READ(GEN8_PCU_IMR)); seq_printf(m, "PCU interrupt identity:\t%08x\n", I915_READ(GEN8_PCU_IIR)); seq_printf(m, "PCU interrupt enable:\t%08x\n", I915_READ(GEN8_PCU_IER)); } else if (IS_VALLEYVIEW(dev)) { seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(pipe) seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); seq_printf(m, "Master IER:\t%08x\n", I915_READ(VLV_MASTER_IER)); seq_printf(m, "Render IER:\t%08x\n", I915_READ(GTIER)); seq_printf(m, "Render IIR:\t%08x\n", I915_READ(GTIIR)); seq_printf(m, "Render IMR:\t%08x\n", I915_READ(GTIMR)); seq_printf(m, "PM IER:\t\t%08x\n", I915_READ(GEN6_PMIER)); seq_printf(m, "PM IIR:\t\t%08x\n", I915_READ(GEN6_PMIIR)); seq_printf(m, "PM IMR:\t\t%08x\n", I915_READ(GEN6_PMIMR)); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); } else if (!HAS_PCH_SPLIT(dev)) { seq_printf(m, "Interrupt enable: %08x\n", I915_READ(IER)); seq_printf(m, "Interrupt identity: %08x\n", I915_READ(IIR)); seq_printf(m, "Interrupt mask: %08x\n", I915_READ(IMR)); for_each_pipe(pipe) seq_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { seq_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); seq_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); seq_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); seq_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); seq_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); seq_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); seq_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); seq_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); seq_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } seq_printf(m, "Interrupts received: %d\n", atomic_read(&dev_priv->irq_received)); for_each_ring(ring, dev_priv, i) { if (INTEL_INFO(dev)->gen >= 6) { seq_printf(m, "Graphics Interrupt mask (%s): %08x\n", ring->name, I915_READ_IMR(ring)); } i915_ring_seqno_info(m, ring); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_fence_regs_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int i, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start); seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; seq_printf(m, "Fence %d, pin count = %d, object = ", i, dev_priv->fence_regs[i].pin_count); if (obj == NULL) seq_puts(m, "unused"); else describe_obj(m, obj); seq_putc(m, '\n'); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_hws_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; const u32 *hws; int i; ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; hws = ring->status_page.page_addr; if (hws == NULL) return 0; for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); } return 0; } static ssize_t i915_error_state_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct i915_error_state_file_priv *error_priv = filp->private_data; struct drm_device *dev = error_priv->dev; int ret; DRM_DEBUG_DRIVER("Resetting error state\n"); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; i915_destroy_error_state(dev); mutex_unlock(&dev->struct_mutex); return cnt; } static int i915_error_state_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct i915_error_state_file_priv *error_priv; error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL); if (!error_priv) return -ENOMEM; error_priv->dev = dev; i915_error_state_get(dev, error_priv); file->private_data = error_priv; return 0; } static int i915_error_state_release(struct inode *inode, struct file *file) { struct i915_error_state_file_priv *error_priv = file->private_data; i915_error_state_put(error_priv); kfree(error_priv); return 0; } static ssize_t i915_error_state_read(struct file *file, char __user *userbuf, size_t count, loff_t *pos) { struct i915_error_state_file_priv *error_priv = file->private_data; struct drm_i915_error_state_buf error_str; loff_t tmp_pos = 0; ssize_t ret_count = 0; int ret; ret = i915_error_state_buf_init(&error_str, count, *pos); if (ret) return ret; ret = i915_error_state_to_str(&error_str, error_priv); if (ret) goto out; ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos, error_str.buf, error_str.bytes); if (ret_count < 0) ret = ret_count; else *pos = error_str.start + ret_count; out: i915_error_state_buf_release(&error_str); return ret ?: ret_count; } static const struct file_operations i915_error_state_fops = { .owner = THIS_MODULE, .open = i915_error_state_open, .read = i915_error_state_read, .write = i915_error_state_write, .llseek = default_llseek, .release = i915_error_state_release, }; static int i915_next_seqno_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; *val = dev_priv->next_seqno; mutex_unlock(&dev->struct_mutex); return 0; } static int i915_next_seqno_set(void *data, u64 val) { struct drm_device *dev = data; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; ret = i915_gem_set_seqno(dev, val); mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops, i915_next_seqno_get, i915_next_seqno_set, "0x%llx\n"); static int i915_rstdby_delays(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u16 crstanddelay; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); crstanddelay = I915_READ16(CRSTANDVID); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f)); return 0; } static int i915_cur_delayinfo(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret = 0; intel_runtime_pm_get(dev_priv); flush_delayed_work(&dev_priv->rps.delayed_resume_work); if (IS_GEN5(dev)) { u16 rgvswctl = I915_READ16(MEMSWCTL); u16 rgvstat = I915_READ16(MEMSTAT_ILK); seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); seq_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) { u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); u32 rpstat, cagf, reqf; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; int max_freq; /* RPSTAT1 is in the GT power well */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL); reqf = I915_READ(GEN6_RPNSWREQ); reqf &= ~GEN6_TURBO_DISABLE; if (IS_HASWELL(dev)) reqf >>= 24; else reqf >>= 25; reqf *= GT_FREQUENCY_MULTIPLIER; rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI); rpcurup = I915_READ(GEN6_RP_CUR_UP); rpprevup = I915_READ(GEN6_RP_PREV_UP); rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); if (IS_HASWELL(dev)) cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; else cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; cagf *= GT_FREQUENCY_MULTIPLIER; gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); seq_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & 0xff00) >> 8); seq_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); seq_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); seq_printf(m, "RPNSWREQ: %dMHz\n", reqf); seq_printf(m, "CAGF: %dMHz\n", cagf); seq_printf(m, "RP CUR UP EI: %dus\n", rpupei & GEN6_CURICONT_MASK); seq_printf(m, "RP CUR UP: %dus\n", rpcurup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV UP: %dus\n", rpprevup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & GEN6_CURIAVG_MASK); seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & GEN6_CURBSYTAVG_MASK); max_freq = (rp_state_cap & 0xff0000) >> 16; seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); max_freq = (rp_state_cap & 0xff00) >> 8; seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); max_freq = rp_state_cap & 0xff; seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); seq_printf(m, "Max overclocked frequency: %dMHz\n", dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER); } else if (IS_VALLEYVIEW(dev)) { u32 freq_sts, val; mutex_lock(&dev_priv->rps.hw_lock); freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); val = valleyview_rps_max_freq(dev_priv); seq_printf(m, "max GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv, val)); val = valleyview_rps_min_freq(dev_priv); seq_printf(m, "min GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv, val)); seq_printf(m, "current GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff)); mutex_unlock(&dev_priv->rps.hw_lock); } else { seq_puts(m, "no P-state info available\n"); } out: intel_runtime_pm_put(dev_priv); return ret; } static int i915_delayfreq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 delayfreq; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); for (i = 0; i < 16; i++) { delayfreq = I915_READ(PXVFREQ_BASE + i * 4); seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq, (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static inline int MAP_TO_MV(int map) { return 1250 - (map * 25); } static int i915_inttoext_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 inttoext; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); for (i = 1; i <= 32; i++) { inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4); seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int ironlake_drpc_info(struct seq_file *m) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 rgvmodectl, rstdbyctl; u16 crstandvid; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); rgvmodectl = I915_READ(MEMMODECTL); rstdbyctl = I915_READ(RSTDBYCTL); crstandvid = I915_READ16(CRSTANDVID); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ? "yes" : "no"); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no"); seq_printf(m, "SW control enabled: %s\n", rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no"); seq_printf(m, "Gated voltage change: %s\n", rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no"); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes"); seq_puts(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_puts(m, "on\n"); break; case RSX_STATUS_RC1: seq_puts(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_puts(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_puts(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_puts(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_puts(m, "RC3 (RC6+)\n"); break; default: seq_puts(m, "unknown\n"); break; } return 0; } static int gen6_drpc_info(struct seq_file *m) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0; unsigned forcewake_count; int count = 0, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); spin_lock_irq(&dev_priv->uncore.lock); forcewake_count = dev_priv->uncore.forcewake_count; spin_unlock_irq(&dev_priv->uncore.lock); if (forcewake_count) { seq_puts(m, "RC information inaccurate because somebody " "holds a forcewake reference \n"); } else { /* NB: we cannot use forcewake, else we read the wrong values */ while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) udelay(10); seq_printf(m, "RC information accurate: %s\n", yesno(count < 51)); } gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS); trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true); rpmodectl1 = I915_READ(GEN6_RP_CONTROL); rcctl1 = I915_READ(GEN6_RC_CONTROL); mutex_unlock(&dev->struct_mutex); mutex_lock(&dev_priv->rps.hw_lock); sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); mutex_unlock(&dev_priv->rps.hw_lock); intel_runtime_pm_put(dev_priv); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); seq_printf(m, "RC1e Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); seq_printf(m, "Deep RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_puts(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_puts(m, "Core Power Down\n"); else seq_puts(m, "on\n"); break; case GEN6_RC3: seq_puts(m, "RC3\n"); break; case GEN6_RC6: seq_puts(m, "RC6\n"); break; case GEN6_RC7: seq_puts(m, "RC7\n"); break; default: seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); /* Not exactly sure what this is */ seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6_LOCKED)); seq_printf(m, "RC6 residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6)); seq_printf(m, "RC6+ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6p)); seq_printf(m, "RC6++ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6pp)); seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); return 0; } static int i915_drpc_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; if (IS_GEN6(dev) || IS_GEN7(dev)) return gen6_drpc_info(m); else return ironlake_drpc_info(m); } static int i915_fbc_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!I915_HAS_FBC(dev)) { seq_puts(m, "FBC unsupported on this chipset\n"); return 0; } if (intel_fbc_enabled(dev)) { seq_puts(m, "FBC enabled\n"); } else { seq_puts(m, "FBC disabled: "); switch (dev_priv->fbc.no_fbc_reason) { case FBC_OK: seq_puts(m, "FBC actived, but currently disabled in hardware"); break; case FBC_UNSUPPORTED: seq_puts(m, "unsupported by this chipset"); break; case FBC_NO_OUTPUT: seq_puts(m, "no outputs"); break; case FBC_STOLEN_TOO_SMALL: seq_puts(m, "not enough stolen memory"); break; case FBC_UNSUPPORTED_MODE: seq_puts(m, "mode not supported"); break; case FBC_MODE_TOO_LARGE: seq_puts(m, "mode too large"); break; case FBC_BAD_PLANE: seq_puts(m, "FBC unsupported on plane"); break; case FBC_NOT_TILED: seq_puts(m, "scanout buffer not tiled"); break; case FBC_MULTIPLE_PIPES: seq_puts(m, "multiple pipes are enabled"); break; case FBC_MODULE_PARAM: seq_puts(m, "disabled per module param (default off)"); break; case FBC_CHIP_DEFAULT: seq_puts(m, "disabled per chip default"); break; default: seq_puts(m, "unknown reason"); } seq_putc(m, '\n'); } return 0; } static int i915_ips_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_IPS(dev)) { seq_puts(m, "not supported\n"); return 0; } if (I915_READ(IPS_CTL) & IPS_ENABLE) seq_puts(m, "enabled\n"); else seq_puts(m, "disabled\n"); return 0; } static int i915_sr_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; bool sr_enabled = false; if (HAS_PCH_SPLIT(dev)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; seq_printf(m, "self-refresh: %s\n", sr_enabled ? "enabled" : "disabled"); return 0; } static int i915_emon_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long temp, chipset, gfx; int ret; if (!IS_GEN5(dev)) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; temp = i915_mch_val(dev_priv); chipset = i915_chipset_val(dev_priv); gfx = i915_gfx_val(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GMCH temp: %ld\n", temp); seq_printf(m, "Chipset power: %ld\n", chipset); seq_printf(m, "GFX power: %ld\n", gfx); seq_printf(m, "Total power: %ld\n", chipset + gfx); return 0; } static int i915_ring_freq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; int gpu_freq, ia_freq; if (!(IS_GEN6(dev) || IS_GEN7(dev))) { seq_puts(m, "unsupported on this chipset\n"); return 0; } flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; intel_runtime_pm_get(dev_priv); seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); for (gpu_freq = dev_priv->rps.min_delay; gpu_freq <= dev_priv->rps.max_delay; gpu_freq++) { ia_freq = gpu_freq; sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", gpu_freq * GT_FREQUENCY_MULTIPLIER, ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_gfxec(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4)); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_opregion(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL); int ret; if (data == NULL) return -ENOMEM; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; if (opregion->header) { memcpy_fromio(data, opregion->header, OPREGION_SIZE); seq_write(m, data, OPREGION_SIZE); } mutex_unlock(&dev->struct_mutex); out: kfree(data); return 0; } static int i915_gem_framebuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct intel_fbdev *ifbdev = NULL; struct intel_framebuffer *fb; #ifdef CONFIG_DRM_I915_FBDEV struct drm_i915_private *dev_priv = dev->dev_private; int ret = mutex_lock_interruptible(&dev->mode_config.mutex); if (ret) return ret; ifbdev = dev_priv->fbdev; fb = to_intel_framebuffer(ifbdev->helper.fb); seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel, atomic_read(&fb->base.refcount.refcount)); describe_obj(m, fb->obj); seq_putc(m, '\n'); mutex_unlock(&dev->mode_config.mutex); #endif mutex_lock(&dev->mode_config.fb_lock); list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) { if (ifbdev && &fb->base == ifbdev->helper.fb) continue; seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel, atomic_read(&fb->base.refcount.refcount)); describe_obj(m, fb->obj); seq_putc(m, '\n'); } mutex_unlock(&dev->mode_config.fb_lock); return 0; } static int i915_context_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; struct i915_hw_context *ctx; int ret, i; ret = mutex_lock_interruptible(&dev->mode_config.mutex); if (ret) return ret; if (dev_priv->ips.pwrctx) { seq_puts(m, "power context "); describe_obj(m, dev_priv->ips.pwrctx); seq_putc(m, '\n'); } if (dev_priv->ips.renderctx) { seq_puts(m, "render context "); describe_obj(m, dev_priv->ips.renderctx); seq_putc(m, '\n'); } list_for_each_entry(ctx, &dev_priv->context_list, link) { seq_puts(m, "HW context "); describe_ctx(m, ctx); for_each_ring(ring, dev_priv, i) if (ring->default_context == ctx) seq_printf(m, "(default context %s) ", ring->name); describe_obj(m, ctx->obj); seq_putc(m, '\n'); } mutex_unlock(&dev->mode_config.mutex); return 0; } static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0; spin_lock_irq(&dev_priv->uncore.lock); if (IS_VALLEYVIEW(dev)) { fw_rendercount = dev_priv->uncore.fw_rendercount; fw_mediacount = dev_priv->uncore.fw_mediacount; } else forcewake_count = dev_priv->uncore.forcewake_count; spin_unlock_irq(&dev_priv->uncore.lock); if (IS_VALLEYVIEW(dev)) { seq_printf(m, "fw_rendercount = %u\n", fw_rendercount); seq_printf(m, "fw_mediacount = %u\n", fw_mediacount); } else seq_printf(m, "forcewake count = %u\n", forcewake_count); return 0; } static const char *swizzle_string(unsigned swizzle) { switch (swizzle) { case I915_BIT_6_SWIZZLE_NONE: return "none"; case I915_BIT_6_SWIZZLE_9: return "bit9"; case I915_BIT_6_SWIZZLE_9_10: return "bit9/bit10"; case I915_BIT_6_SWIZZLE_9_11: return "bit9/bit11"; case I915_BIT_6_SWIZZLE_9_10_11: return "bit9/bit10/bit11"; case I915_BIT_6_SWIZZLE_9_17: return "bit9/bit17"; case I915_BIT_6_SWIZZLE_9_10_17: return "bit9/bit10/bit17"; case I915_BIT_6_SWIZZLE_UNKNOWN: return "unknown"; } return "bug"; } static int i915_swizzle_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); seq_printf(m, "bit6 swizzle for X-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_x)); seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_y)); if (IS_GEN3(dev) || IS_GEN4(dev)) { seq_printf(m, "DDC = 0x%08x\n", I915_READ(DCC)); seq_printf(m, "C0DRB3 = 0x%04x\n", I915_READ16(C0DRB3)); seq_printf(m, "C1DRB3 = 0x%04x\n", I915_READ16(C1DRB3)); } else if (INTEL_INFO(dev)->gen >= 6) { seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", I915_READ(MAD_DIMM_C0)); seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", I915_READ(MAD_DIMM_C1)); seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", I915_READ(MAD_DIMM_C2)); seq_printf(m, "TILECTL = 0x%08x\n", I915_READ(TILECTL)); if (IS_GEN8(dev)) seq_printf(m, "GAMTARBMODE = 0x%08x\n", I915_READ(GAMTARBMODE)); else seq_printf(m, "ARB_MODE = 0x%08x\n", I915_READ(ARB_MODE)); seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", I915_READ(DISP_ARB_CTL)); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; int unused, i; if (!ppgtt) return; seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages); seq_printf(m, "Page tables: %d\n", ppgtt->num_pt_pages); for_each_ring(ring, dev_priv, unused) { seq_printf(m, "%s\n", ring->name); for (i = 0; i < 4; i++) { u32 offset = 0x270 + i * 8; u64 pdp = I915_READ(ring->mmio_base + offset + 4); pdp <<= 32; pdp |= I915_READ(ring->mmio_base + offset); for (i = 0; i < 4; i++) seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp); } } } static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; if (INTEL_INFO(dev)->gen == 6) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); for_each_ring(ring, dev_priv, i) { seq_printf(m, "%s\n", ring->name); if (INTEL_INFO(dev)->gen == 7) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring))); seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring))); seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring))); seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring))); } if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; seq_puts(m, "aliasing PPGTT:\n"); seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset); } seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); } static int i915_ppgtt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); if (INTEL_INFO(dev)->gen >= 8) gen8_ppgtt_info(m, dev); else if (INTEL_INFO(dev)->gen >= 6) gen6_ppgtt_info(m, dev); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_dpio_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!IS_VALLEYVIEW(dev)) { seq_puts(m, "unsupported\n"); return 0; } ret = mutex_lock_interruptible(&dev_priv->dpio_lock); if (ret) return ret; seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL)); seq_printf(m, "DPIO PLL DW3 CH0 : 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(0))); seq_printf(m, "DPIO PLL DW3 CH1: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(1))); seq_printf(m, "DPIO PLL DW5 CH0: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(0))); seq_printf(m, "DPIO PLL DW5 CH1: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(1))); seq_printf(m, "DPIO PLL DW7 CH0: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(0))); seq_printf(m, "DPIO PLL DW7 CH1: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(1))); seq_printf(m, "DPIO PLL DW10 CH0: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(0))); seq_printf(m, "DPIO PLL DW10 CH1: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(1))); seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n", vlv_dpio_read(dev_priv, PIPE_A, VLV_CMN_DW0)); mutex_unlock(&dev_priv->dpio_lock); return 0; } static int i915_llc(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; /* Size calculation for LLC is a bit of a pain. Ignore for now. */ seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev))); seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size); return 0; } static int i915_edp_psr_status(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 psrperf = 0; bool enabled = false; intel_runtime_pm_get(dev_priv); seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support)); seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok)); enabled = HAS_PSR(dev) && I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; seq_printf(m, "Enabled: %s\n", yesno(enabled)); if (HAS_PSR(dev)) psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) & EDP_PSR_PERF_CNT_MASK; seq_printf(m, "Performance_Counter: %u\n", psrperf); intel_runtime_pm_put(dev_priv); return 0; } static int i915_energy_uJ(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u64 power; u32 units; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; rdmsrl(MSR_RAPL_POWER_UNIT, power); power = (power & 0x1f00) >> 8; units = 1000000 / (1 << power); /* convert to uJ */ power = I915_READ(MCH_SECP_NRG_STTS); power *= units; seq_printf(m, "%llu", (long long unsigned)power); return 0; } static int i915_pc8_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!IS_HASWELL(dev)) { seq_puts(m, "not supported\n"); return 0; } mutex_lock(&dev_priv->pc8.lock); seq_printf(m, "Requirements met: %s\n", yesno(dev_priv->pc8.requirements_met)); seq_printf(m, "GPU idle: %s\n", yesno(dev_priv->pc8.gpu_idle)); seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count); seq_printf(m, "IRQs disabled: %s\n", yesno(dev_priv->pc8.irqs_disabled)); seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled)); mutex_unlock(&dev_priv->pc8.lock); return 0; } static const char *power_domain_str(enum intel_display_power_domain domain) { switch (domain) { case POWER_DOMAIN_PIPE_A: return "PIPE_A"; case POWER_DOMAIN_PIPE_B: return "PIPE_B"; case POWER_DOMAIN_PIPE_C: return "PIPE_C"; case POWER_DOMAIN_PIPE_A_PANEL_FITTER: return "PIPE_A_PANEL_FITTER"; case POWER_DOMAIN_PIPE_B_PANEL_FITTER: return "PIPE_B_PANEL_FITTER"; case POWER_DOMAIN_PIPE_C_PANEL_FITTER: return "PIPE_C_PANEL_FITTER"; case POWER_DOMAIN_TRANSCODER_A: return "TRANSCODER_A"; case POWER_DOMAIN_TRANSCODER_B: return "TRANSCODER_B"; case POWER_DOMAIN_TRANSCODER_C: return "TRANSCODER_C"; case POWER_DOMAIN_TRANSCODER_EDP: return "TRANSCODER_EDP"; case POWER_DOMAIN_VGA: return "VGA"; case POWER_DOMAIN_AUDIO: return "AUDIO"; case POWER_DOMAIN_INIT: return "INIT"; default: WARN_ON(1); return "?"; } } static int i915_power_domain_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_power_domains *power_domains = &dev_priv->power_domains; int i; mutex_lock(&power_domains->lock); seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); for (i = 0; i < power_domains->power_well_count; i++) { struct i915_power_well *power_well; enum intel_display_power_domain power_domain; power_well = &power_domains->power_wells[i]; seq_printf(m, "%-25s %d\n", power_well->name, power_well->count); for (power_domain = 0; power_domain < POWER_DOMAIN_NUM; power_domain++) { if (!(BIT(power_domain) & power_well->domains)) continue; seq_printf(m, " %-23s %d\n", power_domain_str(power_domain), power_domains->domain_use_count[power_domain]); } } mutex_unlock(&power_domains->lock); return 0; } struct pipe_crc_info { const char *name; struct drm_device *dev; enum pipe pipe; }; static int i915_pipe_crc_open(struct inode *inode, struct file *filep) { struct pipe_crc_info *info = inode->i_private; struct drm_i915_private *dev_priv = info->dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; if (info->pipe >= INTEL_INFO(info->dev)->num_pipes) return -ENODEV; spin_lock_irq(&pipe_crc->lock); if (pipe_crc->opened) { spin_unlock_irq(&pipe_crc->lock); return -EBUSY; /* already open */ } pipe_crc->opened = true; filep->private_data = inode->i_private; spin_unlock_irq(&pipe_crc->lock); return 0; } static int i915_pipe_crc_release(struct inode *inode, struct file *filep) { struct pipe_crc_info *info = inode->i_private; struct drm_i915_private *dev_priv = info->dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; spin_lock_irq(&pipe_crc->lock); pipe_crc->opened = false; spin_unlock_irq(&pipe_crc->lock); return 0; } /* (6 fields, 8 chars each, space separated (5) + '\n') */ #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1) /* account for \'0' */ #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1) static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc) { assert_spin_locked(&pipe_crc->lock); return CIRC_CNT(pipe_crc->head, pipe_crc->tail, INTEL_PIPE_CRC_ENTRIES_NR); } static ssize_t i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count, loff_t *pos) { struct pipe_crc_info *info = filep->private_data; struct drm_device *dev = info->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; char buf[PIPE_CRC_BUFFER_LEN]; int head, tail, n_entries, n; ssize_t bytes_read; /* * Don't allow user space to provide buffers not big enough to hold * a line of data. */ if (count < PIPE_CRC_LINE_LEN) return -EINVAL; if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE) return 0; /* nothing to read */ spin_lock_irq(&pipe_crc->lock); while (pipe_crc_data_count(pipe_crc) == 0) { int ret; if (filep->f_flags & O_NONBLOCK) { spin_unlock_irq(&pipe_crc->lock); return -EAGAIN; } ret = wait_event_interruptible_lock_irq(pipe_crc->wq, pipe_crc_data_count(pipe_crc), pipe_crc->lock); if (ret) { spin_unlock_irq(&pipe_crc->lock); return ret; } } /* We now have one or more entries to read */ head = pipe_crc->head; tail = pipe_crc->tail; n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR), count / PIPE_CRC_LINE_LEN); spin_unlock_irq(&pipe_crc->lock); bytes_read = 0; n = 0; do { struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail]; int ret; bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN, "%8u %8x %8x %8x %8x %8x\n", entry->frame, entry->crc[0], entry->crc[1], entry->crc[2], entry->crc[3], entry->crc[4]); ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN, buf, PIPE_CRC_LINE_LEN); if (ret == PIPE_CRC_LINE_LEN) return -EFAULT; BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR); tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); n++; } while (--n_entries); spin_lock_irq(&pipe_crc->lock); pipe_crc->tail = tail; spin_unlock_irq(&pipe_crc->lock); return bytes_read; } static const struct file_operations i915_pipe_crc_fops = { .owner = THIS_MODULE, .open = i915_pipe_crc_open, .read = i915_pipe_crc_read, .release = i915_pipe_crc_release, }; static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = { { .name = "i915_pipe_A_crc", .pipe = PIPE_A, }, { .name = "i915_pipe_B_crc", .pipe = PIPE_B, }, { .name = "i915_pipe_C_crc", .pipe = PIPE_C, }, }; static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor, enum pipe pipe) { struct drm_device *dev = minor->dev; struct dentry *ent; struct pipe_crc_info *info = &i915_pipe_crc_data[pipe]; info->dev = dev; ent = debugfs_create_file(info->name, S_IRUGO, root, info, &i915_pipe_crc_fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, info); } static const char * const pipe_crc_sources[] = { "none", "plane1", "plane2", "pf", "pipe", "TV", "DP-B", "DP-C", "DP-D", "auto", }; static const char *pipe_crc_source_name(enum intel_pipe_crc_source source) { BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX); return pipe_crc_sources[source]; } static int display_crc_ctl_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; int i; for (i = 0; i < I915_MAX_PIPES; i++) seq_printf(m, "%c %s\n", pipe_name(i), pipe_crc_source_name(dev_priv->pipe_crc[i].source)); return 0; } static int display_crc_ctl_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; return single_open(file, display_crc_ctl_show, dev); } static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PIPE; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source) { struct intel_encoder *encoder; struct intel_crtc *crtc; struct intel_digital_port *dig_port; int ret = 0; *source = INTEL_PIPE_CRC_SOURCE_PIPE; mutex_lock(&dev->mode_config.mutex); list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (!encoder->base.crtc) continue; crtc = to_intel_crtc(encoder->base.crtc); if (crtc->pipe != pipe) continue; switch (encoder->type) { case INTEL_OUTPUT_TVOUT: *source = INTEL_PIPE_CRC_SOURCE_TV; break; case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_EDP: dig_port = enc_to_dig_port(&encoder->base); switch (dig_port->port) { case PORT_B: *source = INTEL_PIPE_CRC_SOURCE_DP_B; break; case PORT_C: *source = INTEL_PIPE_CRC_SOURCE_DP_C; break; case PORT_D: *source = INTEL_PIPE_CRC_SOURCE_DP_D; break; default: WARN(1, "nonexisting DP port %c\n", port_name(dig_port->port)); break; } break; } } mutex_unlock(&dev->mode_config.mutex); return ret; } static int vlv_pipe_crc_ctl_reg(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source, uint32_t *val) { struct drm_i915_private *dev_priv = dev->dev_private; bool need_stable_symbols = false; if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); if (ret) return ret; } switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV; break; case INTEL_PIPE_CRC_SOURCE_DP_B: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_C: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } /* * When the pipe CRC tap point is after the transcoders we need * to tweak symbol-level features to produce a deterministic series of * symbols for a given frame. We need to reset those features only once * a frame (instead of every nth symbol): * - DC-balance: used to ensure a better clock recovery from the data * link (SDVO) * - DisplayPort scrambling: used for EMI reduction */ if (need_stable_symbols) { uint32_t tmp = I915_READ(PORT_DFT2_G4X); WARN_ON(!IS_G4X(dev)); tmp |= DC_BALANCE_RESET_VLV; if (pipe == PIPE_A) tmp |= PIPE_A_SCRAMBLE_RESET; else tmp |= PIPE_B_SCRAMBLE_RESET; I915_WRITE(PORT_DFT2_G4X, tmp); } return 0; } static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source, uint32_t *val) { struct drm_i915_private *dev_priv = dev->dev_private; bool need_stable_symbols = false; if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); if (ret) return ret; } switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX; break; case INTEL_PIPE_CRC_SOURCE_TV: if (!SUPPORTS_TV(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE; break; case INTEL_PIPE_CRC_SOURCE_DP_B: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_C: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_D: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } /* * When the pipe CRC tap point is after the transcoders we need * to tweak symbol-level features to produce a deterministic series of * symbols for a given frame. We need to reset those features only once * a frame (instead of every nth symbol): * - DC-balance: used to ensure a better clock recovery from the data * link (SDVO) * - DisplayPort scrambling: used for EMI reduction */ if (need_stable_symbols) { uint32_t tmp = I915_READ(PORT_DFT2_G4X); WARN_ON(!IS_G4X(dev)); I915_WRITE(PORT_DFT_I9XX, I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET); if (pipe == PIPE_A) tmp |= PIPE_A_SCRAMBLE_RESET; else tmp |= PIPE_B_SCRAMBLE_RESET; I915_WRITE(PORT_DFT2_G4X, tmp); } return 0; } static void vlv_undo_pipe_scramble_reset(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp = I915_READ(PORT_DFT2_G4X); if (pipe == PIPE_A) tmp &= ~PIPE_A_SCRAMBLE_RESET; else tmp &= ~PIPE_B_SCRAMBLE_RESET; if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) tmp &= ~DC_BALANCE_RESET_VLV; I915_WRITE(PORT_DFT2_G4X, tmp); } static void g4x_undo_pipe_scramble_reset(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp = I915_READ(PORT_DFT2_G4X); if (pipe == PIPE_A) tmp &= ~PIPE_A_SCRAMBLE_RESET; else tmp &= ~PIPE_B_SCRAMBLE_RESET; I915_WRITE(PORT_DFT2_G4X, tmp); if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) { I915_WRITE(PORT_DFT_I9XX, I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET); } } static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PIPE; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PLANE1: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK; break; case INTEL_PIPE_CRC_SOURCE_PLANE2: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK; break; case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PF; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PLANE1: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB; break; case INTEL_PIPE_CRC_SOURCE_PLANE2: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB; break; case INTEL_PIPE_CRC_SOURCE_PF: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source source) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; u32 val = 0; /* shut up gcc */ int ret; if (pipe_crc->source == source) return 0; /* forbid changing the source without going back to 'none' */ if (pipe_crc->source && source) return -EINVAL; if (IS_GEN2(dev)) ret = i8xx_pipe_crc_ctl_reg(&source, &val); else if (INTEL_INFO(dev)->gen < 5) ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val); else if (IS_VALLEYVIEW(dev)) ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val); else if (IS_GEN5(dev) || IS_GEN6(dev)) ret = ilk_pipe_crc_ctl_reg(&source, &val); else ret = ivb_pipe_crc_ctl_reg(&source, &val); if (ret != 0) return ret; /* none -> real source transition */ if (source) { DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n", pipe_name(pipe), pipe_crc_source_name(source)); pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) * INTEL_PIPE_CRC_ENTRIES_NR, GFP_KERNEL); if (!pipe_crc->entries) return -ENOMEM; spin_lock_irq(&pipe_crc->lock); pipe_crc->head = 0; pipe_crc->tail = 0; spin_unlock_irq(&pipe_crc->lock); } pipe_crc->source = source; I915_WRITE(PIPE_CRC_CTL(pipe), val); POSTING_READ(PIPE_CRC_CTL(pipe)); /* real source -> none transition */ if (source == INTEL_PIPE_CRC_SOURCE_NONE) { struct intel_pipe_crc_entry *entries; DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n", pipe_name(pipe)); intel_wait_for_vblank(dev, pipe); spin_lock_irq(&pipe_crc->lock); entries = pipe_crc->entries; pipe_crc->entries = NULL; spin_unlock_irq(&pipe_crc->lock); kfree(entries); if (IS_G4X(dev)) g4x_undo_pipe_scramble_reset(dev, pipe); else if (IS_VALLEYVIEW(dev)) vlv_undo_pipe_scramble_reset(dev, pipe); } return 0; } /* * Parse pipe CRC command strings: * command: wsp* object wsp+ name wsp+ source wsp* * object: 'pipe' * name: (A | B | C) * source: (none | plane1 | plane2 | pf) * wsp: (#0x20 | #0x9 | #0xA)+ * * eg.: * "pipe A plane1" -> Start CRC computations on plane1 of pipe A * "pipe A none" -> Stop CRC */ static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words) { int n_words = 0; while (*buf) { char *end; /* skip leading white space */ buf = skip_spaces(buf); if (!*buf) break; /* end of buffer */ /* find end of word */ for (end = buf; *end && !isspace(*end); end++) ; if (n_words == max_words) { DRM_DEBUG_DRIVER("too many words, allowed <= %d\n", max_words); return -EINVAL; /* ran out of words[] before bytes */ } if (*end) *end++ = '\0'; words[n_words++] = buf; buf = end; } return n_words; } enum intel_pipe_crc_object { PIPE_CRC_OBJECT_PIPE, }; static const char * const pipe_crc_objects[] = { "pipe", }; static int display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o) { int i; for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++) if (!strcmp(buf, pipe_crc_objects[i])) { *o = i; return 0; } return -EINVAL; } static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe) { const char name = buf[0]; if (name < 'A' || name >= pipe_name(I915_MAX_PIPES)) return -EINVAL; *pipe = name - 'A'; return 0; } static int display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s) { int i; for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++) if (!strcmp(buf, pipe_crc_sources[i])) { *s = i; return 0; } return -EINVAL; } static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len) { #define N_WORDS 3 int n_words; char *words[N_WORDS]; enum pipe pipe; enum intel_pipe_crc_object object; enum intel_pipe_crc_source source; n_words = display_crc_ctl_tokenize(buf, words, N_WORDS); if (n_words != N_WORDS) { DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n", N_WORDS); return -EINVAL; } if (display_crc_ctl_parse_object(words[0], &object) < 0) { DRM_DEBUG_DRIVER("unknown object %s\n", words[0]); return -EINVAL; } if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) { DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]); return -EINVAL; } if (display_crc_ctl_parse_source(words[2], &source) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", words[2]); return -EINVAL; } return pipe_crc_set_source(dev, pipe, source); } static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; char *tmpbuf; int ret; if (len == 0) return 0; if (len > PAGE_SIZE - 1) { DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n", PAGE_SIZE); return -E2BIG; } tmpbuf = kmalloc(len + 1, GFP_KERNEL); if (!tmpbuf) return -ENOMEM; if (copy_from_user(tmpbuf, ubuf, len)) { ret = -EFAULT; goto out; } tmpbuf[len] = '\0'; ret = display_crc_ctl_parse(dev, tmpbuf, len); out: kfree(tmpbuf); if (ret < 0) return ret; *offp += len; return len; } static const struct file_operations i915_display_crc_ctl_fops = { .owner = THIS_MODULE, .open = display_crc_ctl_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = display_crc_ctl_write }; static int i915_wedged_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; *val = atomic_read(&dev_priv->gpu_error.reset_counter); return 0; } static int i915_wedged_set(void *data, u64 val) { struct drm_device *dev = data; DRM_INFO("Manually setting wedged to %llu\n", val); i915_handle_error(dev, val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, i915_wedged_get, i915_wedged_set, "%llu\n"); static int i915_ring_stop_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.stop_rings; return 0; } static int i915_ring_stop_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.stop_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops, i915_ring_stop_get, i915_ring_stop_set, "0x%08llx\n"); static int i915_ring_missed_irq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.missed_irq_rings; return 0; } static int i915_ring_missed_irq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* Lock against concurrent debugfs callers */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.missed_irq_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops, i915_ring_missed_irq_get, i915_ring_missed_irq_set, "0x%08llx\n"); static int i915_ring_test_irq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.test_irq_rings; return 0; } static int i915_ring_test_irq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val); /* Lock against concurrent debugfs callers */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.test_irq_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops, i915_ring_test_irq_get, i915_ring_test_irq_set, "0x%08llx\n"); #define DROP_UNBOUND 0x1 #define DROP_BOUND 0x2 #define DROP_RETIRE 0x4 #define DROP_ACTIVE 0x8 #define DROP_ALL (DROP_UNBOUND | \ DROP_BOUND | \ DROP_RETIRE | \ DROP_ACTIVE) static int i915_drop_caches_get(void *data, u64 *val) { *val = DROP_ALL; return 0; } static int i915_drop_caches_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj, *next; struct i915_address_space *vm; struct i915_vma *vma, *x; int ret; DRM_DEBUG("Dropping caches: 0x%08llx\n", val); /* No need to check and wait for gpu resets, only libdrm auto-restarts * on ioctls on -EAGAIN. */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (val & DROP_ACTIVE) { ret = i915_gpu_idle(dev); if (ret) goto unlock; } if (val & (DROP_RETIRE | DROP_ACTIVE)) i915_gem_retire_requests(dev); if (val & DROP_BOUND) { list_for_each_entry(vm, &dev_priv->vm_list, global_link) { list_for_each_entry_safe(vma, x, &vm->inactive_list, mm_list) { if (vma->obj->pin_count) continue; ret = i915_vma_unbind(vma); if (ret) goto unlock; } } } if (val & DROP_UNBOUND) { list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, global_list) if (obj->pages_pin_count == 0) { ret = i915_gem_object_put_pages(obj); if (ret) goto unlock; } } unlock: mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, i915_drop_caches_get, i915_drop_caches_set, "0x%08llx\n"); static int i915_max_freq_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; if (IS_VALLEYVIEW(dev)) *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay); else *val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_max_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go above the set value. */ if (IS_VALLEYVIEW(dev)) { val = vlv_freq_opcode(dev_priv, val); dev_priv->rps.max_delay = val; valleyview_set_rps(dev, val); } else { do_div(val, GT_FREQUENCY_MULTIPLIER); dev_priv->rps.max_delay = val; gen6_set_rps(dev, val); } mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops, i915_max_freq_get, i915_max_freq_set, "%llu\n"); static int i915_min_freq_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; if (IS_VALLEYVIEW(dev)) *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay); else *val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_min_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go below the set value. */ if (IS_VALLEYVIEW(dev)) { val = vlv_freq_opcode(dev_priv, val); dev_priv->rps.min_delay = val; valleyview_set_rps(dev, val); } else { do_div(val, GT_FREQUENCY_MULTIPLIER); dev_priv->rps.min_delay = val; gen6_set_rps(dev, val); } mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops, i915_min_freq_get, i915_min_freq_set, "%llu\n"); static int i915_cache_sharing_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; u32 snpcr; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev_priv->dev->struct_mutex); *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; return 0; } static int i915_cache_sharing_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 snpcr; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; if (val > 3) return -EINVAL; intel_runtime_pm_get(dev_priv); DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); /* Update the cache sharing policy here as well */ snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= (val << GEN6_MBC_SNPCR_SHIFT); I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); intel_runtime_pm_put(dev_priv); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, i915_cache_sharing_get, i915_cache_sharing_set, "%llu\n"); static int i915_forcewake_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; intel_runtime_pm_get(dev_priv); gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL); return 0; } static int i915_forcewake_release(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL); intel_runtime_pm_put(dev_priv); return 0; } static const struct file_operations i915_forcewake_fops = { .owner = THIS_MODULE, .open = i915_forcewake_open, .release = i915_forcewake_release, }; static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file("i915_forcewake_user", S_IRUSR, root, dev, &i915_forcewake_fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops); } static int i915_debugfs_create(struct dentry *root, struct drm_minor *minor, const char *name, const struct file_operations *fops) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file(name, S_IRUGO | S_IWUSR, root, dev, fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, fops); } static const struct drm_info_list i915_debugfs_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_gtt", i915_gem_gtt_info, 0}, {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST}, {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, {"i915_gem_stolen", i915_gem_stolen_list_info }, {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, {"i915_gem_request", i915_gem_request_info, 0}, {"i915_gem_seqno", i915_gem_seqno_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS}, {"i915_rstdby_delays", i915_rstdby_delays, 0}, {"i915_cur_delayinfo", i915_cur_delayinfo, 0}, {"i915_delayfreq_table", i915_delayfreq_table, 0}, {"i915_inttoext_table", i915_inttoext_table, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_emon_status", i915_emon_status, 0}, {"i915_ring_freq_table", i915_ring_freq_table, 0}, {"i915_gfxec", i915_gfxec, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_ips_status", i915_ips_status, 0}, {"i915_sr_status", i915_sr_status, 0}, {"i915_opregion", i915_opregion, 0}, {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, {"i915_context_status", i915_context_status, 0}, {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0}, {"i915_swizzle_info", i915_swizzle_info, 0}, {"i915_ppgtt_info", i915_ppgtt_info, 0}, {"i915_dpio", i915_dpio_info, 0}, {"i915_llc", i915_llc, 0}, {"i915_edp_psr_status", i915_edp_psr_status, 0}, {"i915_energy_uJ", i915_energy_uJ, 0}, {"i915_pc8_status", i915_pc8_status, 0}, {"i915_power_domain_info", i915_power_domain_info, 0}, }; #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) static const struct i915_debugfs_files { const char *name; const struct file_operations *fops; } i915_debugfs_files[] = { {"i915_wedged", &i915_wedged_fops}, {"i915_max_freq", &i915_max_freq_fops}, {"i915_min_freq", &i915_min_freq_fops}, {"i915_cache_sharing", &i915_cache_sharing_fops}, {"i915_ring_stop", &i915_ring_stop_fops}, {"i915_ring_missed_irq", &i915_ring_missed_irq_fops}, {"i915_ring_test_irq", &i915_ring_test_irq_fops}, {"i915_gem_drop_caches", &i915_drop_caches_fops}, {"i915_error_state", &i915_error_state_fops}, {"i915_next_seqno", &i915_next_seqno_fops}, {"i915_display_crc_ctl", &i915_display_crc_ctl_fops}, }; void intel_display_crc_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; for_each_pipe(pipe) { struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; pipe_crc->opened = false; spin_lock_init(&pipe_crc->lock); init_waitqueue_head(&pipe_crc->wq); } } int i915_debugfs_init(struct drm_minor *minor) { int ret, i; ret = i915_forcewake_create(minor->debugfs_root, minor); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { ret = i915_pipe_crc_create(minor->debugfs_root, minor, i); if (ret) return ret; } for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { ret = i915_debugfs_create(minor->debugfs_root, minor, i915_debugfs_files[i].name, i915_debugfs_files[i].fops); if (ret) return ret; } return drm_debugfs_create_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor->debugfs_root, minor); } void i915_debugfs_cleanup(struct drm_minor *minor) { int i; drm_debugfs_remove_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops, 1, minor); for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { struct drm_info_list *info_list = (struct drm_info_list *)&i915_pipe_crc_data[i]; drm_debugfs_remove_files(info_list, 1, minor); } for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { struct drm_info_list *info_list = (struct drm_info_list *) i915_debugfs_files[i].fops; drm_debugfs_remove_files(info_list, 1, minor); } }