/* * Copyright © 2014-2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "intel_guc_log.h" #include "i915_drv.h" static void guc_log_capture_logs(struct intel_guc_log *log); /** * DOC: GuC firmware log * * Firmware log is enabled by setting i915.guc_log_level to the positive level. * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from * i915_guc_load_status will print out firmware loading status and scratch * registers value. */ static int guc_log_flush_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_log_flush(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 0 }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_log_control(struct intel_guc *guc, bool enable, u32 verbosity) { union guc_log_control control_val = { { .logging_enabled = enable, .verbosity = verbosity, }, }; u32 action[] = { INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, control_val.value }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) { return container_of(log, struct intel_guc, log); } /* * Sub buffer switch callback. Called whenever relay has to switch to a new * sub buffer, relay stays on the same sub buffer if 0 is returned. */ static int subbuf_start_callback(struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding) { /* * Use no-overwrite mode by default, where relay will stop accepting * new data if there are no empty sub buffers left. * There is no strict synchronization enforced by relay between Consumer * and Producer. In overwrite mode, there is a possibility of getting * inconsistent/garbled data, the producer could be writing on to the * same sub buffer from which Consumer is reading. This can't be avoided * unless Consumer is fast enough and can always run in tandem with * Producer. */ if (relay_buf_full(buf)) return 0; return 1; } /* * file_create() callback. Creates relay file in debugfs. */ static struct dentry *create_buf_file_callback(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *buf_file; /* * This to enable the use of a single buffer for the relay channel and * correspondingly have a single file exposed to User, through which * it can collect the logs in order without any post-processing. * Need to set 'is_global' even if parent is NULL for early logging. */ *is_global = 1; if (!parent) return NULL; /* * Not using the channel filename passed as an argument, since for each * channel relay appends the corresponding CPU number to the filename * passed in relay_open(). This should be fine as relay just needs a * dentry of the file associated with the channel buffer and that file's * name need not be same as the filename passed as an argument. */ buf_file = debugfs_create_file("guc_log", mode, parent, buf, &relay_file_operations); return buf_file; } /* * file_remove() default callback. Removes relay file in debugfs. */ static int remove_buf_file_callback(struct dentry *dentry) { debugfs_remove(dentry); return 0; } /* relay channel callbacks */ static struct rchan_callbacks relay_callbacks = { .subbuf_start = subbuf_start_callback, .create_buf_file = create_buf_file_callback, .remove_buf_file = remove_buf_file_callback, }; static int guc_log_relay_file_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); struct dentry *log_dir; int ret; if (!i915_modparams.guc_log_level) return 0; mutex_lock(&log->runtime.relay_lock); /* For now create the log file in /sys/kernel/debug/dri/0 dir */ log_dir = dev_priv->drm.primary->debugfs_root; /* * If /sys/kernel/debug/dri/0 location do not exist, then debugfs is * not mounted and so can't create the relay file. * The relay API seems to fit well with debugfs only, for availing relay * there are 3 requirements which can be met for debugfs file only in a * straightforward/clean manner :- * i) Need the associated dentry pointer of the file, while opening the * relay channel. * ii) Should be able to use 'relay_file_operations' fops for the file. * iii) Set the 'i_private' field of file's inode to the pointer of * relay channel buffer. */ if (!log_dir) { DRM_ERROR("Debugfs dir not available yet for GuC log file\n"); ret = -ENODEV; goto out_unlock; } ret = relay_late_setup_files(log->runtime.relay_chan, "guc_log", log_dir); if (ret < 0 && ret != -EEXIST) { DRM_ERROR("Couldn't associate relay chan with file %d\n", ret); goto out_unlock; } ret = 0; out_unlock: mutex_unlock(&log->runtime.relay_lock); return ret; } static bool guc_log_has_relay(struct intel_guc_log *log) { lockdep_assert_held(&log->runtime.relay_lock); return log->runtime.relay_chan; } static void guc_move_to_next_buf(struct intel_guc_log *log) { /* * Make sure the updates made in the sub buffer are visible when * Consumer sees the following update to offset inside the sub buffer. */ smp_wmb(); if (!guc_log_has_relay(log)) return; /* All data has been written, so now move the offset of sub buffer. */ relay_reserve(log->runtime.relay_chan, log->vma->obj->base.size); /* Switch to the next sub buffer */ relay_flush(log->runtime.relay_chan); } static void *guc_get_write_buffer(struct intel_guc_log *log) { if (!guc_log_has_relay(log)) return NULL; /* * Just get the base address of a new sub buffer and copy data into it * ourselves. NULL will be returned in no-overwrite mode, if all sub * buffers are full. Could have used the relay_write() to indirectly * copy the data, but that would have been bit convoluted, as we need to * write to only certain locations inside a sub buffer which cannot be * done without using relay_reserve() along with relay_write(). So its * better to use relay_reserve() alone. */ return relay_reserve(log->runtime.relay_chan, 0); } static bool guc_check_log_buf_overflow(struct intel_guc_log *log, enum guc_log_buffer_type type, unsigned int full_cnt) { unsigned int prev_full_cnt = log->prev_overflow_count[type]; bool overflow = false; if (full_cnt != prev_full_cnt) { overflow = true; log->prev_overflow_count[type] = full_cnt; log->total_overflow_count[type] += full_cnt - prev_full_cnt; if (full_cnt < prev_full_cnt) { /* buffer_full_cnt is a 4 bit counter */ log->total_overflow_count[type] += 16; } DRM_ERROR_RATELIMITED("GuC log buffer overflow\n"); } return overflow; } static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) { switch (type) { case GUC_ISR_LOG_BUFFER: return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE; case GUC_DPC_LOG_BUFFER: return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE; case GUC_CRASH_DUMP_LOG_BUFFER: return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE; default: MISSING_CASE(type); } return 0; } static void guc_read_update_log_buffer(struct intel_guc_log *log) { unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; struct guc_log_buffer_state log_buf_state_local; enum guc_log_buffer_type type; void *src_data, *dst_data; bool new_overflow; if (WARN_ON(!log->runtime.buf_addr)) return; /* Get the pointer to shared GuC log buffer */ log_buf_state = src_data = log->runtime.buf_addr; mutex_lock(&log->runtime.relay_lock); /* Get the pointer to local buffer to store the logs */ log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); if (unlikely(!log_buf_snapshot_state)) { /* * Used rate limited to avoid deluge of messages, logs might be * getting consumed by User at a slow rate. */ DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); log->capture_miss_count++; mutex_unlock(&log->runtime.relay_lock); return; } /* Actual logs are present from the 2nd page */ src_data += PAGE_SIZE; dst_data += PAGE_SIZE; for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = guc_get_log_buffer_size(type); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_cnt = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ log->flush_count[type] += log_buf_state_local.flush_to_file; new_overflow = guc_check_log_buf_overflow(log, type, full_cnt); /* Update the state of shared log buffer */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; log_buf_state++; /* First copy the state structure in snapshot buffer */ memcpy(log_buf_snapshot_state, &log_buf_state_local, sizeof(struct guc_log_buffer_state)); /* * The write pointer could have been updated by GuC firmware, * after sending the flush interrupt to Host, for consistency * set write pointer value to same value of sampled_write_ptr * in the snapshot buffer. */ log_buf_snapshot_state->write_ptr = write_offset; log_buf_snapshot_state++; /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { DRM_ERROR("invalid log buffer state\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } /* Just copy the newly written data */ if (read_offset > write_offset) { i915_memcpy_from_wc(dst_data, src_data, write_offset); bytes_to_copy = buffer_size - read_offset; } else { bytes_to_copy = write_offset - read_offset; } i915_memcpy_from_wc(dst_data + read_offset, src_data + read_offset, bytes_to_copy); src_data += buffer_size; dst_data += buffer_size; } guc_move_to_next_buf(log); mutex_unlock(&log->runtime.relay_lock); } static void capture_logs_work(struct work_struct *work) { struct intel_guc_log *log = container_of(work, struct intel_guc_log, runtime.flush_work); guc_log_capture_logs(log); } static bool guc_log_has_runtime(struct intel_guc_log *log) { return log->runtime.buf_addr; } static int guc_log_runtime_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); void *vaddr; int ret; lockdep_assert_held(&dev_priv->drm.struct_mutex); if (!log->vma) return -ENODEV; GEM_BUG_ON(guc_log_has_runtime(log)); ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true); if (ret) return ret; /* * Create a WC (Uncached for read) vmalloc mapping of log * buffer pages, so that we can directly get the data * (up-to-date) from memory. */ vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC); if (IS_ERR(vaddr)) { DRM_ERROR("Couldn't map log buffer pages %d\n", ret); return PTR_ERR(vaddr); } log->runtime.buf_addr = vaddr; return 0; } static void guc_log_runtime_destroy(struct intel_guc_log *log) { /* * It's possible that the runtime stuff was never allocated because * GuC log was disabled at the boot time. */ if (!guc_log_has_runtime(log)) return; i915_gem_object_unpin_map(log->vma->obj); log->runtime.buf_addr = NULL; } void intel_guc_log_init_early(struct intel_guc_log *log) { mutex_init(&log->runtime.relay_lock); INIT_WORK(&log->runtime.flush_work, capture_logs_work); } static int guc_log_relay_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); struct rchan *guc_log_relay_chan; size_t n_subbufs, subbuf_size; int ret; if (!i915_modparams.guc_log_level) return 0; mutex_lock(&log->runtime.relay_lock); GEM_BUG_ON(guc_log_has_relay(log)); /* Keep the size of sub buffers same as shared log buffer */ subbuf_size = GUC_LOG_SIZE; /* * Store up to 8 snapshots, which is large enough to buffer sufficient * boot time logs and provides enough leeway to User, in terms of * latency, for consuming the logs from relay. Also doesn't take * up too much memory. */ n_subbufs = 8; /* * Create a relay channel, so that we have buffers for storing * the GuC firmware logs, the channel will be linked with a file * later on when debugfs is registered. */ guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size, n_subbufs, &relay_callbacks, dev_priv); if (!guc_log_relay_chan) { DRM_ERROR("Couldn't create relay chan for GuC logging\n"); ret = -ENOMEM; goto err; } GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); log->runtime.relay_chan = guc_log_relay_chan; mutex_unlock(&log->runtime.relay_lock); return 0; err: mutex_unlock(&log->runtime.relay_lock); /* logging will be off */ i915_modparams.guc_log_level = 0; return ret; } static void guc_log_relay_destroy(struct intel_guc_log *log) { mutex_lock(&log->runtime.relay_lock); /* * It's possible that the relay was never allocated because * GuC log was disabled at the boot time. */ if (!guc_log_has_relay(log)) goto out_unlock; relay_close(log->runtime.relay_chan); log->runtime.relay_chan = NULL; out_unlock: mutex_unlock(&log->runtime.relay_lock); } static void guc_log_capture_logs(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); guc_read_update_log_buffer(log); /* * Generally device is expected to be active only at this * time, so get/put should be really quick. */ intel_runtime_pm_get(dev_priv); guc_log_flush_complete(guc); intel_runtime_pm_put(dev_priv); } static void guc_flush_logs(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); /* * Before initiating the forceful flush, wait for any pending/ongoing * flush to complete otherwise forceful flush may not actually happen. */ flush_work(&log->runtime.flush_work); /* Ask GuC to update the log buffer state */ intel_runtime_pm_get(dev_priv); guc_log_flush(guc); intel_runtime_pm_put(dev_priv); /* GuC would have updated log buffer by now, so capture it */ guc_log_capture_logs(log); } int intel_guc_log_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct i915_vma *vma; unsigned long offset; u32 flags; int ret; GEM_BUG_ON(log->vma); /* * We require SSE 4.1 for fast reads from the GuC log buffer and * it should be present on the chipsets supporting GuC based * submisssions. */ if (WARN_ON(!i915_has_memcpy_from_wc())) { ret = -EINVAL; goto err; } vma = intel_guc_allocate_vma(guc, GUC_LOG_SIZE); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } log->vma = vma; /* each allocated unit is a page */ flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | (GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) | (GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) | (GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT); offset = intel_guc_ggtt_offset(guc, vma) >> PAGE_SHIFT; log->flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags; return 0; err: /* logging will be off */ i915_modparams.guc_log_level = 0; return ret; } void intel_guc_log_destroy(struct intel_guc_log *log) { guc_log_runtime_destroy(log); i915_vma_unpin_and_release(&log->vma); } int intel_guc_log_control_get(struct intel_guc_log *log) { GEM_BUG_ON(!log->vma); GEM_BUG_ON(i915_modparams.guc_log_level < 0); return i915_modparams.guc_log_level; } #define GUC_LOG_LEVEL_DISABLED 0 #define LOG_LEVEL_TO_ENABLED(x) ((x) > 0) #define LOG_LEVEL_TO_VERBOSITY(x) ({ \ typeof(x) _x = (x); \ LOG_LEVEL_TO_ENABLED(_x) ? _x - 1 : 0; \ }) #define VERBOSITY_TO_LOG_LEVEL(x) ((x) + 1) int intel_guc_log_control_set(struct intel_guc_log *log, u64 val) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_i915(guc); bool enabled = LOG_LEVEL_TO_ENABLED(val); int ret; BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); GEM_BUG_ON(!log->vma); GEM_BUG_ON(i915_modparams.guc_log_level < 0); /* * GuC is recognizing log levels starting from 0 to max, we're using 0 * as indication that logging should be disabled. */ if (val < GUC_LOG_LEVEL_DISABLED || val > VERBOSITY_TO_LOG_LEVEL(GUC_LOG_VERBOSITY_MAX)) return -EINVAL; mutex_lock(&dev_priv->drm.struct_mutex); if (i915_modparams.guc_log_level == val) { ret = 0; goto out_unlock; } intel_runtime_pm_get(dev_priv); ret = guc_log_control(guc, enabled, LOG_LEVEL_TO_VERBOSITY(val)); intel_runtime_pm_put(dev_priv); if (ret) { DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); goto out_unlock; } i915_modparams.guc_log_level = val; mutex_unlock(&dev_priv->drm.struct_mutex); if (enabled && !guc_log_has_runtime(log)) { ret = intel_guc_log_register(log); if (ret) { /* logging will remain off */ i915_modparams.guc_log_level = 0; goto out; } } else if (!enabled && guc_log_has_runtime(log)) { intel_guc_log_unregister(log); } return 0; out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); out: return ret; } int intel_guc_log_register(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_i915(guc); int ret; GEM_BUG_ON(guc_log_has_runtime(log)); /* * If log was disabled at boot time, then setup needed to handle * log buffer flush interrupts would not have been done yet, so * do that now. */ ret = guc_log_relay_create(log); if (ret) goto err; mutex_lock(&i915->drm.struct_mutex); ret = guc_log_runtime_create(log); mutex_unlock(&i915->drm.struct_mutex); if (ret) goto err_relay; ret = guc_log_relay_file_create(log); if (ret) goto err_runtime; /* GuC logging is currently the only user of Guc2Host interrupts */ mutex_lock(&i915->drm.struct_mutex); intel_runtime_pm_get(i915); gen9_enable_guc_interrupts(i915); intel_runtime_pm_put(i915); mutex_unlock(&i915->drm.struct_mutex); return 0; err_runtime: mutex_lock(&i915->drm.struct_mutex); guc_log_runtime_destroy(log); mutex_unlock(&i915->drm.struct_mutex); err_relay: guc_log_relay_destroy(log); err: return ret; } void intel_guc_log_unregister(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_i915(guc); /* * Once logging is disabled, GuC won't generate logs & send an * interrupt. But there could be some data in the log buffer * which is yet to be captured. So request GuC to update the log * buffer state and then collect the left over logs. */ guc_flush_logs(log); mutex_lock(&i915->drm.struct_mutex); /* GuC logging is currently the only user of Guc2Host interrupts */ intel_runtime_pm_get(i915); gen9_disable_guc_interrupts(i915); intel_runtime_pm_put(i915); guc_log_runtime_destroy(log); mutex_unlock(&i915->drm.struct_mutex); guc_log_relay_destroy(log); }