/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" static char *dev_info = "ath9k"; MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static unsigned int ath9k_debug = ATH_DBG_DEFAULT; module_param_named(debug, ath9k_debug, uint, 0); MODULE_PARM_DESC(debug, "Debugging mask"); int modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption"); /* We use the hw_value as an index into our private channel structure */ #define CHAN2G(_freq, _idx) { \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 20, \ } #define CHAN5G(_freq, _idx) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 20, \ } /* Some 2 GHz radios are actually tunable on 2312-2732 * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_2ghz_chantable[] = { CHAN2G(2412, 0), /* Channel 1 */ CHAN2G(2417, 1), /* Channel 2 */ CHAN2G(2422, 2), /* Channel 3 */ CHAN2G(2427, 3), /* Channel 4 */ CHAN2G(2432, 4), /* Channel 5 */ CHAN2G(2437, 5), /* Channel 6 */ CHAN2G(2442, 6), /* Channel 7 */ CHAN2G(2447, 7), /* Channel 8 */ CHAN2G(2452, 8), /* Channel 9 */ CHAN2G(2457, 9), /* Channel 10 */ CHAN2G(2462, 10), /* Channel 11 */ CHAN2G(2467, 11), /* Channel 12 */ CHAN2G(2472, 12), /* Channel 13 */ CHAN2G(2484, 13), /* Channel 14 */ }; /* Some 5 GHz radios are actually tunable on XXXX-YYYY * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_5ghz_chantable[] = { /* _We_ call this UNII 1 */ CHAN5G(5180, 14), /* Channel 36 */ CHAN5G(5200, 15), /* Channel 40 */ CHAN5G(5220, 16), /* Channel 44 */ CHAN5G(5240, 17), /* Channel 48 */ /* _We_ call this UNII 2 */ CHAN5G(5260, 18), /* Channel 52 */ CHAN5G(5280, 19), /* Channel 56 */ CHAN5G(5300, 20), /* Channel 60 */ CHAN5G(5320, 21), /* Channel 64 */ /* _We_ call this "Middle band" */ CHAN5G(5500, 22), /* Channel 100 */ CHAN5G(5520, 23), /* Channel 104 */ CHAN5G(5540, 24), /* Channel 108 */ CHAN5G(5560, 25), /* Channel 112 */ CHAN5G(5580, 26), /* Channel 116 */ CHAN5G(5600, 27), /* Channel 120 */ CHAN5G(5620, 28), /* Channel 124 */ CHAN5G(5640, 29), /* Channel 128 */ CHAN5G(5660, 30), /* Channel 132 */ CHAN5G(5680, 31), /* Channel 136 */ CHAN5G(5700, 32), /* Channel 140 */ /* _We_ call this UNII 3 */ CHAN5G(5745, 33), /* Channel 149 */ CHAN5G(5765, 34), /* Channel 153 */ CHAN5G(5785, 35), /* Channel 157 */ CHAN5G(5805, 36), /* Channel 161 */ CHAN5G(5825, 37), /* Channel 165 */ }; /* Atheros hardware rate code addition for short premble */ #define SHPCHECK(__hw_rate, __flags) \ ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0) #define RATE(_bitrate, _hw_rate, _flags) { \ .bitrate = (_bitrate), \ .flags = (_flags), \ .hw_value = (_hw_rate), \ .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \ } static struct ieee80211_rate ath9k_legacy_rates[] = { RATE(10, 0x1b, 0), RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE), RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE), RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE), RATE(60, 0x0b, 0), RATE(90, 0x0f, 0), RATE(120, 0x0a, 0), RATE(180, 0x0e, 0), RATE(240, 0x09, 0), RATE(360, 0x0d, 0), RATE(480, 0x08, 0), RATE(540, 0x0c, 0), }; static void ath9k_uninit_hw(struct ath_softc *sc); /* * Read and write, they both share the same lock. We do this to serialize * reads and writes on Atheros 802.11n PCI devices only. This is required * as the FIFO on these devices can only accept sanely 2 requests. */ static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) { struct ath_hw *ah = (struct ath_hw *) hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); iowrite32(val, sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else iowrite32(val, sc->mem + reg_offset); } static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset) { struct ath_hw *ah = (struct ath_hw *) hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; u32 val; if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); val = ioread32(sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else val = ioread32(sc->mem + reg_offset); return val; } static const struct ath_ops ath9k_common_ops = { .read = ath9k_ioread32, .write = ath9k_iowrite32, }; /**************************/ /* Initialization */ /**************************/ static void setup_ht_cap(struct ath_softc *sc, struct ieee80211_sta_ht_cap *ht_info) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); u8 tx_streams, rx_streams; ht_info->ht_supported = true; ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SM_PS | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; /* set up supported mcs set */ memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ? 1 : 2; rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ? 1 : 2; if (tx_streams != rx_streams) { ath_print(common, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n", tx_streams, rx_streams); ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; ht_info->mcs.tx_params |= ((tx_streams - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); } ht_info->mcs.rx_mask[0] = 0xff; if (rx_streams >= 2) ht_info->mcs.rx_mask[1] = 0xff; ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; } static int ath9k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah); return ath_reg_notifier_apply(wiphy, request, reg); } /* * This function will allocate both the DMA descriptor structure, and the * buffers it contains. These are used to contain the descriptors used * by the system. */ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head, const char *name, int nbuf, int ndesc) { #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0) #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096) struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_desc *ds; struct ath_buf *bf; int i, bsize, error; ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n", name, nbuf, ndesc); INIT_LIST_HEAD(head); /* ath_desc must be a multiple of DWORDs */ if ((sizeof(struct ath_desc) % 4) != 0) { ath_print(common, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n"); BUG_ON((sizeof(struct ath_desc) % 4) != 0); error = -ENOMEM; goto fail; } dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; /* * Need additional DMA memory because we can't use * descriptors that cross the 4K page boundary. Assume * one skipped descriptor per 4K page. */ if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { u32 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); u32 dma_len; while (ndesc_skipped) { dma_len = ndesc_skipped * sizeof(struct ath_desc); dd->dd_desc_len += dma_len; ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); }; } /* allocate descriptors */ dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_KERNEL); if (dd->dd_desc == NULL) { error = -ENOMEM; goto fail; } ds = dd->dd_desc; ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n", name, ds, (u32) dd->dd_desc_len, ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); /* allocate buffers */ bsize = sizeof(struct ath_buf) * nbuf; bf = kzalloc(bsize, GFP_KERNEL); if (bf == NULL) { error = -ENOMEM; goto fail2; } dd->dd_bufptr = bf; for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { BUG_ON((caddr_t) bf->bf_desc >= ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += ndesc; bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } return 0; fail2: dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); fail: memset(dd, 0, sizeof(*dd)); return error; #undef ATH_DESC_4KB_BOUND_CHECK #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED #undef DS2PHYS } static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid, const struct ath_bus_ops *bus_ops) { struct ath_hw *ah = NULL; struct ath_common *common; int r = 0, i; int csz = 0; int qnum; /* XXX: hardware will not be ready until ath_open() being called */ sc->sc_flags |= SC_OP_INVALID; spin_lock_init(&sc->wiphy_lock); spin_lock_init(&sc->sc_resetlock); spin_lock_init(&sc->sc_serial_rw); spin_lock_init(&sc->sc_pm_lock); mutex_init(&sc->mutex); tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet, (unsigned long)sc); ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL); if (!ah) return -ENOMEM; ah->hw_version.devid = devid; ah->hw_version.subsysid = subsysid; sc->sc_ah = ah; common = ath9k_hw_common(ah); common->ops = &ath9k_common_ops; common->bus_ops = bus_ops; common->ah = ah; common->hw = sc->hw; common->priv = sc; common->debug_mask = ath9k_debug; /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ ath_read_cachesize(common, &csz); /* XXX assert csz is non-zero */ common->cachelsz = csz << 2; /* convert to bytes */ r = ath9k_hw_init(ah); if (r) { ath_print(common, ATH_DBG_FATAL, "Unable to initialize hardware; " "initialization status: %d\n", r); goto bad_free_hw; } if (ath9k_init_debug(ah) < 0) { ath_print(common, ATH_DBG_FATAL, "Unable to create debugfs files\n"); goto bad_free_hw; } /* Get the hardware key cache size. */ common->keymax = ah->caps.keycache_size; if (common->keymax > ATH_KEYMAX) { ath_print(common, ATH_DBG_ANY, "Warning, using only %u entries in %u key cache\n", ATH_KEYMAX, common->keymax); common->keymax = ATH_KEYMAX; } /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < common->keymax; i++) ath9k_hw_keyreset(ah, (u16) i); /* default to MONITOR mode */ sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR; /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that the hal handles reseting * these queues at the needed time. */ sc->beacon.beaconq = ath9k_hw_beaconq_setup(ah); if (sc->beacon.beaconq == -1) { ath_print(common, ATH_DBG_FATAL, "Unable to setup a beacon xmit queue\n"); r = -EIO; goto bad2; } sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); if (sc->beacon.cabq == NULL) { ath_print(common, ATH_DBG_FATAL, "Unable to setup CAB xmit queue\n"); r = -EIO; goto bad2; } sc->config.cabqReadytime = ATH_CABQ_READY_TIME; ath_cabq_update(sc); for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++) sc->tx.hwq_map[i] = -1; /* Setup data queues */ /* NB: ensure BK queue is the lowest priority h/w queue */ if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for BK traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for BE traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for VI traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for VO traffic\n"); r = -EIO; goto bad2; } /* Initializes the noise floor to a reasonable default value. * Later on this will be updated during ANI processing. */ common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR; setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc); if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL)) { /* * Whether we should enable h/w TKIP MIC. * XXX: if we don't support WME TKIP MIC, then we wouldn't * report WMM capable, so it's always safe to turn on * TKIP MIC in this case. */ ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL); } /* * Check whether the separate key cache entries * are required to handle both tx+rx MIC keys. * With split mic keys the number of stations is limited * to 27 otherwise 59. */ if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_MIC, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT, 0, NULL)) common->splitmic = 1; /* turn on mcast key search if possible */ if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL)) (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1, 1, NULL); sc->config.txpowlimit = ATH_TXPOWER_MAX; /* 11n Capabilities */ if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) { sc->sc_flags |= SC_OP_TXAGGR; sc->sc_flags |= SC_OP_RXAGGR; } common->tx_chainmask = ah->caps.tx_chainmask; common->rx_chainmask = ah->caps.rx_chainmask; ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL); sc->rx.defant = ath9k_hw_getdefantenna(ah); if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN); sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */ /* initialize beacon slots */ for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) { sc->beacon.bslot[i] = NULL; sc->beacon.bslot_aphy[i] = NULL; } /* setup channels and rates */ if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) { sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable; sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ; sc->sbands[IEEE80211_BAND_2GHZ].n_channels = ARRAY_SIZE(ath9k_2ghz_chantable); sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates; sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates = ARRAY_SIZE(ath9k_legacy_rates); } if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) { sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable; sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ; sc->sbands[IEEE80211_BAND_5GHZ].n_channels = ARRAY_SIZE(ath9k_5ghz_chantable); sc->sbands[IEEE80211_BAND_5GHZ].bitrates = ath9k_legacy_rates + 4; sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates = ARRAY_SIZE(ath9k_legacy_rates) - 4; } switch (ah->btcoex_hw.scheme) { case ATH_BTCOEX_CFG_NONE: break; case ATH_BTCOEX_CFG_2WIRE: ath9k_hw_btcoex_init_2wire(ah); break; case ATH_BTCOEX_CFG_3WIRE: ath9k_hw_btcoex_init_3wire(ah); r = ath_init_btcoex_timer(sc); if (r) goto bad2; qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); ath9k_hw_init_btcoex_hw(ah, qnum); sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW; break; default: WARN_ON(1); break; } return 0; bad2: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); bad_free_hw: ath9k_uninit_hw(sc); return r; } void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw) { hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_AMPDU_AGGREGATION | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK | IEEE80211_HW_SPECTRUM_MGMT; if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt) hw->flags |= IEEE80211_HW_MFP_CAPABLE; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; hw->queues = 4; hw->max_rates = 4; hw->channel_change_time = 5000; hw->max_listen_interval = 10; /* Hardware supports 10 but we use 4 */ hw->max_rate_tries = 4; hw->sta_data_size = sizeof(struct ath_node); hw->vif_data_size = sizeof(struct ath_vif); hw->rate_control_algorithm = "ath9k_rate_control"; if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ]; if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &sc->sbands[IEEE80211_BAND_5GHZ]; } /* Device driver core initialization */ int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid, const struct ath_bus_ops *bus_ops) { struct ieee80211_hw *hw = sc->hw; struct ath_common *common; struct ath_hw *ah; int error = 0, i; struct ath_regulatory *reg; dev_dbg(sc->dev, "Attach ATH hw\n"); error = ath_init_softc(devid, sc, subsysid, bus_ops); if (error != 0) return error; ah = sc->sc_ah; common = ath9k_hw_common(ah); /* get mac address from hardware and set in mac80211 */ SET_IEEE80211_PERM_ADDR(hw, common->macaddr); ath_set_hw_capab(sc, hw); error = ath_regd_init(&common->regulatory, sc->hw->wiphy, ath9k_reg_notifier); if (error) return error; reg = &common->regulatory; if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) { if (test_bit(ATH9K_MODE_11G, ah->caps.wireless_modes)) setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap); if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap); } /* initialize tx/rx engine */ error = ath_tx_init(sc, ATH_TXBUF); if (error != 0) goto error_attach; error = ath_rx_init(sc, ATH_RXBUF); if (error != 0) goto error_attach; INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work); INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work); sc->wiphy_scheduler_int = msecs_to_jiffies(500); error = ieee80211_register_hw(hw); if (!ath_is_world_regd(reg)) { error = regulatory_hint(hw->wiphy, reg->alpha2); if (error) goto error_attach; } /* Initialize LED control */ ath_init_leds(sc); ath_start_rfkill_poll(sc); return 0; error_attach: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); ath9k_uninit_hw(sc); return error; } /*****************************/ /* De-Initialization */ /*****************************/ static void ath9k_uninit_hw(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; BUG_ON(!ah); ath9k_exit_debug(ah); ath9k_hw_detach(ah); sc->sc_ah = NULL; } static void ath_clean_core(struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; struct ath_hw *ah = sc->sc_ah; int i = 0; ath9k_ps_wakeup(sc); dev_dbg(sc->dev, "Detach ATH hw\n"); ath_deinit_leds(sc); wiphy_rfkill_stop_polling(sc->hw->wiphy); for (i = 0; i < sc->num_sec_wiphy; i++) { struct ath_wiphy *aphy = sc->sec_wiphy[i]; if (aphy == NULL) continue; sc->sec_wiphy[i] = NULL; ieee80211_unregister_hw(aphy->hw); ieee80211_free_hw(aphy->hw); } ieee80211_unregister_hw(hw); ath_rx_cleanup(sc); ath_tx_cleanup(sc); tasklet_kill(&sc->intr_tq); tasklet_kill(&sc->bcon_tasklet); if (!(sc->sc_flags & SC_OP_INVALID)) ath9k_setpower(sc, ATH9K_PM_AWAKE); /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); if ((sc->btcoex.no_stomp_timer) && ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE) ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer); } void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head) { dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); INIT_LIST_HEAD(head); kfree(dd->dd_bufptr); memset(dd, 0, sizeof(*dd)); } void ath_detach(struct ath_softc *sc) { ath_clean_core(sc); ath9k_uninit_hw(sc); } void ath_cleanup(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); ath_clean_core(sc); free_irq(sc->irq, sc); ath_bus_cleanup(common); kfree(sc->sec_wiphy); ieee80211_free_hw(sc->hw); ath9k_uninit_hw(sc); } /************************/ /* Module Hooks */ /************************/ static int __init ath9k_init(void) { int error; /* Register rate control algorithm */ error = ath_rate_control_register(); if (error != 0) { printk(KERN_ERR "ath9k: Unable to register rate control " "algorithm: %d\n", error); goto err_out; } error = ath9k_debug_create_root(); if (error) { printk(KERN_ERR "ath9k: Unable to create debugfs root: %d\n", error); goto err_rate_unregister; } error = ath_pci_init(); if (error < 0) { printk(KERN_ERR "ath9k: No PCI devices found, driver not installed.\n"); error = -ENODEV; goto err_remove_root; } error = ath_ahb_init(); if (error < 0) { error = -ENODEV; goto err_pci_exit; } return 0; err_pci_exit: ath_pci_exit(); err_remove_root: ath9k_debug_remove_root(); err_rate_unregister: ath_rate_control_unregister(); err_out: return error; } module_init(ath9k_init); static void __exit ath9k_exit(void) { ath_ahb_exit(); ath_pci_exit(); ath9k_debug_remove_root(); ath_rate_control_unregister(); printk(KERN_INFO "%s: Driver unloaded\n", dev_info); } module_exit(ath9k_exit);