/* * r8169.c: RealTek 8169/8168/8101 ethernet driver. * * Copyright (c) 2002 ShuChen * Copyright (c) 2003 - 2007 Francois Romieu * Copyright (c) a lot of people too. Please respect their work. * * See MAINTAINERS file for support contact information. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTL8169_VERSION "2.3LK-NAPI" #define MODULENAME "r8169" #define PFX MODULENAME ": " #define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw" #define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw" #define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw" #define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw" #define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw" #ifdef RTL8169_DEBUG #define assert(expr) \ if (!(expr)) { \ printk( "Assertion failed! %s,%s,%s,line=%d\n", \ #expr,__FILE__,__func__,__LINE__); \ } #define dprintk(fmt, args...) \ do { printk(KERN_DEBUG PFX fmt, ## args); } while (0) #else #define assert(expr) do {} while (0) #define dprintk(fmt, args...) do {} while (0) #endif /* RTL8169_DEBUG */ #define R8169_MSG_DEFAULT \ (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN) #define TX_BUFFS_AVAIL(tp) \ (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1) /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; /* MAC address length */ #define MAC_ADDR_LEN 6 #define MAX_READ_REQUEST_SHIFT 12 #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define SafeMtu 0x1c20 /* ... actually life sucks beyond ~7k */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define R8169_REGS_SIZE 256 #define R8169_NAPI_WEIGHT 64 #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 256 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc)) #define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc)) #define RTL8169_TX_TIMEOUT (6*HZ) #define RTL8169_PHY_TIMEOUT (10*HZ) #define RTL_EEPROM_SIG cpu_to_le32(0x8129) #define RTL_EEPROM_SIG_MASK cpu_to_le32(0xffff) #define RTL_EEPROM_SIG_ADDR 0x0000 /* write/read MMIO register */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) readl (ioaddr + (reg)) enum mac_version { RTL_GIGA_MAC_NONE = 0x00, RTL_GIGA_MAC_VER_01 = 0x01, // 8169 RTL_GIGA_MAC_VER_02 = 0x02, // 8169S RTL_GIGA_MAC_VER_03 = 0x03, // 8110S RTL_GIGA_MAC_VER_04 = 0x04, // 8169SB RTL_GIGA_MAC_VER_05 = 0x05, // 8110SCd RTL_GIGA_MAC_VER_06 = 0x06, // 8110SCe RTL_GIGA_MAC_VER_07 = 0x07, // 8102e RTL_GIGA_MAC_VER_08 = 0x08, // 8102e RTL_GIGA_MAC_VER_09 = 0x09, // 8102e RTL_GIGA_MAC_VER_10 = 0x0a, // 8101e RTL_GIGA_MAC_VER_11 = 0x0b, // 8168Bb RTL_GIGA_MAC_VER_12 = 0x0c, // 8168Be RTL_GIGA_MAC_VER_13 = 0x0d, // 8101Eb RTL_GIGA_MAC_VER_14 = 0x0e, // 8101 ? RTL_GIGA_MAC_VER_15 = 0x0f, // 8101 ? RTL_GIGA_MAC_VER_16 = 0x11, // 8101Ec RTL_GIGA_MAC_VER_17 = 0x10, // 8168Bf RTL_GIGA_MAC_VER_18 = 0x12, // 8168CP RTL_GIGA_MAC_VER_19 = 0x13, // 8168C RTL_GIGA_MAC_VER_20 = 0x14, // 8168C RTL_GIGA_MAC_VER_21 = 0x15, // 8168C RTL_GIGA_MAC_VER_22 = 0x16, // 8168C RTL_GIGA_MAC_VER_23 = 0x17, // 8168CP RTL_GIGA_MAC_VER_24 = 0x18, // 8168CP RTL_GIGA_MAC_VER_25 = 0x19, // 8168D RTL_GIGA_MAC_VER_26 = 0x1a, // 8168D RTL_GIGA_MAC_VER_27 = 0x1b, // 8168DP RTL_GIGA_MAC_VER_28 = 0x1c, // 8168DP RTL_GIGA_MAC_VER_29 = 0x1d, // 8105E RTL_GIGA_MAC_VER_30 = 0x1e, // 8105E RTL_GIGA_MAC_VER_31 = 0x1f, // 8168DP RTL_GIGA_MAC_VER_32 = 0x20, // 8168E RTL_GIGA_MAC_VER_33 = 0x21, // 8168E }; enum rtl_tx_desc_version { RTL_TD_0 = 0, RTL_TD_1 = 1, }; #define _R(NAME,MAC,TD) \ { .name = NAME, .mac_version = MAC, .txd_version = TD } static const struct { const char *name; u8 mac_version; enum rtl_tx_desc_version txd_version; } rtl_chip_info[] = { _R("RTL8169", RTL_GIGA_MAC_VER_01, RTL_TD_0), // 8169 _R("RTL8169s", RTL_GIGA_MAC_VER_02, RTL_TD_0), // 8169S _R("RTL8110s", RTL_GIGA_MAC_VER_03, RTL_TD_0), // 8110S _R("RTL8169sb/8110sb", RTL_GIGA_MAC_VER_04, RTL_TD_0), // 8169SB _R("RTL8169sc/8110sc", RTL_GIGA_MAC_VER_05, RTL_TD_0), // 8110SCd _R("RTL8169sc/8110sc", RTL_GIGA_MAC_VER_06, RTL_TD_0), // 8110SCe _R("RTL8102e", RTL_GIGA_MAC_VER_07, RTL_TD_1), // PCI-E _R("RTL8102e", RTL_GIGA_MAC_VER_08, RTL_TD_1), // PCI-E _R("RTL8102e", RTL_GIGA_MAC_VER_09, RTL_TD_1), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_10, RTL_TD_0), // PCI-E _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_11, RTL_TD_0), // PCI-E _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_12, RTL_TD_0), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_13, RTL_TD_0), // PCI-E 8139 _R("RTL8100e", RTL_GIGA_MAC_VER_14, RTL_TD_0), // PCI-E 8139 _R("RTL8100e", RTL_GIGA_MAC_VER_15, RTL_TD_0), // PCI-E 8139 _R("RTL8168b/8111b", RTL_GIGA_MAC_VER_17, RTL_TD_0), // PCI-E _R("RTL8101e", RTL_GIGA_MAC_VER_16, RTL_TD_0), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_18, RTL_TD_1), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_19, RTL_TD_1), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_20, RTL_TD_1), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_21, RTL_TD_1), // PCI-E _R("RTL8168c/8111c", RTL_GIGA_MAC_VER_22, RTL_TD_1), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_23, RTL_TD_1), // PCI-E _R("RTL8168cp/8111cp", RTL_GIGA_MAC_VER_24, RTL_TD_1), // PCI-E _R("RTL8168d/8111d", RTL_GIGA_MAC_VER_25, RTL_TD_1), // PCI-E _R("RTL8168d/8111d", RTL_GIGA_MAC_VER_26, RTL_TD_1), // PCI-E _R("RTL8168dp/8111dp", RTL_GIGA_MAC_VER_27, RTL_TD_1), // PCI-E _R("RTL8168dp/8111dp", RTL_GIGA_MAC_VER_28, RTL_TD_1), // PCI-E _R("RTL8105e", RTL_GIGA_MAC_VER_29, RTL_TD_1), // PCI-E _R("RTL8105e", RTL_GIGA_MAC_VER_30, RTL_TD_1), // PCI-E _R("RTL8168dp/8111dp", RTL_GIGA_MAC_VER_31, RTL_TD_1), // PCI-E _R("RTL8168e/8111e", RTL_GIGA_MAC_VER_32, RTL_TD_1), // PCI-E _R("RTL8168e/8111e", RTL_GIGA_MAC_VER_33, RTL_TD_1) // PCI-E }; #undef _R static const struct rtl_firmware_info { int mac_version; const char *fw_name; } rtl_firmware_infos[] = { { .mac_version = RTL_GIGA_MAC_VER_25, .fw_name = FIRMWARE_8168D_1 }, { .mac_version = RTL_GIGA_MAC_VER_26, .fw_name = FIRMWARE_8168D_2 }, { .mac_version = RTL_GIGA_MAC_VER_29, .fw_name = FIRMWARE_8105E_1 }, { .mac_version = RTL_GIGA_MAC_VER_30, .fw_name = FIRMWARE_8105E_1 }, { .mac_version = RTL_GIGA_MAC_VER_32, .fw_name = FIRMWARE_8168E_1 }, { .mac_version = RTL_GIGA_MAC_VER_33, .fw_name = FIRMWARE_8168E_2 } }; enum cfg_version { RTL_CFG_0 = 0x00, RTL_CFG_1, RTL_CFG_2 }; static void rtl_hw_start_8169(struct net_device *); static void rtl_hw_start_8168(struct net_device *); static void rtl_hw_start_8101(struct net_device *); static DEFINE_PCI_DEVICE_TABLE(rtl8169_pci_tbl) = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8136), 0, 0, RTL_CFG_2 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168), 0, 0, RTL_CFG_1 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_AT, 0xc107), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(0x16ec, 0x0116), 0, 0, RTL_CFG_0 }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 }, { 0x0001, 0x8168, PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 }, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static int rx_buf_sz = 16383; static int use_dac; static struct { u32 msg_enable; } debug = { -1 }; enum rtl_registers { MAC0 = 0, /* Ethernet hardware address. */ MAC4 = 4, MAR0 = 8, /* Multicast filter. */ CounterAddrLow = 0x10, CounterAddrHigh = 0x14, TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3c, IntrStatus = 0x3e, TxConfig = 0x40, RxConfig = 0x44, #define RTL_RX_CONFIG_MASK 0xff7e1880u RxMissed = 0x4c, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5c, PHYAR = 0x60, PHYstatus = 0x6c, RxMaxSize = 0xda, CPlusCmd = 0xe0, IntrMitigate = 0xe2, RxDescAddrLow = 0xe4, RxDescAddrHigh = 0xe8, EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */ #define NoEarlyTx 0x3f /* Max value : no early transmit. */ MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */ #define TxPacketMax (8064 >> 7) FuncEvent = 0xf0, FuncEventMask = 0xf4, FuncPresetState = 0xf8, FuncForceEvent = 0xfc, }; enum rtl8110_registers { TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6a, }; enum rtl8168_8101_registers { CSIDR = 0x64, CSIAR = 0x68, #define CSIAR_FLAG 0x80000000 #define CSIAR_WRITE_CMD 0x80000000 #define CSIAR_BYTE_ENABLE 0x0f #define CSIAR_BYTE_ENABLE_SHIFT 12 #define CSIAR_ADDR_MASK 0x0fff PMCH = 0x6f, EPHYAR = 0x80, #define EPHYAR_FLAG 0x80000000 #define EPHYAR_WRITE_CMD 0x80000000 #define EPHYAR_REG_MASK 0x1f #define EPHYAR_REG_SHIFT 16 #define EPHYAR_DATA_MASK 0xffff DLLPR = 0xd0, #define PM_SWITCH (1 << 6) DBG_REG = 0xd1, #define FIX_NAK_1 (1 << 4) #define FIX_NAK_2 (1 << 3) TWSI = 0xd2, MCU = 0xd3, #define EN_NDP (1 << 3) #define EN_OOB_RESET (1 << 2) EFUSEAR = 0xdc, #define EFUSEAR_FLAG 0x80000000 #define EFUSEAR_WRITE_CMD 0x80000000 #define EFUSEAR_READ_CMD 0x00000000 #define EFUSEAR_REG_MASK 0x03ff #define EFUSEAR_REG_SHIFT 8 #define EFUSEAR_DATA_MASK 0xff }; enum rtl8168_registers { ERIDR = 0x70, ERIAR = 0x74, #define ERIAR_FLAG 0x80000000 #define ERIAR_WRITE_CMD 0x80000000 #define ERIAR_READ_CMD 0x00000000 #define ERIAR_ADDR_BYTE_ALIGN 4 #define ERIAR_EXGMAC 0 #define ERIAR_MSIX 1 #define ERIAR_ASF 2 #define ERIAR_TYPE_SHIFT 16 #define ERIAR_BYTEEN 0x0f #define ERIAR_BYTEEN_SHIFT 12 EPHY_RXER_NUM = 0x7c, OCPDR = 0xb0, /* OCP GPHY access */ #define OCPDR_WRITE_CMD 0x80000000 #define OCPDR_READ_CMD 0x00000000 #define OCPDR_REG_MASK 0x7f #define OCPDR_GPHY_REG_SHIFT 16 #define OCPDR_DATA_MASK 0xffff OCPAR = 0xb4, #define OCPAR_FLAG 0x80000000 #define OCPAR_GPHY_WRITE_CMD 0x8000f060 #define OCPAR_GPHY_READ_CMD 0x0000f060 RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */ MISC = 0xf0, /* 8168e only. */ #define TXPLA_RST (1 << 29) }; enum rtl_register_content { /* InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x0080, RxFIFOOver = 0x0040, LinkChg = 0x0020, RxOverflow = 0x0010, TxErr = 0x0008, TxOK = 0x0004, RxErr = 0x0002, RxOK = 0x0001, /* RxStatusDesc */ RxFOVF = (1 << 23), RxRWT = (1 << 22), RxRES = (1 << 21), RxRUNT = (1 << 20), RxCRC = (1 << 19), /* ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /* TXPoll register p.5 */ HPQ = 0x80, /* Poll cmd on the high prio queue */ NPQ = 0x40, /* Poll cmd on the low prio queue */ FSWInt = 0x01, /* Forced software interrupt */ /* Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xc0, /* rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /* RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, /* TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /* Config1 register p.24 */ LEDS1 = (1 << 7), LEDS0 = (1 << 6), MSIEnable = (1 << 5), /* Enable Message Signaled Interrupt */ Speed_down = (1 << 4), MEMMAP = (1 << 3), IOMAP = (1 << 2), VPD = (1 << 1), PMEnable = (1 << 0), /* Power Management Enable */ /* Config2 register p. 25 */ PCI_Clock_66MHz = 0x01, PCI_Clock_33MHz = 0x00, /* Config3 register p.25 */ MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */ /* Config5 register p.27 */ BWF = (1 << 6), /* Accept Broadcast wakeup frame */ MWF = (1 << 5), /* Accept Multicast wakeup frame */ UWF = (1 << 4), /* Accept Unicast wakeup frame */ Spi_en = (1 << 3), LanWake = (1 << 1), /* LanWake enable/disable */ PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ /* TBICSR p.28 */ TBIReset = 0x80000000, TBILoopback = 0x40000000, TBINwEnable = 0x20000000, TBINwRestart = 0x10000000, TBILinkOk = 0x02000000, TBINwComplete = 0x01000000, /* CPlusCmd p.31 */ EnableBist = (1 << 15), // 8168 8101 Mac_dbgo_oe = (1 << 14), // 8168 8101 Normal_mode = (1 << 13), // unused Force_half_dup = (1 << 12), // 8168 8101 Force_rxflow_en = (1 << 11), // 8168 8101 Force_txflow_en = (1 << 10), // 8168 8101 Cxpl_dbg_sel = (1 << 9), // 8168 8101 ASF = (1 << 8), // 8168 8101 PktCntrDisable = (1 << 7), // 8168 8101 Mac_dbgo_sel = 0x001c, // 8168 RxVlan = (1 << 6), RxChkSum = (1 << 5), PCIDAC = (1 << 4), PCIMulRW = (1 << 3), INTT_0 = 0x0000, // 8168 INTT_1 = 0x0001, // 8168 INTT_2 = 0x0002, // 8168 INTT_3 = 0x0003, // 8168 /* rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /* _TBICSRBit */ TBILinkOK = 0x02000000, /* DumpCounterCommand */ CounterDump = 0x8, }; enum rtl_desc_bit { /* First doubleword. */ DescOwn = (1 << 31), /* Descriptor is owned by NIC */ RingEnd = (1 << 30), /* End of descriptor ring */ FirstFrag = (1 << 29), /* First segment of a packet */ LastFrag = (1 << 28), /* Final segment of a packet */ }; /* Generic case. */ enum rtl_tx_desc_bit { /* First doubleword. */ TD_LSO = (1 << 27), /* Large Send Offload */ #define TD_MSS_MAX 0x07ffu /* MSS value */ /* Second doubleword. */ TxVlanTag = (1 << 17), /* Add VLAN tag */ }; /* 8169, 8168b and 810x except 8102e. */ enum rtl_tx_desc_bit_0 { /* First doubleword. */ #define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */ TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */ TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */ TD0_IP_CS = (1 << 18), /* Calculate IP checksum */ }; /* 8102e, 8168c and beyond. */ enum rtl_tx_desc_bit_1 { /* Second doubleword. */ #define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */ TD1_IP_CS = (1 << 29), /* Calculate IP checksum */ TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */ TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */ }; static const struct rtl_tx_desc_info { struct { u32 udp; u32 tcp; } checksum; u16 mss_shift; u16 opts_offset; } tx_desc_info [] = { [RTL_TD_0] = { .checksum = { .udp = TD0_IP_CS | TD0_UDP_CS, .tcp = TD0_IP_CS | TD0_TCP_CS }, .mss_shift = TD0_MSS_SHIFT, .opts_offset = 0 }, [RTL_TD_1] = { .checksum = { .udp = TD1_IP_CS | TD1_UDP_CS, .tcp = TD1_IP_CS | TD1_TCP_CS }, .mss_shift = TD1_MSS_SHIFT, .opts_offset = 1 } }; enum rtl_rx_desc_bit { /* Rx private */ PID1 = (1 << 18), /* Protocol ID bit 1/2 */ PID0 = (1 << 17), /* Protocol ID bit 2/2 */ #define RxProtoUDP (PID1) #define RxProtoTCP (PID0) #define RxProtoIP (PID1 | PID0) #define RxProtoMask RxProtoIP IPFail = (1 << 16), /* IP checksum failed */ UDPFail = (1 << 15), /* UDP/IP checksum failed */ TCPFail = (1 << 14), /* TCP/IP checksum failed */ RxVlanTag = (1 << 16), /* VLAN tag available */ }; #define RsvdMask 0x3fffc000 struct TxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct RxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct ring_info { struct sk_buff *skb; u32 len; u8 __pad[sizeof(void *) - sizeof(u32)]; }; enum features { RTL_FEATURE_WOL = (1 << 0), RTL_FEATURE_MSI = (1 << 1), RTL_FEATURE_GMII = (1 << 2), }; struct rtl8169_counters { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underun; }; struct rtl8169_private { void __iomem *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; struct net_device *dev; struct napi_struct napi; spinlock_t lock; u32 msg_enable; u16 txd_version; u16 mac_version; u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ u32 dirty_rx; u32 dirty_tx; struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */ struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */ dma_addr_t TxPhyAddr; dma_addr_t RxPhyAddr; void *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */ struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */ struct timer_list timer; u16 cp_cmd; u16 intr_event; u16 napi_event; u16 intr_mask; struct mdio_ops { void (*write)(void __iomem *, int, int); int (*read)(void __iomem *, int); } mdio_ops; struct pll_power_ops { void (*down)(struct rtl8169_private *); void (*up)(struct rtl8169_private *); } pll_power_ops; int (*set_speed)(struct net_device *, u8 aneg, u16 sp, u8 dpx, u32 adv); int (*get_settings)(struct net_device *, struct ethtool_cmd *); void (*phy_reset_enable)(struct rtl8169_private *tp); void (*hw_start)(struct net_device *); unsigned int (*phy_reset_pending)(struct rtl8169_private *tp); unsigned int (*link_ok)(void __iomem *); int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd); int pcie_cap; struct delayed_work task; unsigned features; struct mii_if_info mii; struct rtl8169_counters counters; u32 saved_wolopts; const struct firmware *fw; #define RTL_FIRMWARE_UNKNOWN ERR_PTR(-EAGAIN); }; MODULE_AUTHOR("Realtek and the Linux r8169 crew "); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); MODULE_LICENSE("GPL"); MODULE_VERSION(RTL8169_VERSION); MODULE_FIRMWARE(FIRMWARE_8168D_1); MODULE_FIRMWARE(FIRMWARE_8168D_2); MODULE_FIRMWARE(FIRMWARE_8168E_1); MODULE_FIRMWARE(FIRMWARE_8168E_2); MODULE_FIRMWARE(FIRMWARE_8105E_1); static int rtl8169_open(struct net_device *dev); static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance); static int rtl8169_init_ring(struct net_device *dev); static void rtl_hw_start(struct net_device *dev); static int rtl8169_close(struct net_device *dev); static void rtl_set_rx_mode(struct net_device *dev); static void rtl8169_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8169_get_stats(struct net_device *dev); static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *, void __iomem *, u32 budget); static int rtl8169_change_mtu(struct net_device *dev, int new_mtu); static void rtl8169_down(struct net_device *dev); static void rtl8169_rx_clear(struct rtl8169_private *tp); static int rtl8169_poll(struct napi_struct *napi, int budget); static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift); static u32 ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg) { void __iomem *ioaddr = tp->mmio_addr; int i; RTL_W32(OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); for (i = 0; i < 20; i++) { udelay(100); if (RTL_R32(OCPAR) & OCPAR_FLAG) break; } return RTL_R32(OCPDR); } static void ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data) { void __iomem *ioaddr = tp->mmio_addr; int i; RTL_W32(OCPDR, data); RTL_W32(OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); for (i = 0; i < 20; i++) { udelay(100); if ((RTL_R32(OCPAR) & OCPAR_FLAG) == 0) break; } } static void rtl8168_oob_notify(struct rtl8169_private *tp, u8 cmd) { void __iomem *ioaddr = tp->mmio_addr; int i; RTL_W8(ERIDR, cmd); RTL_W32(ERIAR, 0x800010e8); msleep(2); for (i = 0; i < 5; i++) { udelay(100); if (!(RTL_R32(ERIDR) & ERIAR_FLAG)) break; } ocp_write(tp, 0x1, 0x30, 0x00000001); } #define OOB_CMD_RESET 0x00 #define OOB_CMD_DRIVER_START 0x05 #define OOB_CMD_DRIVER_STOP 0x06 static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp) { return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10; } static void rtl8168_driver_start(struct rtl8169_private *tp) { u16 reg; int i; rtl8168_oob_notify(tp, OOB_CMD_DRIVER_START); reg = rtl8168_get_ocp_reg(tp); for (i = 0; i < 10; i++) { msleep(10); if (ocp_read(tp, 0x0f, reg) & 0x00000800) break; } } static void rtl8168_driver_stop(struct rtl8169_private *tp) { u16 reg; int i; rtl8168_oob_notify(tp, OOB_CMD_DRIVER_STOP); reg = rtl8168_get_ocp_reg(tp); for (i = 0; i < 10; i++) { msleep(10); if ((ocp_read(tp, 0x0f, reg) & 0x00000800) == 0) break; } } static int r8168dp_check_dash(struct rtl8169_private *tp) { u16 reg = rtl8168_get_ocp_reg(tp); return (ocp_read(tp, 0x0f, reg) & 0x00008000) ? 1 : 0; } static void r8169_mdio_write(void __iomem *ioaddr, int reg_addr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (reg_addr & 0x1f) << 16 | (value & 0xffff)); for (i = 20; i > 0; i--) { /* * Check if the RTL8169 has completed writing to the specified * MII register. */ if (!(RTL_R32(PHYAR) & 0x80000000)) break; udelay(25); } /* * According to hardware specs a 20us delay is required after write * complete indication, but before sending next command. */ udelay(20); } static int r8169_mdio_read(void __iomem *ioaddr, int reg_addr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (reg_addr & 0x1f) << 16); for (i = 20; i > 0; i--) { /* * Check if the RTL8169 has completed retrieving data from * the specified MII register. */ if (RTL_R32(PHYAR) & 0x80000000) { value = RTL_R32(PHYAR) & 0xffff; break; } udelay(25); } /* * According to hardware specs a 20us delay is required after read * complete indication, but before sending next command. */ udelay(20); return value; } static void r8168dp_1_mdio_access(void __iomem *ioaddr, int reg_addr, u32 data) { int i; RTL_W32(OCPDR, data | ((reg_addr & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT)); RTL_W32(OCPAR, OCPAR_GPHY_WRITE_CMD); RTL_W32(EPHY_RXER_NUM, 0); for (i = 0; i < 100; i++) { mdelay(1); if (!(RTL_R32(OCPAR) & OCPAR_FLAG)) break; } } static void r8168dp_1_mdio_write(void __iomem *ioaddr, int reg_addr, int value) { r8168dp_1_mdio_access(ioaddr, reg_addr, OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK)); } static int r8168dp_1_mdio_read(void __iomem *ioaddr, int reg_addr) { int i; r8168dp_1_mdio_access(ioaddr, reg_addr, OCPDR_READ_CMD); mdelay(1); RTL_W32(OCPAR, OCPAR_GPHY_READ_CMD); RTL_W32(EPHY_RXER_NUM, 0); for (i = 0; i < 100; i++) { mdelay(1); if (RTL_R32(OCPAR) & OCPAR_FLAG) break; } return RTL_R32(OCPDR) & OCPDR_DATA_MASK; } #define R8168DP_1_MDIO_ACCESS_BIT 0x00020000 static void r8168dp_2_mdio_start(void __iomem *ioaddr) { RTL_W32(0xd0, RTL_R32(0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_stop(void __iomem *ioaddr) { RTL_W32(0xd0, RTL_R32(0xd0) | R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_write(void __iomem *ioaddr, int reg_addr, int value) { r8168dp_2_mdio_start(ioaddr); r8169_mdio_write(ioaddr, reg_addr, value); r8168dp_2_mdio_stop(ioaddr); } static int r8168dp_2_mdio_read(void __iomem *ioaddr, int reg_addr) { int value; r8168dp_2_mdio_start(ioaddr); value = r8169_mdio_read(ioaddr, reg_addr); r8168dp_2_mdio_stop(ioaddr); return value; } static void rtl_writephy(struct rtl8169_private *tp, int location, u32 val) { tp->mdio_ops.write(tp->mmio_addr, location, val); } static int rtl_readphy(struct rtl8169_private *tp, int location) { return tp->mdio_ops.read(tp->mmio_addr, location); } static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value) { rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value); } static void rtl_w1w0_phy(struct rtl8169_private *tp, int reg_addr, int p, int m) { int val; val = rtl_readphy(tp, reg_addr); rtl_writephy(tp, reg_addr, (val | p) & ~m); } static void rtl_mdio_write(struct net_device *dev, int phy_id, int location, int val) { struct rtl8169_private *tp = netdev_priv(dev); rtl_writephy(tp, location, val); } static int rtl_mdio_read(struct net_device *dev, int phy_id, int location) { struct rtl8169_private *tp = netdev_priv(dev); return rtl_readphy(tp, location); } static void rtl_ephy_write(void __iomem *ioaddr, int reg_addr, int value) { unsigned int i; RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) | (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); for (i = 0; i < 100; i++) { if (!(RTL_R32(EPHYAR) & EPHYAR_FLAG)) break; udelay(10); } } static u16 rtl_ephy_read(void __iomem *ioaddr, int reg_addr) { u16 value = 0xffff; unsigned int i; RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); for (i = 0; i < 100; i++) { if (RTL_R32(EPHYAR) & EPHYAR_FLAG) { value = RTL_R32(EPHYAR) & EPHYAR_DATA_MASK; break; } udelay(10); } return value; } static void rtl_csi_write(void __iomem *ioaddr, int addr, int value) { unsigned int i; RTL_W32(CSIDR, value); RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT); for (i = 0; i < 100; i++) { if (!(RTL_R32(CSIAR) & CSIAR_FLAG)) break; udelay(10); } } static u32 rtl_csi_read(void __iomem *ioaddr, int addr) { u32 value = ~0x00; unsigned int i; RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT); for (i = 0; i < 100; i++) { if (RTL_R32(CSIAR) & CSIAR_FLAG) { value = RTL_R32(CSIDR); break; } udelay(10); } return value; } static u8 rtl8168d_efuse_read(void __iomem *ioaddr, int reg_addr) { u8 value = 0xff; unsigned int i; RTL_W32(EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT); for (i = 0; i < 300; i++) { if (RTL_R32(EFUSEAR) & EFUSEAR_FLAG) { value = RTL_R32(EFUSEAR) & EFUSEAR_DATA_MASK; break; } udelay(100); } return value; } static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr) { RTL_W16(IntrMask, 0x0000); RTL_W16(IntrStatus, 0xffff); } static void rtl8169_asic_down(void __iomem *ioaddr) { RTL_W8(ChipCmd, 0x00); rtl8169_irq_mask_and_ack(ioaddr); RTL_R16(CPlusCmd); } static unsigned int rtl8169_tbi_reset_pending(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; return RTL_R32(TBICSR) & TBIReset; } static unsigned int rtl8169_xmii_reset_pending(struct rtl8169_private *tp) { return rtl_readphy(tp, MII_BMCR) & BMCR_RESET; } static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr) { return RTL_R32(TBICSR) & TBILinkOk; } static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr) { return RTL_R8(PHYstatus) & LinkStatus; } static void rtl8169_tbi_reset_enable(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset); } static void rtl8169_xmii_reset_enable(struct rtl8169_private *tp) { unsigned int val; val = rtl_readphy(tp, MII_BMCR) | BMCR_RESET; rtl_writephy(tp, MII_BMCR, val & 0xffff); } static void __rtl8169_check_link_status(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr, bool pm) { unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (tp->link_ok(ioaddr)) { /* This is to cancel a scheduled suspend if there's one. */ if (pm) pm_request_resume(&tp->pci_dev->dev); netif_carrier_on(dev); if (net_ratelimit()) netif_info(tp, ifup, dev, "link up\n"); } else { netif_carrier_off(dev); netif_info(tp, ifdown, dev, "link down\n"); if (pm) pm_schedule_suspend(&tp->pci_dev->dev, 100); } spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8169_check_link_status(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { __rtl8169_check_link_status(dev, tp, ioaddr, false); } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static u32 __rtl8169_get_wol(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; u8 options; u32 wolopts = 0; options = RTL_R8(Config1); if (!(options & PMEnable)) return 0; options = RTL_R8(Config3); if (options & LinkUp) wolopts |= WAKE_PHY; if (options & MagicPacket) wolopts |= WAKE_MAGIC; options = RTL_R8(Config5); if (options & UWF) wolopts |= WAKE_UCAST; if (options & BWF) wolopts |= WAKE_BCAST; if (options & MWF) wolopts |= WAKE_MCAST; return wolopts; } static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); spin_lock_irq(&tp->lock); wol->supported = WAKE_ANY; wol->wolopts = __rtl8169_get_wol(tp); spin_unlock_irq(&tp->lock); } static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts) { void __iomem *ioaddr = tp->mmio_addr; unsigned int i; static const struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_ANY, Config1, PMEnable }, { WAKE_PHY, Config3, LinkUp }, { WAKE_MAGIC, Config3, MagicPacket }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake } }; RTL_W8(Cfg9346, Cfg9346_Unlock); for (i = 0; i < ARRAY_SIZE(cfg); i++) { u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask; if (wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(cfg[i].reg, options); } RTL_W8(Cfg9346, Cfg9346_Lock); } static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); spin_lock_irq(&tp->lock); if (wol->wolopts) tp->features |= RTL_FEATURE_WOL; else tp->features &= ~RTL_FEATURE_WOL; __rtl8169_set_wol(tp, wol->wolopts); spin_unlock_irq(&tp->lock); device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts); return 0; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); strcpy(info->driver, MODULENAME); strcpy(info->version, RTL8169_VERSION); strcpy(info->bus_info, pci_name(tp->pci_dev)); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static int rtl8169_set_speed_tbi(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex, u32 ignored) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int ret = 0; u32 reg; reg = RTL_R32(TBICSR); if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) && (duplex == DUPLEX_FULL)) { RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart)); } else if (autoneg == AUTONEG_ENABLE) RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart); else { netif_warn(tp, link, dev, "incorrect speed setting refused in TBI mode\n"); ret = -EOPNOTSUPP; } return ret; } static int rtl8169_set_speed_xmii(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex, u32 adv) { struct rtl8169_private *tp = netdev_priv(dev); int giga_ctrl, bmcr; int rc = -EINVAL; rtl_writephy(tp, 0x1f, 0x0000); if (autoneg == AUTONEG_ENABLE) { int auto_nego; auto_nego = rtl_readphy(tp, MII_ADVERTISE); auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); if (adv & ADVERTISED_10baseT_Half) auto_nego |= ADVERTISE_10HALF; if (adv & ADVERTISED_10baseT_Full) auto_nego |= ADVERTISE_10FULL; if (adv & ADVERTISED_100baseT_Half) auto_nego |= ADVERTISE_100HALF; if (adv & ADVERTISED_100baseT_Full) auto_nego |= ADVERTISE_100FULL; auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; giga_ctrl = rtl_readphy(tp, MII_CTRL1000); giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); /* The 8100e/8101e/8102e do Fast Ethernet only. */ if (tp->mii.supports_gmii) { if (adv & ADVERTISED_1000baseT_Half) giga_ctrl |= ADVERTISE_1000HALF; if (adv & ADVERTISED_1000baseT_Full) giga_ctrl |= ADVERTISE_1000FULL; } else if (adv & (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) { netif_info(tp, link, dev, "PHY does not support 1000Mbps\n"); goto out; } bmcr = BMCR_ANENABLE | BMCR_ANRESTART; rtl_writephy(tp, MII_ADVERTISE, auto_nego); rtl_writephy(tp, MII_CTRL1000, giga_ctrl); } else { giga_ctrl = 0; if (speed == SPEED_10) bmcr = 0; else if (speed == SPEED_100) bmcr = BMCR_SPEED100; else goto out; if (duplex == DUPLEX_FULL) bmcr |= BMCR_FULLDPLX; } rtl_writephy(tp, MII_BMCR, bmcr); if (tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03) { if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) { rtl_writephy(tp, 0x17, 0x2138); rtl_writephy(tp, 0x0e, 0x0260); } else { rtl_writephy(tp, 0x17, 0x2108); rtl_writephy(tp, 0x0e, 0x0000); } } rc = 0; out: return rc; } static int rtl8169_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex, u32 advertising) { struct rtl8169_private *tp = netdev_priv(dev); int ret; ret = tp->set_speed(dev, autoneg, speed, duplex, advertising); if (ret < 0) goto out; if (netif_running(dev) && (autoneg == AUTONEG_ENABLE) && (advertising & ADVERTISED_1000baseT_Full)) { mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT); } out: return ret; } static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int ret; del_timer_sync(&tp->timer); spin_lock_irqsave(&tp->lock, flags); ret = rtl8169_set_speed(dev, cmd->autoneg, ethtool_cmd_speed(cmd), cmd->duplex, cmd->advertising); spin_unlock_irqrestore(&tp->lock, flags); return ret; } static u32 rtl8169_fix_features(struct net_device *dev, u32 features) { if (dev->mtu > TD_MSS_MAX) features &= ~NETIF_F_ALL_TSO; return features; } static int rtl8169_set_features(struct net_device *dev, u32 features) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (features & NETIF_F_RXCSUM) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; if (dev->features & NETIF_F_HW_VLAN_RX) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return (vlan_tx_tag_present(skb)) ? TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; } static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RxVlanTag) __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff)); desc->opts2 = 0; } static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u32 status; cmd->supported = SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE; cmd->port = PORT_FIBRE; cmd->transceiver = XCVR_INTERNAL; status = RTL_R32(TBICSR); cmd->advertising = (status & TBINwEnable) ? ADVERTISED_Autoneg : 0; cmd->autoneg = !!(status & TBINwEnable); ethtool_cmd_speed_set(cmd, SPEED_1000); cmd->duplex = DUPLEX_FULL; /* Always set */ return 0; } static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); return mii_ethtool_gset(&tp->mii, cmd); } static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int rc; spin_lock_irqsave(&tp->lock, flags); rc = tp->get_settings(dev, cmd); spin_unlock_irqrestore(&tp->lock, flags); return rc; } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; if (regs->len > R8169_REGS_SIZE) regs->len = R8169_REGS_SIZE; spin_lock_irqsave(&tp->lock, flags); memcpy_fromio(p, tp->mmio_addr, regs->len); spin_unlock_irqrestore(&tp->lock, flags); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; static int rtl8169_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8169_gstrings); default: return -EOPNOTSUPP; } } static void rtl8169_update_counters(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct device *d = &tp->pci_dev->dev; struct rtl8169_counters *counters; dma_addr_t paddr; u32 cmd; int wait = 1000; /* * Some chips are unable to dump tally counters when the receiver * is disabled. */ if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0) return; counters = dma_alloc_coherent(d, sizeof(*counters), &paddr, GFP_KERNEL); if (!counters) return; RTL_W32(CounterAddrHigh, (u64)paddr >> 32); cmd = (u64)paddr & DMA_BIT_MASK(32); RTL_W32(CounterAddrLow, cmd); RTL_W32(CounterAddrLow, cmd | CounterDump); while (wait--) { if ((RTL_R32(CounterAddrLow) & CounterDump) == 0) { memcpy(&tp->counters, counters, sizeof(*counters)); break; } udelay(10); } RTL_W32(CounterAddrLow, 0); RTL_W32(CounterAddrHigh, 0); dma_free_coherent(d, sizeof(*counters), counters, paddr); } static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); ASSERT_RTNL(); rtl8169_update_counters(dev); data[0] = le64_to_cpu(tp->counters.tx_packets); data[1] = le64_to_cpu(tp->counters.rx_packets); data[2] = le64_to_cpu(tp->counters.tx_errors); data[3] = le32_to_cpu(tp->counters.rx_errors); data[4] = le16_to_cpu(tp->counters.rx_missed); data[5] = le16_to_cpu(tp->counters.align_errors); data[6] = le32_to_cpu(tp->counters.tx_one_collision); data[7] = le32_to_cpu(tp->counters.tx_multi_collision); data[8] = le64_to_cpu(tp->counters.rx_unicast); data[9] = le64_to_cpu(tp->counters.rx_broadcast); data[10] = le32_to_cpu(tp->counters.rx_multicast); data[11] = le16_to_cpu(tp->counters.tx_aborted); data[12] = le16_to_cpu(tp->counters.tx_underun); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } static const struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_settings = rtl8169_get_settings, .set_settings = rtl8169_set_settings, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_regs = rtl8169_get_regs, .get_wol = rtl8169_get_wol, .set_wol = rtl8169_set_wol, .get_strings = rtl8169_get_strings, .get_sset_count = rtl8169_get_sset_count, .get_ethtool_stats = rtl8169_get_ethtool_stats, }; static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr) { /* * The driver currently handles the 8168Bf and the 8168Be identically * but they can be identified more specifically through the test below * if needed: * * (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be * * Same thing for the 8101Eb and the 8101Ec: * * (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec */ static const struct { u32 mask; u32 val; int mac_version; } mac_info[] = { /* 8168E family. */ { 0x7cf00000, 0x2c200000, RTL_GIGA_MAC_VER_33 }, { 0x7cf00000, 0x2c100000, RTL_GIGA_MAC_VER_32 }, { 0x7c800000, 0x2c000000, RTL_GIGA_MAC_VER_33 }, /* 8168D family. */ { 0x7cf00000, 0x28300000, RTL_GIGA_MAC_VER_26 }, { 0x7cf00000, 0x28100000, RTL_GIGA_MAC_VER_25 }, { 0x7c800000, 0x28000000, RTL_GIGA_MAC_VER_26 }, /* 8168DP family. */ { 0x7cf00000, 0x28800000, RTL_GIGA_MAC_VER_27 }, { 0x7cf00000, 0x28a00000, RTL_GIGA_MAC_VER_28 }, { 0x7cf00000, 0x28b00000, RTL_GIGA_MAC_VER_31 }, /* 8168C family. */ { 0x7cf00000, 0x3cb00000, RTL_GIGA_MAC_VER_24 }, { 0x7cf00000, 0x3c900000, RTL_GIGA_MAC_VER_23 }, { 0x7cf00000, 0x3c800000, RTL_GIGA_MAC_VER_18 }, { 0x7c800000, 0x3c800000, RTL_GIGA_MAC_VER_24 }, { 0x7cf00000, 0x3c000000, RTL_GIGA_MAC_VER_19 }, { 0x7cf00000, 0x3c200000, RTL_GIGA_MAC_VER_20 }, { 0x7cf00000, 0x3c300000, RTL_GIGA_MAC_VER_21 }, { 0x7cf00000, 0x3c400000, RTL_GIGA_MAC_VER_22 }, { 0x7c800000, 0x3c000000, RTL_GIGA_MAC_VER_22 }, /* 8168B family. */ { 0x7cf00000, 0x38000000, RTL_GIGA_MAC_VER_12 }, { 0x7cf00000, 0x38500000, RTL_GIGA_MAC_VER_17 }, { 0x7c800000, 0x38000000, RTL_GIGA_MAC_VER_17 }, { 0x7c800000, 0x30000000, RTL_GIGA_MAC_VER_11 }, /* 8101 family. */ { 0x7cf00000, 0x40b00000, RTL_GIGA_MAC_VER_30 }, { 0x7cf00000, 0x40a00000, RTL_GIGA_MAC_VER_30 }, { 0x7cf00000, 0x40900000, RTL_GIGA_MAC_VER_29 }, { 0x7c800000, 0x40800000, RTL_GIGA_MAC_VER_30 }, { 0x7cf00000, 0x34a00000, RTL_GIGA_MAC_VER_09 }, { 0x7cf00000, 0x24a00000, RTL_GIGA_MAC_VER_09 }, { 0x7cf00000, 0x34900000, RTL_GIGA_MAC_VER_08 }, { 0x7cf00000, 0x24900000, RTL_GIGA_MAC_VER_08 }, { 0x7cf00000, 0x34800000, RTL_GIGA_MAC_VER_07 }, { 0x7cf00000, 0x24800000, RTL_GIGA_MAC_VER_07 }, { 0x7cf00000, 0x34000000, RTL_GIGA_MAC_VER_13 }, { 0x7cf00000, 0x34300000, RTL_GIGA_MAC_VER_10 }, { 0x7cf00000, 0x34200000, RTL_GIGA_MAC_VER_16 }, { 0x7c800000, 0x34800000, RTL_GIGA_MAC_VER_09 }, { 0x7c800000, 0x24800000, RTL_GIGA_MAC_VER_09 }, { 0x7c800000, 0x34000000, RTL_GIGA_MAC_VER_16 }, /* FIXME: where did these entries come from ? -- FR */ { 0xfc800000, 0x38800000, RTL_GIGA_MAC_VER_15 }, { 0xfc800000, 0x30800000, RTL_GIGA_MAC_VER_14 }, /* 8110 family. */ { 0xfc800000, 0x98000000, RTL_GIGA_MAC_VER_06 }, { 0xfc800000, 0x18000000, RTL_GIGA_MAC_VER_05 }, { 0xfc800000, 0x10000000, RTL_GIGA_MAC_VER_04 }, { 0xfc800000, 0x04000000, RTL_GIGA_MAC_VER_03 }, { 0xfc800000, 0x00800000, RTL_GIGA_MAC_VER_02 }, { 0xfc800000, 0x00000000, RTL_GIGA_MAC_VER_01 }, /* Catch-all */ { 0x00000000, 0x00000000, RTL_GIGA_MAC_NONE } }, *p = mac_info; u32 reg; reg = RTL_R32(TxConfig); while ((reg & p->mask) != p->val) p++; tp->mac_version = p->mac_version; } static void rtl8169_print_mac_version(struct rtl8169_private *tp) { dprintk("mac_version = 0x%02x\n", tp->mac_version); } struct phy_reg { u16 reg; u16 val; }; static void rtl_writephy_batch(struct rtl8169_private *tp, const struct phy_reg *regs, int len) { while (len-- > 0) { rtl_writephy(tp, regs->reg, regs->val); regs++; } } #define PHY_READ 0x00000000 #define PHY_DATA_OR 0x10000000 #define PHY_DATA_AND 0x20000000 #define PHY_BJMPN 0x30000000 #define PHY_READ_EFUSE 0x40000000 #define PHY_READ_MAC_BYTE 0x50000000 #define PHY_WRITE_MAC_BYTE 0x60000000 #define PHY_CLEAR_READCOUNT 0x70000000 #define PHY_WRITE 0x80000000 #define PHY_READCOUNT_EQ_SKIP 0x90000000 #define PHY_COMP_EQ_SKIPN 0xa0000000 #define PHY_COMP_NEQ_SKIPN 0xb0000000 #define PHY_WRITE_PREVIOUS 0xc0000000 #define PHY_SKIPN 0xd0000000 #define PHY_DELAY_MS 0xe0000000 #define PHY_WRITE_ERI_WORD 0xf0000000 static void rtl_phy_write_fw(struct rtl8169_private *tp, const struct firmware *fw) { __le32 *phytable = (__le32 *)fw->data; struct net_device *dev = tp->dev; size_t index, fw_size = fw->size / sizeof(*phytable); u32 predata, count; if (fw->size % sizeof(*phytable)) { netif_err(tp, probe, dev, "odd sized firmware %zd\n", fw->size); return; } for (index = 0; index < fw_size; index++) { u32 action = le32_to_cpu(phytable[index]); u32 regno = (action & 0x0fff0000) >> 16; switch(action & 0xf0000000) { case PHY_READ: case PHY_DATA_OR: case PHY_DATA_AND: case PHY_READ_EFUSE: case PHY_CLEAR_READCOUNT: case PHY_WRITE: case PHY_WRITE_PREVIOUS: case PHY_DELAY_MS: break; case PHY_BJMPN: if (regno > index) { netif_err(tp, probe, tp->dev, "Out of range of firmware\n"); return; } break; case PHY_READCOUNT_EQ_SKIP: if (index + 2 >= fw_size) { netif_err(tp, probe, tp->dev, "Out of range of firmware\n"); return; } break; case PHY_COMP_EQ_SKIPN: case PHY_COMP_NEQ_SKIPN: case PHY_SKIPN: if (index + 1 + regno >= fw_size) { netif_err(tp, probe, tp->dev, "Out of range of firmware\n"); return; } break; case PHY_READ_MAC_BYTE: case PHY_WRITE_MAC_BYTE: case PHY_WRITE_ERI_WORD: default: netif_err(tp, probe, tp->dev, "Invalid action 0x%08x\n", action); return; } } predata = 0; count = 0; for (index = 0; index < fw_size; ) { u32 action = le32_to_cpu(phytable[index]); u32 data = action & 0x0000ffff; u32 regno = (action & 0x0fff0000) >> 16; if (!action) break; switch(action & 0xf0000000) { case PHY_READ: predata = rtl_readphy(tp, regno); count++; index++; break; case PHY_DATA_OR: predata |= data; index++; break; case PHY_DATA_AND: predata &= data; index++; break; case PHY_BJMPN: index -= regno; break; case PHY_READ_EFUSE: predata = rtl8168d_efuse_read(tp->mmio_addr, regno); index++; break; case PHY_CLEAR_READCOUNT: count = 0; index++; break; case PHY_WRITE: rtl_writephy(tp, regno, data); index++; break; case PHY_READCOUNT_EQ_SKIP: index += (count == data) ? 2 : 1; break; case PHY_COMP_EQ_SKIPN: if (predata == data) index += regno; index++; break; case PHY_COMP_NEQ_SKIPN: if (predata != data) index += regno; index++; break; case PHY_WRITE_PREVIOUS: rtl_writephy(tp, regno, predata); index++; break; case PHY_SKIPN: index += regno + 1; break; case PHY_DELAY_MS: mdelay(data); index++; break; case PHY_READ_MAC_BYTE: case PHY_WRITE_MAC_BYTE: case PHY_WRITE_ERI_WORD: default: BUG(); } } } static void rtl_release_firmware(struct rtl8169_private *tp) { if (!IS_ERR_OR_NULL(tp->fw)) release_firmware(tp->fw); tp->fw = RTL_FIRMWARE_UNKNOWN; } static void rtl_apply_firmware(struct rtl8169_private *tp) { const struct firmware *fw = tp->fw; /* TODO: release firmware once rtl_phy_write_fw signals failures. */ if (!IS_ERR_OR_NULL(fw)) rtl_phy_write_fw(tp, fw); } static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val) { if (rtl_readphy(tp, reg) != val) netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n"); else rtl_apply_firmware(tp); } static void rtl8169s_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x06, 0x006e }, { 0x08, 0x0708 }, { 0x15, 0x4000 }, { 0x18, 0x65c7 }, { 0x1f, 0x0001 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x0000 }, { 0x03, 0xff41 }, { 0x02, 0xdf60 }, { 0x01, 0x0140 }, { 0x00, 0x0077 }, { 0x04, 0x7800 }, { 0x04, 0x7000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf0f9 }, { 0x04, 0x9800 }, { 0x04, 0x9000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xa000 }, { 0x03, 0xff41 }, { 0x02, 0xdf20 }, { 0x01, 0x0140 }, { 0x00, 0x00bb }, { 0x04, 0xb800 }, { 0x04, 0xb000 }, { 0x03, 0xdf41 }, { 0x02, 0xdc60 }, { 0x01, 0x6340 }, { 0x00, 0x007d }, { 0x04, 0xd800 }, { 0x04, 0xd000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x100a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0xf000 }, { 0x1f, 0x0000 }, { 0x0b, 0x0000 }, { 0x00, 0x9200 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x01, 0x90d0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp) { struct pci_dev *pdev = tp->pci_dev; u16 vendor_id, device_id; pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &vendor_id); pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &device_id); if ((vendor_id != PCI_VENDOR_ID_GIGABYTE) || (device_id != 0xe000)) return; rtl_writephy(tp, 0x1f, 0x0001); rtl_writephy(tp, 0x10, 0xf01b); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x04, 0x0000 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x9000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0xa000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x10, 0xf41b }, { 0x14, 0xfb54 }, { 0x18, 0xf5c7 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl8169scd_hw_phy_config_quirk(tp); } static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x04, 0x0000 }, { 0x03, 0x00a1 }, { 0x02, 0x0008 }, { 0x01, 0x0120 }, { 0x00, 0x1000 }, { 0x04, 0x0800 }, { 0x04, 0x9000 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0xa000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0xff95 }, { 0x00, 0xba00 }, { 0x04, 0xa800 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x0b, 0x8480 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x18, 0x67c7 }, { 0x04, 0x2000 }, { 0x03, 0x002f }, { 0x02, 0x4360 }, { 0x01, 0x0109 }, { 0x00, 0x3022 }, { 0x04, 0x2800 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0001); rtl_patchphy(tp, 0x16, 1 << 0); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x10, 0xf41b }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0000 }, { 0x1d, 0x0f00 }, { 0x1f, 0x0002 }, { 0x0c, 0x1ec8 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0000); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1f, 0x0002 }, { 0x00, 0x88d4 }, { 0x01, 0x82b1 }, { 0x03, 0x7002 }, { 0x08, 0x9e30 }, { 0x09, 0x01f0 }, { 0x0a, 0x5500 }, { 0x0c, 0x00c8 }, { 0x1f, 0x0003 }, { 0x12, 0xc096 }, { 0x16, 0x000a }, { 0x1f, 0x0000 }, { 0x1f, 0x0000 }, { 0x09, 0x2000 }, { 0x09, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x03, 0x802f }, { 0x02, 0x4f02 }, { 0x01, 0x0409 }, { 0x00, 0xf099 }, { 0x04, 0x9800 }, { 0x04, 0x9000 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x0761 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x16, 1 << 0); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x12, 0x2300 }, { 0x1d, 0x3d98 }, { 0x1f, 0x0002 }, { 0x0c, 0x7eb8 }, { 0x06, 0x5461 }, { 0x1f, 0x0003 }, { 0x16, 0x0f0a }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x16, 1 << 0); rtl_patchphy(tp, 0x14, 1 << 5); rtl_patchphy(tp, 0x0d, 1 << 5); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp) { rtl8168c_3_hw_phy_config(tp); } static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init_0[] = { /* Channel Estimation */ { 0x1f, 0x0001 }, { 0x06, 0x4064 }, { 0x07, 0x2863 }, { 0x08, 0x059c }, { 0x09, 0x26b4 }, { 0x0a, 0x6a19 }, { 0x0b, 0xdcc8 }, { 0x10, 0xf06d }, { 0x14, 0x7f68 }, { 0x18, 0x7fd9 }, { 0x1c, 0xf0ff }, { 0x1d, 0x3d9c }, { 0x1f, 0x0003 }, { 0x12, 0xf49f }, { 0x13, 0x070b }, { 0x1a, 0x05ad }, { 0x14, 0x94c0 }, /* * Tx Error Issue * Enhance line driver power */ { 0x1f, 0x0002 }, { 0x06, 0x5561 }, { 0x1f, 0x0005 }, { 0x05, 0x8332 }, { 0x06, 0x5561 }, /* * Can not link to 1Gbps with bad cable * Decrease SNR threshold form 21.07dB to 19.04dB */ { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 } }; void __iomem *ioaddr = tp->mmio_addr; rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0)); /* * Rx Error Issue * Fine Tune Switching regulator parameter */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w1w0_phy(tp, 0x0b, 0x0010, 0x00ef); rtl_w1w0_phy(tp, 0x0c, 0xa200, 0x5d00); if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x669a }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x669a }, { 0x1f, 0x0002 } }; int val; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); val = rtl_readphy(tp, 0x0d); if ((val & 0x00ff) != 0x006c) { static const u32 set[] = { 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c }; int i; rtl_writephy(tp, 0x1f, 0x0002); val &= 0xff00; for (i = 0; i < ARRAY_SIZE(set); i++) rtl_writephy(tp, 0x0d, val | set[i]); } } else { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x6662 }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x6662 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } /* RSET couple improve */ rtl_writephy(tp, 0x1f, 0x0002); rtl_patchphy(tp, 0x0d, 0x0300); rtl_patchphy(tp, 0x0f, 0x0010); /* Fine tune PLL performance */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600); rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x001b); rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init_0[] = { /* Channel Estimation */ { 0x1f, 0x0001 }, { 0x06, 0x4064 }, { 0x07, 0x2863 }, { 0x08, 0x059c }, { 0x09, 0x26b4 }, { 0x0a, 0x6a19 }, { 0x0b, 0xdcc8 }, { 0x10, 0xf06d }, { 0x14, 0x7f68 }, { 0x18, 0x7fd9 }, { 0x1c, 0xf0ff }, { 0x1d, 0x3d9c }, { 0x1f, 0x0003 }, { 0x12, 0xf49f }, { 0x13, 0x070b }, { 0x1a, 0x05ad }, { 0x14, 0x94c0 }, /* * Tx Error Issue * Enhance line driver power */ { 0x1f, 0x0002 }, { 0x06, 0x5561 }, { 0x1f, 0x0005 }, { 0x05, 0x8332 }, { 0x06, 0x5561 }, /* * Can not link to 1Gbps with bad cable * Decrease SNR threshold form 21.07dB to 19.04dB */ { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 } }; void __iomem *ioaddr = tp->mmio_addr; rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0)); if (rtl8168d_efuse_read(ioaddr, 0x01) == 0xb1) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x669a }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x669a }, { 0x1f, 0x0002 } }; int val; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); val = rtl_readphy(tp, 0x0d); if ((val & 0x00ff) != 0x006c) { static const u32 set[] = { 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c }; int i; rtl_writephy(tp, 0x1f, 0x0002); val &= 0xff00; for (i = 0; i < ARRAY_SIZE(set); i++) rtl_writephy(tp, 0x0d, val | set[i]); } } else { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x05, 0x2642 }, { 0x1f, 0x0005 }, { 0x05, 0x8330 }, { 0x06, 0x2642 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } /* Fine tune PLL performance */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600); rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000); /* Switching regulator Slew rate */ rtl_writephy(tp, 0x1f, 0x0002); rtl_patchphy(tp, 0x0f, 0x0017); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x001b); rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300); rtl_writephy(tp, 0x1f, 0x0000); } static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0002 }, { 0x10, 0x0008 }, { 0x0d, 0x006c }, { 0x1f, 0x0000 }, { 0x0d, 0xf880 }, { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0001 }, { 0x0b, 0xa4d8 }, { 0x09, 0x281c }, { 0x07, 0x2883 }, { 0x0a, 0x6b35 }, { 0x1d, 0x3da4 }, { 0x1c, 0xeffd }, { 0x14, 0x7f52 }, { 0x18, 0x7fc6 }, { 0x08, 0x0601 }, { 0x06, 0x4063 }, { 0x10, 0xf074 }, { 0x1f, 0x0003 }, { 0x13, 0x0789 }, { 0x12, 0xf4bd }, { 0x1a, 0x04fd }, { 0x14, 0x84b0 }, { 0x1f, 0x0000 }, { 0x00, 0x9200 }, { 0x1f, 0x0005 }, { 0x01, 0x0340 }, { 0x1f, 0x0001 }, { 0x04, 0x4000 }, { 0x03, 0x1d21 }, { 0x02, 0x0c32 }, { 0x01, 0x0200 }, { 0x00, 0x5554 }, { 0x04, 0x4800 }, { 0x04, 0x4000 }, { 0x04, 0xf000 }, { 0x03, 0xdf01 }, { 0x02, 0xdf20 }, { 0x01, 0x101a }, { 0x00, 0xa0ff }, { 0x04, 0xf800 }, { 0x04, 0xf000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x0023 }, { 0x16, 0x0000 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0001 }, { 0x17, 0x0cc0 }, { 0x1f, 0x0007 }, { 0x1e, 0x002d }, { 0x18, 0x0040 }, { 0x1f, 0x0000 } }; rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); rtl_patchphy(tp, 0x0d, 1 << 5); } static void rtl8168e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { /* Enable Delay cap */ { 0x1f, 0x0005 }, { 0x05, 0x8b80 }, { 0x06, 0xc896 }, { 0x1f, 0x0000 }, /* Channel estimation fine tune */ { 0x1f, 0x0001 }, { 0x0b, 0x6c20 }, { 0x07, 0x2872 }, { 0x1c, 0xefff }, { 0x1f, 0x0003 }, { 0x14, 0x6420 }, { 0x1f, 0x0000 }, /* Update PFM & 10M TX idle timer */ { 0x1f, 0x0007 }, { 0x1e, 0x002f }, { 0x15, 0x1919 }, { 0x1f, 0x0000 }, { 0x1f, 0x0007 }, { 0x1e, 0x00ac }, { 0x18, 0x0006 }, { 0x1f, 0x0000 } }; rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); /* DCO enable for 10M IDLE Power */ rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0023); rtl_w1w0_phy(tp, 0x17, 0x0006, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); /* For impedance matching */ rtl_writephy(tp, 0x1f, 0x0002); rtl_w1w0_phy(tp, 0x08, 0x8000, 0x7f00); rtl_writephy(tp, 0x1f, 0x0000); /* PHY auto speed down */ rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x002d); rtl_w1w0_phy(tp, 0x18, 0x0050, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b86); rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x1f, 0x0005); rtl_writephy(tp, 0x05, 0x8b85); rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000); rtl_writephy(tp, 0x1f, 0x0007); rtl_writephy(tp, 0x1e, 0x0020); rtl_w1w0_phy(tp, 0x15, 0x0000, 0x1100); rtl_writephy(tp, 0x1f, 0x0006); rtl_writephy(tp, 0x00, 0x5a00); rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x0d, 0x0007); rtl_writephy(tp, 0x0e, 0x003c); rtl_writephy(tp, 0x0d, 0x4007); rtl_writephy(tp, 0x0e, 0x0000); rtl_writephy(tp, 0x0d, 0x0000); } static void rtl8102e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0003 }, { 0x08, 0x441d }, { 0x01, 0x9100 }, { 0x1f, 0x0000 } }; rtl_writephy(tp, 0x1f, 0x0000); rtl_patchphy(tp, 0x11, 1 << 12); rtl_patchphy(tp, 0x19, 1 << 13); rtl_patchphy(tp, 0x10, 1 << 15); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl8105e_hw_phy_config(struct rtl8169_private *tp) { static const struct phy_reg phy_reg_init[] = { { 0x1f, 0x0005 }, { 0x1a, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0004 }, { 0x1c, 0x0000 }, { 0x1f, 0x0000 }, { 0x1f, 0x0001 }, { 0x15, 0x7701 }, { 0x1f, 0x0000 } }; /* Disable ALDPS before ram code */ rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, 0x18, 0x0310); msleep(100); rtl_apply_firmware(tp); rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init)); } static void rtl_hw_phy_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_print_mac_version(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_01: break; case RTL_GIGA_MAC_VER_02: case RTL_GIGA_MAC_VER_03: rtl8169s_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_04: rtl8169sb_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_05: rtl8169scd_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_06: rtl8169sce_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_07: case RTL_GIGA_MAC_VER_08: case RTL_GIGA_MAC_VER_09: rtl8102e_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_11: rtl8168bb_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_12: rtl8168bef_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_17: rtl8168bef_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_18: rtl8168cp_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_19: rtl8168c_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_20: rtl8168c_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_21: rtl8168c_3_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_22: rtl8168c_4_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: rtl8168cp_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_25: rtl8168d_1_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_26: rtl8168d_2_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_27: rtl8168d_3_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_28: rtl8168d_4_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_29: case RTL_GIGA_MAC_VER_30: rtl8105e_hw_phy_config(tp); break; case RTL_GIGA_MAC_VER_31: /* None. */ break; case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: rtl8168e_hw_phy_config(tp); break; default: break; } } static void rtl8169_phy_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; void __iomem *ioaddr = tp->mmio_addr; unsigned long timeout = RTL8169_PHY_TIMEOUT; assert(tp->mac_version > RTL_GIGA_MAC_VER_01); spin_lock_irq(&tp->lock); if (tp->phy_reset_pending(tp)) { /* * A busy loop could burn quite a few cycles on nowadays CPU. * Let's delay the execution of the timer for a few ticks. */ timeout = HZ/10; goto out_mod_timer; } if (tp->link_ok(ioaddr)) goto out_unlock; netif_warn(tp, link, dev, "PHY reset until link up\n"); tp->phy_reset_enable(tp); out_mod_timer: mod_timer(timer, jiffies + timeout); out_unlock: spin_unlock_irq(&tp->lock); } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; disable_irq(pdev->irq); rtl8169_interrupt(pdev->irq, dev); enable_irq(pdev->irq); } #endif static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { iounmap(ioaddr); pci_release_regions(pdev); pci_clear_mwi(pdev); pci_disable_device(pdev); free_netdev(dev); } static void rtl8169_phy_reset(struct net_device *dev, struct rtl8169_private *tp) { unsigned int i; tp->phy_reset_enable(tp); for (i = 0; i < 100; i++) { if (!tp->phy_reset_pending(tp)) return; msleep(1); } netif_err(tp, link, dev, "PHY reset failed\n"); } static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; rtl_hw_phy_config(dev); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); } pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08); if (tp->mac_version == RTL_GIGA_MAC_VER_02) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); dprintk("Set PHY Reg 0x0bh = 0x00h\n"); rtl_writephy(tp, 0x0b, 0x0000); //w 0x0b 15 0 0 } rtl8169_phy_reset(dev, tp); rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL, ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | (tp->mii.supports_gmii ? ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full : 0)); if (RTL_R8(PHYstatus) & TBI_Enable) netif_info(tp, link, dev, "TBI auto-negotiating\n"); } static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr) { void __iomem *ioaddr = tp->mmio_addr; u32 high; u32 low; low = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24); high = addr[4] | (addr[5] << 8); spin_lock_irq(&tp->lock); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W32(MAC4, high); RTL_R32(MAC4); RTL_W32(MAC0, low); RTL_R32(MAC0); RTL_W8(Cfg9346, Cfg9346_Lock); spin_unlock_irq(&tp->lock); } static int rtl_set_mac_address(struct net_device *dev, void *p) { struct rtl8169_private *tp = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); rtl_rar_set(tp, dev->dev_addr); return 0; } static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct rtl8169_private *tp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV; } static int rtl_xmii_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd) { switch (cmd) { case SIOCGMIIPHY: data->phy_id = 32; /* Internal PHY */ return 0; case SIOCGMIIREG: data->val_out = rtl_readphy(tp, data->reg_num & 0x1f); return 0; case SIOCSMIIREG: rtl_writephy(tp, data->reg_num & 0x1f, data->val_in); return 0; } return -EOPNOTSUPP; } static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd) { return -EOPNOTSUPP; } static const struct rtl_cfg_info { void (*hw_start)(struct net_device *); unsigned int region; unsigned int align; u16 intr_event; u16 napi_event; unsigned features; u8 default_ver; } rtl_cfg_infos [] = { [RTL_CFG_0] = { .hw_start = rtl_hw_start_8169, .region = 1, .align = 0, .intr_event = SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxOK | RxErr, .napi_event = RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_GMII, .default_ver = RTL_GIGA_MAC_VER_01, }, [RTL_CFG_1] = { .hw_start = rtl_hw_start_8168, .region = 2, .align = 8, .intr_event = SYSErr | LinkChg | RxOverflow | TxErr | TxOK | RxOK | RxErr, .napi_event = TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_GMII | RTL_FEATURE_MSI, .default_ver = RTL_GIGA_MAC_VER_11, }, [RTL_CFG_2] = { .hw_start = rtl_hw_start_8101, .region = 2, .align = 8, .intr_event = SYSErr | LinkChg | RxOverflow | PCSTimeout | RxFIFOOver | TxErr | TxOK | RxOK | RxErr, .napi_event = RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow, .features = RTL_FEATURE_MSI, .default_ver = RTL_GIGA_MAC_VER_13, } }; /* Cfg9346_Unlock assumed. */ static unsigned rtl_try_msi(struct pci_dev *pdev, void __iomem *ioaddr, const struct rtl_cfg_info *cfg) { unsigned msi = 0; u8 cfg2; cfg2 = RTL_R8(Config2) & ~MSIEnable; if (cfg->features & RTL_FEATURE_MSI) { if (pci_enable_msi(pdev)) { dev_info(&pdev->dev, "no MSI. Back to INTx.\n"); } else { cfg2 |= MSIEnable; msi = RTL_FEATURE_MSI; } } RTL_W8(Config2, cfg2); return msi; } static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp) { if (tp->features & RTL_FEATURE_MSI) { pci_disable_msi(pdev); tp->features &= ~RTL_FEATURE_MSI; } } static const struct net_device_ops rtl8169_netdev_ops = { .ndo_open = rtl8169_open, .ndo_stop = rtl8169_close, .ndo_get_stats = rtl8169_get_stats, .ndo_start_xmit = rtl8169_start_xmit, .ndo_tx_timeout = rtl8169_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = rtl8169_change_mtu, .ndo_fix_features = rtl8169_fix_features, .ndo_set_features = rtl8169_set_features, .ndo_set_mac_address = rtl_set_mac_address, .ndo_do_ioctl = rtl8169_ioctl, .ndo_set_multicast_list = rtl_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = rtl8169_netpoll, #endif }; static void __devinit rtl_init_mdio_ops(struct rtl8169_private *tp) { struct mdio_ops *ops = &tp->mdio_ops; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: ops->write = r8168dp_1_mdio_write; ops->read = r8168dp_1_mdio_read; break; case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: ops->write = r8168dp_2_mdio_write; ops->read = r8168dp_2_mdio_read; break; default: ops->write = r8169_mdio_write; ops->read = r8169_mdio_read; break; } } static void r810x_phy_power_down(struct rtl8169_private *tp) { rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, MII_BMCR, BMCR_PDOWN); } static void r810x_phy_power_up(struct rtl8169_private *tp) { rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE); } static void r810x_pll_power_down(struct rtl8169_private *tp) { if (__rtl8169_get_wol(tp) & WAKE_ANY) { rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, MII_BMCR, 0x0000); return; } r810x_phy_power_down(tp); } static void r810x_pll_power_up(struct rtl8169_private *tp) { r810x_phy_power_up(tp); } static void r8168_phy_power_up(struct rtl8169_private *tp) { rtl_writephy(tp, 0x1f, 0x0000); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: case RTL_GIGA_MAC_VER_18: case RTL_GIGA_MAC_VER_19: case RTL_GIGA_MAC_VER_20: case RTL_GIGA_MAC_VER_21: case RTL_GIGA_MAC_VER_22: case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl_writephy(tp, 0x0e, 0x0000); break; default: break; } rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE); } static void r8168_phy_power_down(struct rtl8169_private *tp) { rtl_writephy(tp, 0x1f, 0x0000); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_PDOWN); break; case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: case RTL_GIGA_MAC_VER_18: case RTL_GIGA_MAC_VER_19: case RTL_GIGA_MAC_VER_20: case RTL_GIGA_MAC_VER_21: case RTL_GIGA_MAC_VER_22: case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl_writephy(tp, 0x0e, 0x0200); default: rtl_writephy(tp, MII_BMCR, BMCR_PDOWN); break; } } static void r8168_pll_power_down(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; if ((tp->mac_version == RTL_GIGA_MAC_VER_27 || tp->mac_version == RTL_GIGA_MAC_VER_28 || tp->mac_version == RTL_GIGA_MAC_VER_31) && r8168dp_check_dash(tp)) { return; } if ((tp->mac_version == RTL_GIGA_MAC_VER_23 || tp->mac_version == RTL_GIGA_MAC_VER_24) && (RTL_R16(CPlusCmd) & ASF)) { return; } if (tp->mac_version == RTL_GIGA_MAC_VER_32 || tp->mac_version == RTL_GIGA_MAC_VER_33) rtl_ephy_write(ioaddr, 0x19, 0xff64); if (__rtl8169_get_wol(tp) & WAKE_ANY) { rtl_writephy(tp, 0x1f, 0x0000); rtl_writephy(tp, MII_BMCR, 0x0000); RTL_W32(RxConfig, RTL_R32(RxConfig) | AcceptBroadcast | AcceptMulticast | AcceptMyPhys); return; } r8168_phy_power_down(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: RTL_W8(PMCH, RTL_R8(PMCH) & ~0x80); break; } } static void r8168_pll_power_up(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; if ((tp->mac_version == RTL_GIGA_MAC_VER_27 || tp->mac_version == RTL_GIGA_MAC_VER_28 || tp->mac_version == RTL_GIGA_MAC_VER_31) && r8168dp_check_dash(tp)) { return; } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: RTL_W8(PMCH, RTL_R8(PMCH) | 0x80); break; } r8168_phy_power_up(tp); } static void rtl_pll_power_op(struct rtl8169_private *tp, void (*op)(struct rtl8169_private *)) { if (op) op(tp); } static void rtl_pll_power_down(struct rtl8169_private *tp) { rtl_pll_power_op(tp, tp->pll_power_ops.down); } static void rtl_pll_power_up(struct rtl8169_private *tp) { rtl_pll_power_op(tp, tp->pll_power_ops.up); } static void __devinit rtl_init_pll_power_ops(struct rtl8169_private *tp) { struct pll_power_ops *ops = &tp->pll_power_ops; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_07: case RTL_GIGA_MAC_VER_08: case RTL_GIGA_MAC_VER_09: case RTL_GIGA_MAC_VER_10: case RTL_GIGA_MAC_VER_16: case RTL_GIGA_MAC_VER_29: case RTL_GIGA_MAC_VER_30: ops->down = r810x_pll_power_down; ops->up = r810x_pll_power_up; break; case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: case RTL_GIGA_MAC_VER_18: case RTL_GIGA_MAC_VER_19: case RTL_GIGA_MAC_VER_20: case RTL_GIGA_MAC_VER_21: case RTL_GIGA_MAC_VER_22: case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: ops->down = r8168_pll_power_down; ops->up = r8168_pll_power_up; break; default: ops->down = NULL; ops->up = NULL; break; } } static void rtl_hw_reset(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; int i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 0; i < 100; i++) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; msleep_interruptible(1); } } static int __devinit rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data; const unsigned int region = cfg->region; struct rtl8169_private *tp; struct mii_if_info *mii; struct net_device *dev; void __iomem *ioaddr; int chipset, i; int rc; if (netif_msg_drv(&debug)) { printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n", MODULENAME, RTL8169_VERSION); } dev = alloc_etherdev(sizeof (*tp)); if (!dev) { if (netif_msg_drv(&debug)) dev_err(&pdev->dev, "unable to alloc new ethernet\n"); rc = -ENOMEM; goto out; } SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &rtl8169_netdev_ops; tp = netdev_priv(dev); tp->dev = dev; tp->pci_dev = pdev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); mii = &tp->mii; mii->dev = dev; mii->mdio_read = rtl_mdio_read; mii->mdio_write = rtl_mdio_write; mii->phy_id_mask = 0x1f; mii->reg_num_mask = 0x1f; mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII); /* disable ASPM completely as that cause random device stop working * problems as well as full system hangs for some PCIe devices users */ pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pci_enable_device(pdev); if (rc < 0) { netif_err(tp, probe, dev, "enable failure\n"); goto err_out_free_dev_1; } if (pci_set_mwi(pdev) < 0) netif_info(tp, probe, dev, "Mem-Wr-Inval unavailable\n"); /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) { netif_err(tp, probe, dev, "region #%d not an MMIO resource, aborting\n", region); rc = -ENODEV; goto err_out_mwi_2; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) { netif_err(tp, probe, dev, "Invalid PCI region size(s), aborting\n"); rc = -ENODEV; goto err_out_mwi_2; } rc = pci_request_regions(pdev, MODULENAME); if (rc < 0) { netif_err(tp, probe, dev, "could not request regions\n"); goto err_out_mwi_2; } tp->cp_cmd = RxChkSum; if ((sizeof(dma_addr_t) > 4) && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && use_dac) { tp->cp_cmd |= PCIDAC; dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc < 0) { netif_err(tp, probe, dev, "DMA configuration failed\n"); goto err_out_free_res_3; } } /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE); if (!ioaddr) { netif_err(tp, probe, dev, "cannot remap MMIO, aborting\n"); rc = -EIO; goto err_out_free_res_3; } tp->mmio_addr = ioaddr; tp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (!tp->pcie_cap) netif_info(tp, probe, dev, "no PCI Express capability\n"); RTL_W16(IntrMask, 0x0000); rtl_hw_reset(tp); RTL_W16(IntrStatus, 0xffff); pci_set_master(pdev); /* Identify chip attached to board */ rtl8169_get_mac_version(tp, ioaddr); /* * Pretend we are using VLANs; This bypasses a nasty bug where * Interrupts stop flowing on high load on 8110SCd controllers. */ if (tp->mac_version == RTL_GIGA_MAC_VER_05) tp->cp_cmd |= RxVlan; rtl_init_mdio_ops(tp); rtl_init_pll_power_ops(tp); /* Use appropriate default if unknown */ if (tp->mac_version == RTL_GIGA_MAC_NONE) { netif_notice(tp, probe, dev, "unknown MAC, using family default\n"); tp->mac_version = cfg->default_ver; } rtl8169_print_mac_version(tp); for (i = 0; i < ARRAY_SIZE(rtl_chip_info); i++) { if (tp->mac_version == rtl_chip_info[i].mac_version) break; } if (i == ARRAY_SIZE(rtl_chip_info)) { dev_err(&pdev->dev, "driver bug, MAC version not found in rtl_chip_info\n"); goto err_out_msi_4; } chipset = i; tp->txd_version = rtl_chip_info[chipset].txd_version; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Config1, RTL_R8(Config1) | PMEnable); RTL_W8(Config5, RTL_R8(Config5) & PMEStatus); if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0) tp->features |= RTL_FEATURE_WOL; if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0) tp->features |= RTL_FEATURE_WOL; tp->features |= rtl_try_msi(pdev, ioaddr, cfg); RTL_W8(Cfg9346, Cfg9346_Lock); if ((tp->mac_version <= RTL_GIGA_MAC_VER_06) && (RTL_R8(PHYstatus) & TBI_Enable)) { tp->set_speed = rtl8169_set_speed_tbi; tp->get_settings = rtl8169_gset_tbi; tp->phy_reset_enable = rtl8169_tbi_reset_enable; tp->phy_reset_pending = rtl8169_tbi_reset_pending; tp->link_ok = rtl8169_tbi_link_ok; tp->do_ioctl = rtl_tbi_ioctl; } else { tp->set_speed = rtl8169_set_speed_xmii; tp->get_settings = rtl8169_gset_xmii; tp->phy_reset_enable = rtl8169_xmii_reset_enable; tp->phy_reset_pending = rtl8169_xmii_reset_pending; tp->link_ok = rtl8169_xmii_link_ok; tp->do_ioctl = rtl_xmii_ioctl; } spin_lock_init(&tp->lock); /* Get MAC address */ for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops); dev->watchdog_timeo = RTL8169_TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT); /* don't enable SG, IP_CSUM and TSO by default - it might not work * properly for all devices */ dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA; if (tp->mac_version == RTL_GIGA_MAC_VER_05) /* 8110SCd requires hardware Rx VLAN - disallow toggling */ dev->hw_features &= ~NETIF_F_HW_VLAN_RX; tp->intr_mask = 0xffff; tp->hw_start = cfg->hw_start; tp->intr_event = cfg->intr_event; tp->napi_event = cfg->napi_event; init_timer(&tp->timer); tp->timer.data = (unsigned long) dev; tp->timer.function = rtl8169_phy_timer; tp->fw = RTL_FIRMWARE_UNKNOWN; rc = register_netdev(dev); if (rc < 0) goto err_out_msi_4; pci_set_drvdata(pdev, dev); netif_info(tp, probe, dev, "%s at 0x%lx, %pM, XID %08x IRQ %d\n", rtl_chip_info[chipset].name, dev->base_addr, dev->dev_addr, (u32)(RTL_R32(TxConfig) & 0x9cf0f8ff), dev->irq); if (tp->mac_version == RTL_GIGA_MAC_VER_27 || tp->mac_version == RTL_GIGA_MAC_VER_28 || tp->mac_version == RTL_GIGA_MAC_VER_31) { rtl8168_driver_start(tp); } device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL); if (pci_dev_run_wake(pdev)) pm_runtime_put_noidle(&pdev->dev); netif_carrier_off(dev); out: return rc; err_out_msi_4: rtl_disable_msi(pdev, tp); iounmap(ioaddr); err_out_free_res_3: pci_release_regions(pdev); err_out_mwi_2: pci_clear_mwi(pdev); pci_disable_device(pdev); err_out_free_dev_1: free_netdev(dev); goto out; } static void __devexit rtl8169_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); if (tp->mac_version == RTL_GIGA_MAC_VER_27 || tp->mac_version == RTL_GIGA_MAC_VER_28 || tp->mac_version == RTL_GIGA_MAC_VER_31) { rtl8168_driver_stop(tp); } cancel_delayed_work_sync(&tp->task); unregister_netdev(dev); rtl_release_firmware(tp); if (pci_dev_run_wake(pdev)) pm_runtime_get_noresume(&pdev->dev); /* restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); rtl_disable_msi(pdev, tp); rtl8169_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } static void rtl_request_firmware(struct rtl8169_private *tp) { int i; /* Return early if the firmware is already loaded / cached. */ if (!IS_ERR(tp->fw)) goto out; for (i = 0; i < ARRAY_SIZE(rtl_firmware_infos); i++) { const struct rtl_firmware_info *info = rtl_firmware_infos + i; if (info->mac_version == tp->mac_version) { const char *name = info->fw_name; int rc; rc = request_firmware(&tp->fw, name, &tp->pci_dev->dev); if (rc < 0) { netif_warn(tp, ifup, tp->dev, "unable to load " "firmware patch %s (%d)\n", name, rc); goto out_disable_request_firmware; } goto out; } } out_disable_request_firmware: tp->fw = NULL; out: return; } static int rtl8169_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; int retval = -ENOMEM; pm_runtime_get_sync(&pdev->dev); /* * Rx and Tx desscriptors needs 256 bytes alignment. * dma_alloc_coherent provides more. */ tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES, &tp->TxPhyAddr, GFP_KERNEL); if (!tp->TxDescArray) goto err_pm_runtime_put; tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES, &tp->RxPhyAddr, GFP_KERNEL); if (!tp->RxDescArray) goto err_free_tx_0; retval = rtl8169_init_ring(dev); if (retval < 0) goto err_free_rx_1; INIT_DELAYED_WORK(&tp->task, NULL); smp_mb(); rtl_request_firmware(tp); retval = request_irq(dev->irq, rtl8169_interrupt, (tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED, dev->name, dev); if (retval < 0) goto err_release_fw_2; napi_enable(&tp->napi); rtl8169_init_phy(dev, tp); rtl8169_set_features(dev, dev->features); rtl_pll_power_up(tp); rtl_hw_start(dev); tp->saved_wolopts = 0; pm_runtime_put_noidle(&pdev->dev); rtl8169_check_link_status(dev, tp, ioaddr); out: return retval; err_release_fw_2: rtl_release_firmware(tp); rtl8169_rx_clear(tp); err_free_rx_1: dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); tp->RxDescArray = NULL; err_free_tx_0: dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; err_pm_runtime_put: pm_runtime_put_noidle(&pdev->dev); goto out; } static void rtl8169_hw_reset(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; /* Disable interrupts */ rtl8169_irq_mask_and_ack(ioaddr); if (tp->mac_version == RTL_GIGA_MAC_VER_27 || tp->mac_version == RTL_GIGA_MAC_VER_28 || tp->mac_version == RTL_GIGA_MAC_VER_31) { while (RTL_R8(TxPoll) & NPQ) udelay(20); } /* Reset the chipset */ RTL_W8(ChipCmd, CmdReset); /* PCI commit */ RTL_R8(ChipCmd); } static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; u32 cfg = rtl8169_rx_config; cfg |= (RTL_R32(RxConfig) & RTL_RX_CONFIG_MASK); RTL_W32(RxConfig, cfg); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); } static void rtl_hw_start(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl_hw_reset(tp); tp->hw_start(dev); netif_start_queue(dev); } static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp, void __iomem *ioaddr) { /* * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh * register to be written before TxDescAddrLow to work. * Switching from MMIO to I/O access fixes the issue as well. */ RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32); RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32)); RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32); RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32)); } static u16 rtl_rw_cpluscmd(void __iomem *ioaddr) { u16 cmd; cmd = RTL_R16(CPlusCmd); RTL_W16(CPlusCmd, cmd); return cmd; } static void rtl_set_rx_max_size(void __iomem *ioaddr, unsigned int rx_buf_sz) { /* Low hurts. Let's disable the filtering. */ RTL_W16(RxMaxSize, rx_buf_sz + 1); } static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version) { static const struct { u32 mac_version; u32 clk; u32 val; } cfg2_info [] = { { RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd { RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff }, { RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe { RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff } }, *p = cfg2_info; unsigned int i; u32 clk; clk = RTL_R8(Config2) & PCI_Clock_66MHz; for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) { if ((p->mac_version == mac_version) && (p->clk == clk)) { RTL_W32(0x7c, p->val); break; } } } static void rtl_hw_start_8169(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; if (tp->mac_version == RTL_GIGA_MAC_VER_05) { RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); } RTL_W8(Cfg9346, Cfg9346_Unlock); if (tp->mac_version == RTL_GIGA_MAC_VER_01 || tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03 || tp->mac_version == RTL_GIGA_MAC_VER_04) RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(EarlyTxThres, NoEarlyTx); rtl_set_rx_max_size(ioaddr, rx_buf_sz); if (tp->mac_version == RTL_GIGA_MAC_VER_01 || tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03 || tp->mac_version == RTL_GIGA_MAC_VER_04) rtl_set_rx_tx_config_registers(tp); tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW; if (tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03) { dprintk("Set MAC Reg C+CR Offset 0xE0. " "Bit-3 and bit-14 MUST be 1\n"); tp->cp_cmd |= (1 << 14); } RTL_W16(CPlusCmd, tp->cp_cmd); rtl8169_set_magic_reg(ioaddr, tp->mac_version); /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); rtl_set_rx_tx_desc_registers(tp, ioaddr); if (tp->mac_version != RTL_GIGA_MAC_VER_01 && tp->mac_version != RTL_GIGA_MAC_VER_02 && tp->mac_version != RTL_GIGA_MAC_VER_03 && tp->mac_version != RTL_GIGA_MAC_VER_04) { RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); rtl_set_rx_tx_config_registers(tp); } RTL_W8(Cfg9346, Cfg9346_Lock); /* Initially a 10 us delay. Turned it into a PCI commit. - FR */ RTL_R8(IntrMask); RTL_W32(RxMissed, 0); rtl_set_rx_mode(dev); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, tp->intr_event); } static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); int cap = tp->pcie_cap; if (cap) { u16 ctl; pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl); ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | force; pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl); } } static void rtl_csi_access_enable(void __iomem *ioaddr, u32 bits) { u32 csi; csi = rtl_csi_read(ioaddr, 0x070c) & 0x00ffffff; rtl_csi_write(ioaddr, 0x070c, csi | bits); } static void rtl_csi_access_enable_1(void __iomem *ioaddr) { rtl_csi_access_enable(ioaddr, 0x17000000); } static void rtl_csi_access_enable_2(void __iomem *ioaddr) { rtl_csi_access_enable(ioaddr, 0x27000000); } struct ephy_info { unsigned int offset; u16 mask; u16 bits; }; static void rtl_ephy_init(void __iomem *ioaddr, const struct ephy_info *e, int len) { u16 w; while (len-- > 0) { w = (rtl_ephy_read(ioaddr, e->offset) & ~e->mask) | e->bits; rtl_ephy_write(ioaddr, e->offset, w); e++; } } static void rtl_disable_clock_request(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); int cap = tp->pcie_cap; if (cap) { u16 ctl; pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl); ctl &= ~PCI_EXP_LNKCTL_CLKREQ_EN; pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl); } } static void rtl_enable_clock_request(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); int cap = tp->pcie_cap; if (cap) { u16 ctl; pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl); ctl |= PCI_EXP_LNKCTL_CLKREQ_EN; pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl); } } #define R8168_CPCMD_QUIRK_MASK (\ EnableBist | \ Mac_dbgo_oe | \ Force_half_dup | \ Force_rxflow_en | \ Force_txflow_en | \ Cxpl_dbg_sel | \ ASF | \ PktCntrDisable | \ Mac_dbgo_sel) static void rtl_hw_start_8168bb(void __iomem *ioaddr, struct pci_dev *pdev) { RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); rtl_tx_performance_tweak(pdev, (0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN); } static void rtl_hw_start_8168bef(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8168bb(ioaddr, pdev); RTL_W8(MaxTxPacketSize, TxPacketMax); RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0)); } static void __rtl_hw_start_8168cp(void __iomem *ioaddr, struct pci_dev *pdev) { RTL_W8(Config1, RTL_R8(Config1) | Speed_down); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); rtl_disable_clock_request(pdev); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168cp_1(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8168cp[] = { { 0x01, 0, 0x0001 }, { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0042 }, { 0x06, 0x0080, 0x0000 }, { 0x07, 0, 0x2000 } }; rtl_csi_access_enable_2(ioaddr); rtl_ephy_init(ioaddr, e_info_8168cp, ARRAY_SIZE(e_info_8168cp)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168cp_2(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_2(ioaddr); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168cp_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_2(ioaddr); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); /* Magic. */ RTL_W8(DBG_REG, 0x20); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168c_1(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8168c_1[] = { { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0002 }, { 0x06, 0x0080, 0x0000 } }; rtl_csi_access_enable_2(ioaddr); RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2); rtl_ephy_init(ioaddr, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168c_2(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8168c_2[] = { { 0x01, 0, 0x0001 }, { 0x03, 0x0400, 0x0220 } }; rtl_csi_access_enable_2(ioaddr); rtl_ephy_init(ioaddr, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2)); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168c_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8168c_2(ioaddr, pdev); } static void rtl_hw_start_8168c_4(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_2(ioaddr); __rtl_hw_start_8168cp(ioaddr, pdev); } static void rtl_hw_start_8168d(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_2(ioaddr); rtl_disable_clock_request(pdev); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK); } static void rtl_hw_start_8168dp(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_1(ioaddr); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_disable_clock_request(pdev); } static void rtl_hw_start_8168d_4(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8168d_4[] = { { 0x0b, ~0, 0x48 }, { 0x19, 0x20, 0x50 }, { 0x0c, ~0, 0x20 } }; int i; rtl_csi_access_enable_1(ioaddr); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(MaxTxPacketSize, TxPacketMax); for (i = 0; i < ARRAY_SIZE(e_info_8168d_4); i++) { const struct ephy_info *e = e_info_8168d_4 + i; u16 w; w = rtl_ephy_read(ioaddr, e->offset); rtl_ephy_write(ioaddr, 0x03, (w & e->mask) | e->bits); } rtl_enable_clock_request(pdev); } static void rtl_hw_start_8168e(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8168e[] = { { 0x00, 0x0200, 0x0100 }, { 0x00, 0x0000, 0x0004 }, { 0x06, 0x0002, 0x0001 }, { 0x06, 0x0000, 0x0030 }, { 0x07, 0x0000, 0x2000 }, { 0x00, 0x0000, 0x0020 }, { 0x03, 0x5800, 0x2000 }, { 0x03, 0x0000, 0x0001 }, { 0x01, 0x0800, 0x1000 }, { 0x07, 0x0000, 0x4000 }, { 0x1e, 0x0000, 0x2000 }, { 0x19, 0xffff, 0xfe6c }, { 0x0a, 0x0000, 0x0040 } }; rtl_csi_access_enable_2(ioaddr); rtl_ephy_init(ioaddr, e_info_8168e, ARRAY_SIZE(e_info_8168e)); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_disable_clock_request(pdev); /* Reset tx FIFO pointer */ RTL_W32(MISC, RTL_R32(MISC) | TXPLA_RST); RTL_W32(MISC, RTL_R32(MISC) & ~TXPLA_RST); RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en); } static void rtl_hw_start_8168(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_set_rx_max_size(ioaddr, rx_buf_sz); tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_W16(IntrMitigate, 0x5151); /* Work around for RxFIFO overflow. */ if (tp->mac_version == RTL_GIGA_MAC_VER_11 || tp->mac_version == RTL_GIGA_MAC_VER_22) { tp->intr_event |= RxFIFOOver | PCSTimeout; tp->intr_event &= ~RxOverflow; } rtl_set_rx_tx_desc_registers(tp, ioaddr); rtl_set_rx_mode(dev); RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); RTL_R8(IntrMask); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: rtl_hw_start_8168bb(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: rtl_hw_start_8168bef(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_18: rtl_hw_start_8168cp_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_19: rtl_hw_start_8168c_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_20: rtl_hw_start_8168c_2(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_21: rtl_hw_start_8168c_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_22: rtl_hw_start_8168c_4(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_23: rtl_hw_start_8168cp_2(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_24: rtl_hw_start_8168cp_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_27: rtl_hw_start_8168d(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_28: rtl_hw_start_8168d_4(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_31: rtl_hw_start_8168dp(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: rtl_hw_start_8168e(ioaddr, pdev); break; default: printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n", dev->name, tp->mac_version); break; } RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(Cfg9346, Cfg9346_Lock); RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); RTL_W16(IntrMask, tp->intr_event); } #define R810X_CPCMD_QUIRK_MASK (\ EnableBist | \ Mac_dbgo_oe | \ Force_half_dup | \ Force_rxflow_en | \ Force_txflow_en | \ Cxpl_dbg_sel | \ ASF | \ PktCntrDisable | \ Mac_dbgo_sel) static void rtl_hw_start_8102e_1(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8102e_1[] = { { 0x01, 0, 0x6e65 }, { 0x02, 0, 0x091f }, { 0x03, 0, 0xc2f9 }, { 0x06, 0, 0xafb5 }, { 0x07, 0, 0x0e00 }, { 0x19, 0, 0xec80 }, { 0x01, 0, 0x2e65 }, { 0x01, 0, 0x6e65 } }; u8 cfg1; rtl_csi_access_enable_2(ioaddr); RTL_W8(DBG_REG, FIX_NAK_1); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(Config1, LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); cfg1 = RTL_R8(Config1); if ((cfg1 & LEDS0) && (cfg1 & LEDS1)) RTL_W8(Config1, cfg1 & ~LEDS0); rtl_ephy_init(ioaddr, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1)); } static void rtl_hw_start_8102e_2(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_csi_access_enable_2(ioaddr); rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT); RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en); } static void rtl_hw_start_8102e_3(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8102e_2(ioaddr, pdev); rtl_ephy_write(ioaddr, 0x03, 0xc2f9); } static void rtl_hw_start_8105e_1(void __iomem *ioaddr, struct pci_dev *pdev) { static const struct ephy_info e_info_8105e_1[] = { { 0x07, 0, 0x4000 }, { 0x19, 0, 0x0200 }, { 0x19, 0, 0x0020 }, { 0x1e, 0, 0x2000 }, { 0x03, 0, 0x0001 }, { 0x19, 0, 0x0100 }, { 0x19, 0, 0x0004 }, { 0x0a, 0, 0x0020 } }; /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800); /* Disable Early Tally Counter */ RTL_W32(FuncEvent, RTL_R32(FuncEvent) & ~0x010000); RTL_W8(MCU, RTL_R8(MCU) | EN_NDP | EN_OOB_RESET); RTL_W8(DLLPR, RTL_R8(DLLPR) | PM_SWITCH); rtl_ephy_init(ioaddr, e_info_8105e_1, ARRAY_SIZE(e_info_8105e_1)); } static void rtl_hw_start_8105e_2(void __iomem *ioaddr, struct pci_dev *pdev) { rtl_hw_start_8105e_1(ioaddr, pdev); rtl_ephy_write(ioaddr, 0x1e, rtl_ephy_read(ioaddr, 0x1e) | 0x8000); } static void rtl_hw_start_8101(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; if (tp->mac_version == RTL_GIGA_MAC_VER_13 || tp->mac_version == RTL_GIGA_MAC_VER_16) { int cap = tp->pcie_cap; if (cap) { pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_NOSNOOP_EN); } } RTL_W8(Cfg9346, Cfg9346_Unlock); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_07: rtl_hw_start_8102e_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_08: rtl_hw_start_8102e_3(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_09: rtl_hw_start_8102e_2(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_29: rtl_hw_start_8105e_1(ioaddr, pdev); break; case RTL_GIGA_MAC_VER_30: rtl_hw_start_8105e_2(ioaddr, pdev); break; } RTL_W8(Cfg9346, Cfg9346_Lock); RTL_W8(MaxTxPacketSize, TxPacketMax); rtl_set_rx_max_size(ioaddr, rx_buf_sz); tp->cp_cmd &= ~R810X_CPCMD_QUIRK_MASK; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_W16(IntrMitigate, 0x0000); rtl_set_rx_tx_desc_registers(tp, ioaddr); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); rtl_set_rx_tx_config_registers(tp); RTL_R8(IntrMask); rtl_set_rx_mode(dev); RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000); RTL_W16(IntrMask, tp->intr_event); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu) return -EINVAL; dev->mtu = new_mtu; netdev_update_features(dev); return 0; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = cpu_to_le64(0x0badbadbadbadbadull); desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8169_free_rx_databuff(struct rtl8169_private *tp, void **data_buff, struct RxDesc *desc) { dma_unmap_single(&tp->pci_dev->dev, le64_to_cpu(desc->addr), rx_buf_sz, DMA_FROM_DEVICE); kfree(*data_buff); *data_buff = NULL; rtl8169_make_unusable_by_asic(desc); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz); } static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->addr = cpu_to_le64(mapping); wmb(); rtl8169_mark_to_asic(desc, rx_buf_sz); } static inline void *rtl8169_align(void *data) { return (void *)ALIGN((long)data, 16); } static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp, struct RxDesc *desc) { void *data; dma_addr_t mapping; struct device *d = &tp->pci_dev->dev; struct net_device *dev = tp->dev; int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; data = kmalloc_node(rx_buf_sz, GFP_KERNEL, node); if (!data) return NULL; if (rtl8169_align(data) != data) { kfree(data); data = kmalloc_node(rx_buf_sz + 15, GFP_KERNEL, node); if (!data) return NULL; } mapping = dma_map_single(d, rtl8169_align(data), rx_buf_sz, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n"); goto err_out; } rtl8169_map_to_asic(desc, mapping, rx_buf_sz); return data; err_out: kfree(data); return NULL; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_databuff[i]) { rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i, tp->RxDescArray + i); } } } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static int rtl8169_rx_fill(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { void *data; if (tp->Rx_databuff[i]) continue; data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i); if (!data) { rtl8169_make_unusable_by_asic(tp->RxDescArray + i); goto err_out; } tp->Rx_databuff[i] = data; } rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8169_rx_clear(tp); return -ENOMEM; } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0; } static int rtl8169_init_ring(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info)); memset(tp->Rx_databuff, 0x0, NUM_RX_DESC * sizeof(void *)); return rtl8169_rx_fill(tp); } static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) { unsigned int entry = (start + i) % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb, tp->TxDescArray + entry); if (skb) { tp->dev->stats.tx_dropped++; dev_kfree_skb(skb); tx_skb->skb = NULL; } } } } static void rtl8169_tx_clear(struct rtl8169_private *tp) { rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC); tp->cur_tx = tp->dirty_tx = 0; } static void rtl8169_schedule_work(struct net_device *dev, work_func_t task) { struct rtl8169_private *tp = netdev_priv(dev); PREPARE_DELAYED_WORK(&tp->task, task); schedule_delayed_work(&tp->task, 4); } static void rtl8169_wait_for_quiescence(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; synchronize_irq(dev->irq); /* Wait for any pending NAPI task to complete */ napi_disable(&tp->napi); rtl8169_irq_mask_and_ack(ioaddr); tp->intr_mask = 0xffff; RTL_W16(IntrMask, tp->intr_event); napi_enable(&tp->napi); } static void rtl8169_reinit_task(struct work_struct *work) { struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; int ret; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; rtl8169_wait_for_quiescence(dev); rtl8169_close(dev); ret = rtl8169_open(dev); if (unlikely(ret < 0)) { if (net_ratelimit()) netif_err(tp, drv, dev, "reinit failure (status = %d). Rescheduling\n", ret); rtl8169_schedule_work(dev, rtl8169_reinit_task); } out_unlock: rtnl_unlock(); } static void rtl8169_reset_task(struct work_struct *work) { struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; int i; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; rtl8169_wait_for_quiescence(dev); for (i = 0; i < NUM_RX_DESC; i++) rtl8169_mark_to_asic(tp->RxDescArray + i, rx_buf_sz); rtl8169_tx_clear(tp); rtl8169_init_ring_indexes(tp); rtl_hw_start(dev); netif_wake_queue(dev); rtl8169_check_link_status(dev, tp, tp->mmio_addr); out_unlock: rtnl_unlock(); } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_hw_reset(tp); /* Let's wait a bit while any (async) irq lands on */ rtl8169_schedule_work(dev, rtl8169_reset_task); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc * uninitialized_var(txd); struct device *d = &tp->pci_dev->dev; entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = frag->size; addr = ((void *) page_address(frag->page)) + frag->page_offset; mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map TX fragments DMA!\n"); goto err_out; } /* Anti gcc 2.95.3 bugware (sic) */ status = opts[0] | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); txd->opts2 = cpu_to_le32(opts[1]); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; err_out: rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag); return -EIO; } static inline void rtl8169_tso_csum(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { const struct rtl_tx_desc_info *info = tx_desc_info + tp->txd_version; u32 mss = skb_shinfo(skb)->gso_size; int offset = info->opts_offset; if (mss) { opts[0] |= TD_LSO; opts[offset] |= min(mss, TD_MSS_MAX) << info->mss_shift; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) opts[offset] |= info->checksum.tcp; else if (ip->protocol == IPPROTO_UDP) opts[offset] |= info->checksum.udp; else WARN_ON_ONCE(1); } } static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; void __iomem *ioaddr = tp->mmio_addr; struct device *d = &tp->pci_dev->dev; dma_addr_t mapping; u32 status, len; u32 opts[2]; int frags; if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) { netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n"); goto err_stop_0; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop_0; len = skb_headlen(skb); mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, dev, "Failed to map TX DMA!\n"); goto err_dma_0; } tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); opts[1] = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb)); opts[0] = DescOwn; rtl8169_tso_csum(tp, skb, opts); frags = rtl8169_xmit_frags(tp, skb, opts); if (frags < 0) goto err_dma_1; else if (frags) opts[0] |= FirstFrag; else { opts[0] |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } txd->opts2 = cpu_to_le32(opts[1]); wmb(); /* Anti gcc 2.95.3 bugware (sic) */ status = opts[0] | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); tp->cur_tx += frags + 1; wmb(); RTL_W8(TxPoll, NPQ); if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) { netif_stop_queue(dev); smp_rmb(); if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS) netif_wake_queue(dev); } return NETDEV_TX_OK; err_dma_1: rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd); err_dma_0: dev_kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; err_stop_0: netif_stop_queue(dev); dev->stats.tx_dropped++; return NETDEV_TX_BUSY; } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n", pci_cmd, pci_status); /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done; * - it makes iop3xx happy. * * Feel free to adjust to your needs. */ if (pdev->broken_parity_status) pci_cmd &= ~PCI_COMMAND_PARITY; else pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); /* The infamous DAC f*ckup only happens at boot time */ if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) { void __iomem *ioaddr = tp->mmio_addr; netif_info(tp, intr, dev, "disabling PCI DAC\n"); tp->cp_cmd &= ~PCIDAC; RTL_W16(CPlusCmd, tp->cp_cmd); dev->features &= ~NETIF_F_HIGHDMA; } rtl8169_hw_reset(tp); rtl8169_schedule_work(dev, rtl8169_reinit_task); } static void rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned int dirty_tx, tx_left; dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 status; rmb(); status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { dev->stats.tx_packets++; dev->stats.tx_bytes += tx_skb->skb->len; dev_kfree_skb(tx_skb->skb); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; smp_wmb(); if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) { netif_wake_queue(dev); } /* * 8168 hack: TxPoll requests are lost when the Tx packets are * too close. Let's kick an extra TxPoll request when a burst * of start_xmit activity is detected (if it is not detected, * it is slow enough). -- FR */ smp_rmb(); if (tp->cur_tx != dirty_tx) RTL_W8(TxPoll, NPQ); } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1) { u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } static struct sk_buff *rtl8169_try_rx_copy(void *data, struct rtl8169_private *tp, int pkt_size, dma_addr_t addr) { struct sk_buff *skb; struct device *d = &tp->pci_dev->dev; data = rtl8169_align(data); dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE); prefetch(data); skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size); if (skb) memcpy(skb->data, data, pkt_size); dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE); return skb; } static int rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr, u32 budget) { unsigned int cur_rx, rx_left; unsigned int count; cur_rx = tp->cur_rx; rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx; rx_left = min(rx_left, budget); for (; rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; rmb(); status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; if (unlikely(status & RxRES)) { netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n", status); dev->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) dev->stats.rx_length_errors++; if (status & RxCRC) dev->stats.rx_crc_errors++; if (status & RxFOVF) { rtl8169_schedule_work(dev, rtl8169_reset_task); dev->stats.rx_fifo_errors++; } rtl8169_mark_to_asic(desc, rx_buf_sz); } else { struct sk_buff *skb; dma_addr_t addr = le64_to_cpu(desc->addr); int pkt_size = (status & 0x00001FFF) - 4; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { dev->stats.rx_dropped++; dev->stats.rx_length_errors++; rtl8169_mark_to_asic(desc, rx_buf_sz); continue; } skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry], tp, pkt_size, addr); rtl8169_mark_to_asic(desc, rx_buf_sz); if (!skb) { dev->stats.rx_dropped++; continue; } rtl8169_rx_csum(skb, status); skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); rtl8169_rx_vlan_tag(desc, skb); napi_gro_receive(&tp->napi, skb); dev->stats.rx_bytes += pkt_size; dev->stats.rx_packets++; } /* Work around for AMD plateform. */ if ((desc->opts2 & cpu_to_le32(0xfffe000)) && (tp->mac_version == RTL_GIGA_MAC_VER_05)) { desc->opts2 = 0; cur_rx++; } } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; tp->dirty_rx += count; return count; } static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance) { struct net_device *dev = dev_instance; struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int handled = 0; int status; /* loop handling interrupts until we have no new ones or * we hit a invalid/hotplug case. */ status = RTL_R16(IntrStatus); while (status && status != 0xffff) { handled = 1; /* Handle all of the error cases first. These will reset * the chip, so just exit the loop. */ if (unlikely(!netif_running(dev))) { rtl8169_asic_down(ioaddr); break; } if (unlikely(status & RxFIFOOver)) { switch (tp->mac_version) { /* Work around for rx fifo overflow */ case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_22: case RTL_GIGA_MAC_VER_26: netif_stop_queue(dev); rtl8169_tx_timeout(dev); goto done; /* Testers needed. */ case RTL_GIGA_MAC_VER_17: case RTL_GIGA_MAC_VER_19: case RTL_GIGA_MAC_VER_20: case RTL_GIGA_MAC_VER_21: case RTL_GIGA_MAC_VER_23: case RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: /* Experimental science. Pktgen proof. */ case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_25: if (status == RxFIFOOver) goto done; break; default: break; } } if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(dev); break; } if (status & LinkChg) __rtl8169_check_link_status(dev, tp, ioaddr, true); /* We need to see the lastest version of tp->intr_mask to * avoid ignoring an MSI interrupt and having to wait for * another event which may never come. */ smp_rmb(); if (status & tp->intr_mask & tp->napi_event) { RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event); tp->intr_mask = ~tp->napi_event; if (likely(napi_schedule_prep(&tp->napi))) __napi_schedule(&tp->napi); else netif_info(tp, intr, dev, "interrupt %04x in poll\n", status); } /* We only get a new MSI interrupt when all active irq * sources on the chip have been acknowledged. So, ack * everything we've seen and check if new sources have become * active to avoid blocking all interrupts from the chip. */ RTL_W16(IntrStatus, (status & RxFIFOOver) ? (status | RxOverflow) : status); status = RTL_R16(IntrStatus); } done: return IRQ_RETVAL(handled); } static int rtl8169_poll(struct napi_struct *napi, int budget) { struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi); struct net_device *dev = tp->dev; void __iomem *ioaddr = tp->mmio_addr; int work_done; work_done = rtl8169_rx_interrupt(dev, tp, ioaddr, (u32) budget); rtl8169_tx_interrupt(dev, tp, ioaddr); if (work_done < budget) { napi_complete(napi); /* We need for force the visibility of tp->intr_mask * for other CPUs, as we can loose an MSI interrupt * and potentially wait for a retransmit timeout if we don't. * The posted write to IntrMask is safe, as it will * eventually make it to the chip and we won't loose anything * until it does. */ tp->intr_mask = 0xffff; wmb(); RTL_W16(IntrMask, tp->intr_event); } return work_done; } static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr) { struct rtl8169_private *tp = netdev_priv(dev); if (tp->mac_version > RTL_GIGA_MAC_VER_06) return; dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff); RTL_W32(RxMissed, 0); } static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; del_timer_sync(&tp->timer); netif_stop_queue(dev); napi_disable(&tp->napi); spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); /* * At this point device interrupts can not be enabled in any function, * as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task, * rtl8169_reinit_task) and napi is disabled (rtl8169_poll). */ rtl8169_rx_missed(dev, ioaddr); spin_unlock_irq(&tp->lock); synchronize_irq(dev->irq); /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_sched(); /* FIXME: should this be synchronize_irq()? */ rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); rtl_pll_power_down(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; pm_runtime_get_sync(&pdev->dev); /* Update counters before going down */ rtl8169_update_counters(dev); rtl8169_down(dev); free_irq(dev->irq, dev); dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; pm_runtime_put_sync(&pdev->dev); return 0; } static void rtl_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, dev, "Promiscuous mode enabled\n"); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((netdev_mc_count(dev) > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct netdev_hw_addr *ha; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & RTL_RX_CONFIG_MASK); if (tp->mac_version > RTL_GIGA_MAC_VER_06) { u32 data = mc_filter[0]; mc_filter[0] = swab32(mc_filter[1]); mc_filter[1] = swab32(data); } RTL_W32(MAR0 + 4, mc_filter[1]); RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(RxConfig, tmp); spin_unlock_irqrestore(&tp->lock, flags); } /** * rtl8169_get_stats - Get rtl8169 read/write statistics * @dev: The Ethernet Device to get statistics for * * Get TX/RX statistics for rtl8169 */ static struct net_device_stats *rtl8169_get_stats(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&tp->lock, flags); rtl8169_rx_missed(dev, ioaddr); spin_unlock_irqrestore(&tp->lock, flags); } return &dev->stats; } static void rtl8169_net_suspend(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); if (!netif_running(dev)) return; rtl_pll_power_down(tp); netif_device_detach(dev); netif_stop_queue(dev); } #ifdef CONFIG_PM static int rtl8169_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); rtl8169_net_suspend(dev); return 0; } static void __rtl8169_resume(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); netif_device_attach(dev); rtl_pll_power_up(tp); rtl8169_schedule_work(dev, rtl8169_reset_task); } static int rtl8169_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); rtl8169_init_phy(dev, tp); if (netif_running(dev)) __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); if (!tp->TxDescArray) return 0; spin_lock_irq(&tp->lock); tp->saved_wolopts = __rtl8169_get_wol(tp); __rtl8169_set_wol(tp, WAKE_ANY); spin_unlock_irq(&tp->lock); rtl8169_net_suspend(dev); return 0; } static int rtl8169_runtime_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); if (!tp->TxDescArray) return 0; spin_lock_irq(&tp->lock); __rtl8169_set_wol(tp, tp->saved_wolopts); tp->saved_wolopts = 0; spin_unlock_irq(&tp->lock); rtl8169_init_phy(dev, tp); __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_idle(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); return tp->TxDescArray ? -EBUSY : 0; } static const struct dev_pm_ops rtl8169_pm_ops = { .suspend = rtl8169_suspend, .resume = rtl8169_resume, .freeze = rtl8169_suspend, .thaw = rtl8169_resume, .poweroff = rtl8169_suspend, .restore = rtl8169_resume, .runtime_suspend = rtl8169_runtime_suspend, .runtime_resume = rtl8169_runtime_resume, .runtime_idle = rtl8169_runtime_idle, }; #define RTL8169_PM_OPS (&rtl8169_pm_ops) #else /* !CONFIG_PM */ #define RTL8169_PM_OPS NULL #endif /* !CONFIG_PM */ static void rtl_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; rtl8169_net_suspend(dev); /* Restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); spin_unlock_irq(&tp->lock); if (system_state == SYSTEM_POWER_OFF) { /* WoL fails with some 8168 when the receiver is disabled. */ if (tp->features & RTL_FEATURE_WOL) { pci_clear_master(pdev); RTL_W8(ChipCmd, CmdRxEnb); /* PCI commit */ RTL_R8(ChipCmd); } pci_wake_from_d3(pdev, true); pci_set_power_state(pdev, PCI_D3hot); } } static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl8169_init_one, .remove = __devexit_p(rtl8169_remove_one), .shutdown = rtl_shutdown, .driver.pm = RTL8169_PM_OPS, }; static int __init rtl8169_init_module(void) { return pci_register_driver(&rtl8169_pci_driver); } static void __exit rtl8169_cleanup_module(void) { pci_unregister_driver(&rtl8169_pci_driver); } module_init(rtl8169_init_module); module_exit(rtl8169_cleanup_module);