/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "display/intel_display_types.h" #include "display/intel_fifo_underrun.h" #include "display/intel_hotplug.h" #include "display/intel_lpe_audio.h" #include "display/intel_psr.h" #include "gt/intel_gt.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_trace.h" #include "intel_pm.h" /** * DOC: interrupt handling * * These functions provide the basic support for enabling and disabling the * interrupt handling support. There's a lot more functionality in i915_irq.c * and related files, but that will be described in separate chapters. */ typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); static const u32 hpd_ilk[HPD_NUM_PINS] = { [HPD_PORT_A] = DE_DP_A_HOTPLUG, }; static const u32 hpd_ivb[HPD_NUM_PINS] = { [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, }; static const u32 hpd_bdw[HPD_NUM_PINS] = { [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, }; static const u32 hpd_ibx[HPD_NUM_PINS] = { [HPD_CRT] = SDE_CRT_HOTPLUG, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, [HPD_PORT_B] = SDE_PORTB_HOTPLUG, [HPD_PORT_C] = SDE_PORTC_HOTPLUG, [HPD_PORT_D] = SDE_PORTD_HOTPLUG }; static const u32 hpd_cpt[HPD_NUM_PINS] = { [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT }; static const u32 hpd_spt[HPD_NUM_PINS] = { [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT }; static const u32 hpd_mask_i915[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_EN, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN }; static const u32 hpd_status_g4x[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; static const u32 hpd_status_i915[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; /* BXT hpd list */ static const u32 hpd_bxt[HPD_NUM_PINS] = { [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC }; static const u32 hpd_gen11[HPD_NUM_PINS] = { [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG }; static const u32 hpd_gen12[HPD_NUM_PINS] = { [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG, [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG, [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG }; static const u32 hpd_icp[HPD_NUM_PINS] = { [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP, [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP, [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP, [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP }; static const u32 hpd_mcc[HPD_NUM_PINS] = { [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP }; static const u32 hpd_tgp[HPD_NUM_PINS] = { [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP, [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP, [HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP, [HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP, [HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP, [HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP, [HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP, [HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP, [HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP, }; static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, i915_reg_t iir, i915_reg_t ier) { intel_uncore_write(uncore, imr, 0xffffffff); intel_uncore_posting_read(uncore, imr); intel_uncore_write(uncore, ier, 0); /* IIR can theoretically queue up two events. Be paranoid. */ intel_uncore_write(uncore, iir, 0xffffffff); intel_uncore_posting_read(uncore, iir); intel_uncore_write(uncore, iir, 0xffffffff); intel_uncore_posting_read(uncore, iir); } static void gen2_irq_reset(struct intel_uncore *uncore) { intel_uncore_write16(uncore, GEN2_IMR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IMR); intel_uncore_write16(uncore, GEN2_IER, 0); /* IIR can theoretically queue up two events. Be paranoid. */ intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); } #define GEN8_IRQ_RESET_NDX(uncore, type, which) \ ({ \ unsigned int which_ = which; \ gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \ GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \ }) #define GEN3_IRQ_RESET(uncore, type) \ gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER) #define GEN2_IRQ_RESET(uncore) \ gen2_irq_reset(uncore) /* * We should clear IMR at preinstall/uninstall, and just check at postinstall. */ static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) { u32 val = intel_uncore_read(uncore, reg); if (val == 0) return; WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", i915_mmio_reg_offset(reg), val); intel_uncore_write(uncore, reg, 0xffffffff); intel_uncore_posting_read(uncore, reg); intel_uncore_write(uncore, reg, 0xffffffff); intel_uncore_posting_read(uncore, reg); } static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) { u16 val = intel_uncore_read16(uncore, GEN2_IIR); if (val == 0) return; WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", i915_mmio_reg_offset(GEN2_IIR), val); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); } static void gen3_irq_init(struct intel_uncore *uncore, i915_reg_t imr, u32 imr_val, i915_reg_t ier, u32 ier_val, i915_reg_t iir) { gen3_assert_iir_is_zero(uncore, iir); intel_uncore_write(uncore, ier, ier_val); intel_uncore_write(uncore, imr, imr_val); intel_uncore_posting_read(uncore, imr); } static void gen2_irq_init(struct intel_uncore *uncore, u32 imr_val, u32 ier_val) { gen2_assert_iir_is_zero(uncore); intel_uncore_write16(uncore, GEN2_IER, ier_val); intel_uncore_write16(uncore, GEN2_IMR, imr_val); intel_uncore_posting_read16(uncore, GEN2_IMR); } #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \ ({ \ unsigned int which_ = which; \ gen3_irq_init((uncore), \ GEN8_##type##_IMR(which_), imr_val, \ GEN8_##type##_IER(which_), ier_val, \ GEN8_##type##_IIR(which_)); \ }) #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \ gen3_irq_init((uncore), \ type##IMR, imr_val, \ type##IER, ier_val, \ type##IIR) #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \ gen2_irq_init((uncore), imr_val, ier_val) static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); static void guc_irq_handler(struct intel_guc *guc, u16 guc_iir); /* For display hotplug interrupt */ static inline void i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, u32 mask, u32 bits) { u32 val; lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(bits & ~mask); val = I915_READ(PORT_HOTPLUG_EN); val &= ~mask; val |= bits; I915_WRITE(PORT_HOTPLUG_EN, val); } /** * i915_hotplug_interrupt_update - update hotplug interrupt enable * @dev_priv: driver private * @mask: bits to update * @bits: bits to enable * NOTE: the HPD enable bits are modified both inside and outside * of an interrupt context. To avoid that read-modify-write cycles * interfer, these bits are protected by a spinlock. Since this * function is usually not called from a context where the lock is * held already, this function acquires the lock itself. A non-locking * version is also available. */ void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, u32 mask, u32 bits) { spin_lock_irq(&dev_priv->irq_lock); i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); spin_unlock_irq(&dev_priv->irq_lock); } static u32 gen11_gt_engine_identity(struct intel_gt *gt, const unsigned int bank, const unsigned int bit); static bool gen11_reset_one_iir(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = gt->uncore->regs; u32 dw; lockdep_assert_held(>->i915->irq_lock); dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); if (dw & BIT(bit)) { /* * According to the BSpec, DW_IIR bits cannot be cleared without * first servicing the Selector & Shared IIR registers. */ gen11_gt_engine_identity(gt, bank, bit); /* * We locked GT INT DW by reading it. If we want to (try * to) recover from this succesfully, we need to clear * our bit, otherwise we are locking the register for * everybody. */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); return true; } return false; } /** * ilk_update_display_irq - update DEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void ilk_update_display_irq(struct drm_i915_private *dev_priv, u32 interrupt_mask, u32 enabled_irq_mask) { u32 new_val; lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; new_val = dev_priv->irq_mask; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->irq_mask) { dev_priv->irq_mask = new_val; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } /** * ilk_update_gt_irq - update GTIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, u32 interrupt_mask, u32 enabled_irq_mask) { lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; dev_priv->gt_irq_mask &= ~interrupt_mask; dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); } void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) { ilk_update_gt_irq(dev_priv, mask, mask); intel_uncore_posting_read_fw(&dev_priv->uncore, GTIMR); } void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask) { ilk_update_gt_irq(dev_priv, mask, 0); } static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) { WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11); return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; } static void write_pm_imr(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 mask = gt->pm_imr; i915_reg_t reg; if (INTEL_GEN(i915) >= 11) { reg = GEN11_GPM_WGBOXPERF_INTR_MASK; /* pm is in upper half */ mask = mask << 16; } else if (INTEL_GEN(i915) >= 8) { reg = GEN8_GT_IMR(2); } else { reg = GEN6_PMIMR; } intel_uncore_write(uncore, reg, mask); intel_uncore_posting_read(uncore, reg); } static void write_pm_ier(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 mask = gt->pm_ier; i915_reg_t reg; if (INTEL_GEN(i915) >= 11) { reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE; /* pm is in upper half */ mask = mask << 16; } else if (INTEL_GEN(i915) >= 8) { reg = GEN8_GT_IER(2); } else { reg = GEN6_PMIER; } intel_uncore_write(uncore, reg, mask); } /** * snb_update_pm_irq - update GEN6_PMIMR * @gt: gt for the interrupts * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void snb_update_pm_irq(struct intel_gt *gt, u32 interrupt_mask, u32 enabled_irq_mask) { u32 new_val; WARN_ON(enabled_irq_mask & ~interrupt_mask); lockdep_assert_held(>->i915->irq_lock); new_val = gt->pm_imr; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != gt->pm_imr) { gt->pm_imr = new_val; write_pm_imr(gt); } } void gen6_unmask_pm_irq(struct intel_gt *gt, u32 mask) { if (WARN_ON(!intel_irqs_enabled(gt->i915))) return; snb_update_pm_irq(gt, mask, mask); } static void __gen6_mask_pm_irq(struct intel_gt *gt, u32 mask) { snb_update_pm_irq(gt, mask, 0); } void gen6_mask_pm_irq(struct intel_gt *gt, u32 mask) { if (WARN_ON(!intel_irqs_enabled(gt->i915))) return; __gen6_mask_pm_irq(gt, mask); } static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) { i915_reg_t reg = gen6_pm_iir(dev_priv); lockdep_assert_held(&dev_priv->irq_lock); I915_WRITE(reg, reset_mask); I915_WRITE(reg, reset_mask); POSTING_READ(reg); } static void gen6_enable_pm_irq(struct intel_gt *gt, u32 enable_mask) { lockdep_assert_held(>->i915->irq_lock); gt->pm_ier |= enable_mask; write_pm_ier(gt); gen6_unmask_pm_irq(gt, enable_mask); /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ } static void gen6_disable_pm_irq(struct intel_gt *gt, u32 disable_mask) { lockdep_assert_held(>->i915->irq_lock); gt->pm_ier &= ~disable_mask; __gen6_mask_pm_irq(gt, disable_mask); write_pm_ier(gt); /* though a barrier is missing here, but don't really need a one */ } void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); while (gen11_reset_one_iir(&dev_priv->gt, 0, GEN11_GTPM)) ; dev_priv->gt_pm.rps.pm_iir = 0; spin_unlock_irq(&dev_priv->irq_lock); } void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS); dev_priv->gt_pm.rps.pm_iir = 0; spin_unlock_irq(&dev_priv->irq_lock); } void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) { struct intel_gt *gt = &dev_priv->gt; struct intel_rps *rps = &dev_priv->gt_pm.rps; if (READ_ONCE(rps->interrupts_enabled)) return; spin_lock_irq(&dev_priv->irq_lock); WARN_ON_ONCE(rps->pm_iir); if (INTEL_GEN(dev_priv) >= 11) WARN_ON_ONCE(gen11_reset_one_iir(gt, 0, GEN11_GTPM)); else WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); rps->interrupts_enabled = true; gen6_enable_pm_irq(gt, dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); } u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask) { return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz; } void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) { struct intel_rps *rps = &dev_priv->gt_pm.rps; if (!READ_ONCE(rps->interrupts_enabled)) return; spin_lock_irq(&dev_priv->irq_lock); rps->interrupts_enabled = false; I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); gen6_disable_pm_irq(&dev_priv->gt, GEN6_PM_RPS_EVENTS); spin_unlock_irq(&dev_priv->irq_lock); intel_synchronize_irq(dev_priv); /* Now that we will not be generating any more work, flush any * outstanding tasks. As we are called on the RPS idle path, * we will reset the GPU to minimum frequencies, so the current * state of the worker can be discarded. */ cancel_work_sync(&rps->work); if (INTEL_GEN(dev_priv) >= 11) gen11_reset_rps_interrupts(dev_priv); else gen6_reset_rps_interrupts(dev_priv); } void gen9_reset_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; assert_rpm_wakelock_held(&i915->runtime_pm); spin_lock_irq(&i915->irq_lock); gen6_reset_pm_iir(i915, gt->pm_guc_events); spin_unlock_irq(&i915->irq_lock); } void gen9_enable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; assert_rpm_wakelock_held(&i915->runtime_pm); spin_lock_irq(&i915->irq_lock); if (!guc->interrupts.enabled) { WARN_ON_ONCE(intel_uncore_read(gt->uncore, gen6_pm_iir(i915)) & gt->pm_guc_events); guc->interrupts.enabled = true; gen6_enable_pm_irq(gt, gt->pm_guc_events); } spin_unlock_irq(&i915->irq_lock); } void gen9_disable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; assert_rpm_wakelock_held(&i915->runtime_pm); spin_lock_irq(&i915->irq_lock); guc->interrupts.enabled = false; gen6_disable_pm_irq(gt, gt->pm_guc_events); spin_unlock_irq(&i915->irq_lock); intel_synchronize_irq(i915); gen9_reset_guc_interrupts(guc); } void gen11_reset_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; spin_lock_irq(&i915->irq_lock); gen11_reset_one_iir(gt, 0, GEN11_GUC); spin_unlock_irq(&i915->irq_lock); } void gen11_enable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); spin_lock_irq(>->i915->irq_lock); if (!guc->interrupts.enabled) { u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); WARN_ON_ONCE(gen11_reset_one_iir(gt, 0, GEN11_GUC)); intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events); intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events); guc->interrupts.enabled = true; } spin_unlock_irq(>->i915->irq_lock); } void gen11_disable_guc_interrupts(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; spin_lock_irq(&i915->irq_lock); guc->interrupts.enabled = false; intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); spin_unlock_irq(&i915->irq_lock); intel_synchronize_irq(i915); gen11_reset_guc_interrupts(guc); } /** * bdw_update_port_irq - update DE port interrupt * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void bdw_update_port_irq(struct drm_i915_private *dev_priv, u32 interrupt_mask, u32 enabled_irq_mask) { u32 new_val; u32 old_val; lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; old_val = I915_READ(GEN8_DE_PORT_IMR); new_val = old_val; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != old_val) { I915_WRITE(GEN8_DE_PORT_IMR, new_val); POSTING_READ(GEN8_DE_PORT_IMR); } } /** * bdw_update_pipe_irq - update DE pipe interrupt * @dev_priv: driver private * @pipe: pipe whose interrupt to update * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, u32 interrupt_mask, u32 enabled_irq_mask) { u32 new_val; lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; new_val = dev_priv->de_irq_mask[pipe]; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->de_irq_mask[pipe]) { dev_priv->de_irq_mask[pipe] = new_val; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); } } /** * ibx_display_interrupt_update - update SDEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, u32 interrupt_mask, u32 enabled_irq_mask) { u32 sdeimr = I915_READ(SDEIMR); sdeimr &= ~interrupt_mask; sdeimr |= (~enabled_irq_mask & interrupt_mask); WARN_ON(enabled_irq_mask & ~interrupt_mask); lockdep_assert_held(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; I915_WRITE(SDEIMR, sdeimr); POSTING_READ(SDEIMR); } u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; u32 enable_mask = status_mask << 16; lockdep_assert_held(&dev_priv->irq_lock); if (INTEL_GEN(dev_priv) < 5) goto out; /* * On pipe A we don't support the PSR interrupt yet, * on pipe B and C the same bit MBZ. */ if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) return 0; /* * On pipe B and C we don't support the PSR interrupt yet, on pipe * A the same bit is for perf counters which we don't use either. */ if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) return 0; enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | SPRITE0_FLIP_DONE_INT_EN_VLV | SPRITE1_FLIP_DONE_INT_EN_VLV); if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; out: WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", pipe_name(pipe), enable_mask, status_mask); return enable_mask; } void i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { i915_reg_t reg = PIPESTAT(pipe); u32 enable_mask; WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: status_mask=0x%x\n", pipe_name(pipe), status_mask); lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) return; dev_priv->pipestat_irq_mask[pipe] |= status_mask; enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); I915_WRITE(reg, enable_mask | status_mask); POSTING_READ(reg); } void i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { i915_reg_t reg = PIPESTAT(pipe); u32 enable_mask; WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: status_mask=0x%x\n", pipe_name(pipe), status_mask); lockdep_assert_held(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) return; dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); I915_WRITE(reg, enable_mask | status_mask); POSTING_READ(reg); } static bool i915_has_asle(struct drm_i915_private *dev_priv) { if (!dev_priv->opregion.asle) return false; return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } /** * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion * @dev_priv: i915 device private */ static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) { if (!i915_has_asle(dev_priv)) return; spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); if (INTEL_GEN(dev_priv) >= 4) i915_enable_pipestat(dev_priv, PIPE_A, PIPE_LEGACY_BLC_EVENT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } /* * This timing diagram depicts the video signal in and * around the vertical blanking period. * * Assumptions about the fictitious mode used in this example: * vblank_start >= 3 * vsync_start = vblank_start + 1 * vsync_end = vblank_start + 2 * vtotal = vblank_start + 3 * * start of vblank: * latch double buffered registers * increment frame counter (ctg+) * generate start of vblank interrupt (gen4+) * | * | frame start: * | generate frame start interrupt (aka. vblank interrupt) (gmch) * | may be shifted forward 1-3 extra lines via PIPECONF * | | * | | start of vsync: * | | generate vsync interrupt * | | | * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx * . \hs/ . \hs/ \hs/ \hs/ . \hs/ * ----va---> <-----------------vb--------------------> <--------va------------- * | | <----vs-----> | * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) * | | | * last visible pixel first visible pixel * | increment frame counter (gen3/4) * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) * * x = horizontal active * _ = horizontal blanking * hs = horizontal sync * va = vertical active * vb = vertical blanking * vs = vertical sync * vbs = vblank_start (number) * * Summary: * - most events happen at the start of horizontal sync * - frame start happens at the start of horizontal blank, 1-4 lines * (depending on PIPECONF settings) after the start of vblank * - gen3/4 pixel and frame counter are synchronized with the start * of horizontal active on the first line of vertical active */ /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ u32 i915_get_vblank_counter(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; const struct drm_display_mode *mode = &vblank->hwmode; enum pipe pipe = to_intel_crtc(crtc)->pipe; i915_reg_t high_frame, low_frame; u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; unsigned long irqflags; /* * On i965gm TV output the frame counter only works up to * the point when we enable the TV encoder. After that the * frame counter ceases to work and reads zero. We need a * vblank wait before enabling the TV encoder and so we * have to enable vblank interrupts while the frame counter * is still in a working state. However the core vblank code * does not like us returning non-zero frame counter values * when we've told it that we don't have a working frame * counter. Thus we must stop non-zero values leaking out. */ if (!vblank->max_vblank_count) return 0; htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vbl_start = mode->crtc_vblank_start; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vbl_start = DIV_ROUND_UP(vbl_start, 2); /* Convert to pixel count */ vbl_start *= htotal; /* Start of vblank event occurs at start of hsync */ vbl_start -= htotal - hsync_start; high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ_FW(low_frame); high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); high1 >>= PIPE_FRAME_HIGH_SHIFT; pixel = low & PIPE_PIXEL_MASK; low >>= PIPE_FRAME_LOW_SHIFT; /* * The frame counter increments at beginning of active. * Cook up a vblank counter by also checking the pixel * counter against vblank start. */ return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; } u32 g4x_get_vblank_counter(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); } /* * On certain encoders on certain platforms, pipe * scanline register will not work to get the scanline, * since the timings are driven from the PORT or issues * with scanline register updates. * This function will use Framestamp and current * timestamp registers to calculate the scanline. */ static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_vblank_crtc *vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; const struct drm_display_mode *mode = &vblank->hwmode; u32 vblank_start = mode->crtc_vblank_start; u32 vtotal = mode->crtc_vtotal; u32 htotal = mode->crtc_htotal; u32 clock = mode->crtc_clock; u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; /* * To avoid the race condition where we might cross into the * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR * during the same frame. */ do { /* * This field provides read back of the display * pipe frame time stamp. The time stamp value * is sampled at every start of vertical blank. */ scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); /* * The TIMESTAMP_CTR register has the current * time stamp value. */ scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR); scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe)); } while (scan_post_time != scan_prev_time); scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, clock), 1000 * htotal); scanline = min(scanline, vtotal - 1); scanline = (scanline + vblank_start) % vtotal; return scanline; } /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ static int __intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); const struct drm_display_mode *mode; struct drm_vblank_crtc *vblank; enum pipe pipe = crtc->pipe; int position, vtotal; if (!crtc->active) return -1; vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; mode = &vblank->hwmode; if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) return __intel_get_crtc_scanline_from_timestamp(crtc); vtotal = mode->crtc_vtotal; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; if (IS_GEN(dev_priv, 2)) position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; else position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; /* * On HSW, the DSL reg (0x70000) appears to return 0 if we * read it just before the start of vblank. So try it again * so we don't accidentally end up spanning a vblank frame * increment, causing the pipe_update_end() code to squak at us. * * The nature of this problem means we can't simply check the ISR * bit and return the vblank start value; nor can we use the scanline * debug register in the transcoder as it appears to have the same * problem. We may need to extend this to include other platforms, * but so far testing only shows the problem on HSW. */ if (HAS_DDI(dev_priv) && !position) { int i, temp; for (i = 0; i < 100; i++) { udelay(1); temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; if (temp != position) { position = temp; break; } } } /* * See update_scanline_offset() for the details on the * scanline_offset adjustment. */ return (position + crtc->scanline_offset) % vtotal; } bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); int position; int vbl_start, vbl_end, hsync_start, htotal, vtotal; unsigned long irqflags; bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; if (WARN_ON(!mode->crtc_clock)) { DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return false; } htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vtotal = mode->crtc_vtotal; vbl_start = mode->crtc_vblank_start; vbl_end = mode->crtc_vblank_end; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vbl_start = DIV_ROUND_UP(vbl_start, 2); vbl_end /= 2; vtotal /= 2; } /* * Lock uncore.lock, as we will do multiple timing critical raw * register reads, potentially with preemption disabled, so the * following code must not block on uncore.lock. */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); if (use_scanline_counter) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ position = __intel_get_crtc_scanline(intel_crtc); } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; /* convert to pixel counts */ vbl_start *= htotal; vbl_end *= htotal; vtotal *= htotal; /* * In interlaced modes, the pixel counter counts all pixels, * so one field will have htotal more pixels. In order to avoid * the reported position from jumping backwards when the pixel * counter is beyond the length of the shorter field, just * clamp the position the length of the shorter field. This * matches how the scanline counter based position works since * the scanline counter doesn't count the two half lines. */ if (position >= vtotal) position = vtotal - 1; /* * Start of vblank interrupt is triggered at start of hsync, * just prior to the first active line of vblank. However we * consider lines to start at the leading edge of horizontal * active. So, should we get here before we've crossed into * the horizontal active of the first line in vblank, we would * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, * always add htotal-hsync_start to the current pixel position. */ position = (position + htotal - hsync_start) % vtotal; } /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); /* * While in vblank, position will be negative * counting up towards 0 at vbl_end. And outside * vblank, position will be positive counting * up since vbl_end. */ if (position >= vbl_start) position -= vbl_end; else position += vtotal - vbl_end; if (use_scanline_counter) { *vpos = position; *hpos = 0; } else { *vpos = position / htotal; *hpos = position - (*vpos * htotal); } return true; } int intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); unsigned long irqflags; int position; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); position = __intel_get_crtc_scanline(crtc); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); return position; } static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay; spin_lock(&mchdev_lock); intel_uncore_write16(uncore, MEMINTRSTS, intel_uncore_read(uncore, MEMINTRSTS)); new_delay = dev_priv->ips.cur_delay; intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); max_avg = intel_uncore_read(uncore, RCBMAXAVG); min_avg = intel_uncore_read(uncore, RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) new_delay = dev_priv->ips.cur_delay - 1; if (new_delay < dev_priv->ips.max_delay) new_delay = dev_priv->ips.max_delay; } else if (busy_down < min_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) new_delay = dev_priv->ips.cur_delay + 1; if (new_delay > dev_priv->ips.min_delay) new_delay = dev_priv->ips.min_delay; } if (ironlake_set_drps(dev_priv, new_delay)) dev_priv->ips.cur_delay = new_delay; spin_unlock(&mchdev_lock); return; } static void vlv_c0_read(struct drm_i915_private *dev_priv, struct intel_rps_ei *ei) { ei->ktime = ktime_get_raw(); ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); } void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) { memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei)); } static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) { struct intel_rps *rps = &dev_priv->gt_pm.rps; const struct intel_rps_ei *prev = &rps->ei; struct intel_rps_ei now; u32 events = 0; if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) return 0; vlv_c0_read(dev_priv, &now); if (prev->ktime) { u64 time, c0; u32 render, media; time = ktime_us_delta(now.ktime, prev->ktime); time *= dev_priv->czclk_freq; /* Workload can be split between render + media, * e.g. SwapBuffers being blitted in X after being rendered in * mesa. To account for this we need to combine both engines * into our activity counter. */ render = now.render_c0 - prev->render_c0; media = now.media_c0 - prev->media_c0; c0 = max(render, media); c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ if (c0 > time * rps->power.up_threshold) events = GEN6_PM_RP_UP_THRESHOLD; else if (c0 < time * rps->power.down_threshold) events = GEN6_PM_RP_DOWN_THRESHOLD; } rps->ei = now; return events; } static void gen6_pm_rps_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, gt_pm.rps.work); struct intel_rps *rps = &dev_priv->gt_pm.rps; bool client_boost = false; int new_delay, adj, min, max; u32 pm_iir = 0; spin_lock_irq(&dev_priv->irq_lock); if (rps->interrupts_enabled) { pm_iir = fetch_and_zero(&rps->pm_iir); client_boost = atomic_read(&rps->num_waiters); } spin_unlock_irq(&dev_priv->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ WARN_ON(pm_iir & ~dev_priv->pm_rps_events); if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) goto out; mutex_lock(&rps->lock); pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); adj = rps->last_adj; new_delay = rps->cur_freq; min = rps->min_freq_softlimit; max = rps->max_freq_softlimit; if (client_boost) max = rps->max_freq; if (client_boost && new_delay < rps->boost_freq) { new_delay = rps->boost_freq; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; if (new_delay >= rps->max_freq_softlimit) adj = 0; } else if (client_boost) { adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (rps->cur_freq > rps->efficient_freq) new_delay = rps->efficient_freq; else if (rps->cur_freq > rps->min_freq_softlimit) new_delay = rps->min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; if (new_delay <= rps->min_freq_softlimit) adj = 0; } else { /* unknown event */ adj = 0; } rps->last_adj = adj; /* * Limit deboosting and boosting to keep ourselves at the extremes * when in the respective power modes (i.e. slowly decrease frequencies * while in the HIGH_POWER zone and slowly increase frequencies while * in the LOW_POWER zone). On idle, we will hit the timeout and drop * to the next level quickly, and conversely if busy we expect to * hit a waitboost and rapidly switch into max power. */ if ((adj < 0 && rps->power.mode == HIGH_POWER) || (adj > 0 && rps->power.mode == LOW_POWER)) rps->last_adj = 0; /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ new_delay += adj; new_delay = clamp_t(int, new_delay, min, max); if (intel_set_rps(dev_priv, new_delay)) { DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); rps->last_adj = 0; } mutex_unlock(&rps->lock); out: /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ spin_lock_irq(&dev_priv->irq_lock); if (rps->interrupts_enabled) gen6_unmask_pm_irq(&dev_priv->gt, dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); } /** * ivybridge_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivybridge_parity_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), l3_parity.error_work); u32 error_status, row, bank, subbank; char *parity_event[6]; u32 misccpctl; u8 slice = 0; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->drm.struct_mutex); /* If we've screwed up tracking, just let the interrupt fire again */ if (WARN_ON(!dev_priv->l3_parity.which_slice)) goto out; misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); POSTING_READ(GEN7_MISCCPCTL); while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { i915_reg_t reg; slice--; if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) break; dev_priv->l3_parity.which_slice &= ~(1<drm.primary->kdev->kobj, KOBJ_CHANGE, parity_event); DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", slice, row, bank, subbank); kfree(parity_event[4]); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } I915_WRITE(GEN7_MISCCPCTL, misccpctl); out: WARN_ON(dev_priv->l3_parity.which_slice); spin_lock_irq(&dev_priv->irq_lock); gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); spin_unlock_irq(&dev_priv->irq_lock); mutex_unlock(&dev_priv->drm.struct_mutex); } static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, u32 iir) { if (!HAS_L3_DPF(dev_priv)) return; spin_lock(&dev_priv->irq_lock); gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); spin_unlock(&dev_priv->irq_lock); iir &= GT_PARITY_ERROR(dev_priv); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) dev_priv->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) dev_priv->l3_parity.which_slice |= 1 << 0; queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); } static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); if (gt_iir & ILK_BSD_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); } static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); if (gt_iir & GT_BSD_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); if (gt_iir & GT_BLT_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); if (gt_iir & GT_PARITY_ERROR(dev_priv)) ivybridge_parity_error_irq_handler(dev_priv, gt_iir); } static void gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir) { bool tasklet = false; if (iir & GT_CONTEXT_SWITCH_INTERRUPT) tasklet = true; if (iir & GT_RENDER_USER_INTERRUPT) { intel_engine_breadcrumbs_irq(engine); tasklet |= intel_engine_needs_breadcrumb_tasklet(engine); } if (tasklet) tasklet_hi_schedule(&engine->execlists.tasklet); } static void gen8_gt_irq_ack(struct drm_i915_private *i915, u32 master_ctl, u32 gt_iir[4]) { void __iomem * const regs = i915->uncore.regs; #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \ GEN8_GT_BCS_IRQ | \ GEN8_GT_VCS0_IRQ | \ GEN8_GT_VCS1_IRQ | \ GEN8_GT_VECS_IRQ | \ GEN8_GT_PM_IRQ | \ GEN8_GT_GUC_IRQ) if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0)); if (likely(gt_iir[0])) raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]); } if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1)); if (likely(gt_iir[1])) raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]); } if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2)); if (likely(gt_iir[2])) raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]); } if (master_ctl & GEN8_GT_VECS_IRQ) { gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3)); if (likely(gt_iir[3])) raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]); } } static void gen8_gt_irq_handler(struct drm_i915_private *i915, u32 master_ctl, u32 gt_iir[4]) { if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { gen8_cs_irq_handler(i915->engine[RCS0], gt_iir[0] >> GEN8_RCS_IRQ_SHIFT); gen8_cs_irq_handler(i915->engine[BCS0], gt_iir[0] >> GEN8_BCS_IRQ_SHIFT); } if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { gen8_cs_irq_handler(i915->engine[VCS0], gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT); gen8_cs_irq_handler(i915->engine[VCS1], gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT); } if (master_ctl & GEN8_GT_VECS_IRQ) { gen8_cs_irq_handler(i915->engine[VECS0], gt_iir[3] >> GEN8_VECS_IRQ_SHIFT); } if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { gen6_rps_irq_handler(i915, gt_iir[2]); guc_irq_handler(&i915->gt.uc.guc, gt_iir[2] >> 16); } } static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_C: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); case HPD_PORT_D: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); case HPD_PORT_E: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); case HPD_PORT_F: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); default: return false; } } static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_D: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); case HPD_PORT_E: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); case HPD_PORT_F: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); case HPD_PORT_G: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); case HPD_PORT_H: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5); case HPD_PORT_I: return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6); default: return false; } } static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_A: return val & PORTA_HOTPLUG_LONG_DETECT; case HPD_PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case HPD_PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; default: return false; } } static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_A: return val & ICP_DDIA_HPD_LONG_DETECT; case HPD_PORT_B: return val & ICP_DDIB_HPD_LONG_DETECT; case HPD_PORT_C: return val & TGP_DDIC_HPD_LONG_DETECT; default: return false; } } static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_C: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); case HPD_PORT_D: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); case HPD_PORT_E: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); case HPD_PORT_F: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); default: return false; } } static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_A: return val & ICP_DDIA_HPD_LONG_DETECT; case HPD_PORT_B: return val & ICP_DDIB_HPD_LONG_DETECT; case HPD_PORT_C: return val & TGP_DDIC_HPD_LONG_DETECT; default: return false; } } static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_D: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); case HPD_PORT_E: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); case HPD_PORT_F: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); case HPD_PORT_G: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); case HPD_PORT_H: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5); case HPD_PORT_I: return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6); default: return false; } } static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_E: return val & PORTE_HOTPLUG_LONG_DETECT; default: return false; } } static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_A: return val & PORTA_HOTPLUG_LONG_DETECT; case HPD_PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case HPD_PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; case HPD_PORT_D: return val & PORTD_HOTPLUG_LONG_DETECT; default: return false; } } static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_A: return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; default: return false; } } static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case HPD_PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; case HPD_PORT_D: return val & PORTD_HOTPLUG_LONG_DETECT; default: return false; } } static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) { switch (pin) { case HPD_PORT_B: return val & PORTB_HOTPLUG_INT_LONG_PULSE; case HPD_PORT_C: return val & PORTC_HOTPLUG_INT_LONG_PULSE; case HPD_PORT_D: return val & PORTD_HOTPLUG_INT_LONG_PULSE; default: return false; } } /* * Get a bit mask of pins that have triggered, and which ones may be long. * This can be called multiple times with the same masks to accumulate * hotplug detection results from several registers. * * Note that the caller is expected to zero out the masks initially. */ static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, u32 *pin_mask, u32 *long_mask, u32 hotplug_trigger, u32 dig_hotplug_reg, const u32 hpd[HPD_NUM_PINS], bool long_pulse_detect(enum hpd_pin pin, u32 val)) { enum hpd_pin pin; BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); for_each_hpd_pin(pin) { if ((hpd[pin] & hotplug_trigger) == 0) continue; *pin_mask |= BIT(pin); if (long_pulse_detect(pin, dig_hotplug_reg)) *long_mask |= BIT(pin); } DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); } static void gmbus_irq_handler(struct drm_i915_private *dev_priv) { wake_up_all(&dev_priv->gmbus_wait_queue); } static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) { wake_up_all(&dev_priv->gmbus_wait_queue); } #if defined(CONFIG_DEBUG_FS) static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe, u32 crc0, u32 crc1, u32 crc2, u32 crc3, u32 crc4) { struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; trace_intel_pipe_crc(crtc, crcs); spin_lock(&pipe_crc->lock); /* * For some not yet identified reason, the first CRC is * bonkers. So let's just wait for the next vblank and read * out the buggy result. * * On GEN8+ sometimes the second CRC is bonkers as well, so * don't trust that one either. */ if (pipe_crc->skipped <= 0 || (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { pipe_crc->skipped++; spin_unlock(&pipe_crc->lock); return; } spin_unlock(&pipe_crc->lock); drm_crtc_add_crc_entry(&crtc->base, true, drm_crtc_accurate_vblank_count(&crtc->base), crcs); } #else static inline void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe, u32 crc0, u32 crc1, u32 crc2, u32 crc3, u32 crc4) {} #endif static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 0, 0, 0, 0); } static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), I915_READ(PIPE_CRC_RES_2_IVB(pipe)), I915_READ(PIPE_CRC_RES_3_IVB(pipe)), I915_READ(PIPE_CRC_RES_4_IVB(pipe)), I915_READ(PIPE_CRC_RES_5_IVB(pipe))); } static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 res1, res2; if (INTEL_GEN(dev_priv) >= 3) res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); else res1 = 0; if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); else res2 = 0; display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_RED(pipe)), I915_READ(PIPE_CRC_RES_GREEN(pipe)), I915_READ(PIPE_CRC_RES_BLUE(pipe)), res1, res2); } /* The RPS events need forcewake, so we add them to a work queue and mask their * IMR bits until the work is done. Other interrupts can be processed without * the work queue. */ static void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir) { struct drm_i915_private *i915 = gt->i915; struct intel_rps *rps = &i915->gt_pm.rps; const u32 events = i915->pm_rps_events & pm_iir; lockdep_assert_held(&i915->irq_lock); if (unlikely(!events)) return; gen6_mask_pm_irq(gt, events); if (!rps->interrupts_enabled) return; rps->pm_iir |= events; schedule_work(&rps->work); } static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { struct intel_rps *rps = &dev_priv->gt_pm.rps; if (pm_iir & dev_priv->pm_rps_events) { spin_lock(&dev_priv->irq_lock); gen6_mask_pm_irq(&dev_priv->gt, pm_iir & dev_priv->pm_rps_events); if (rps->interrupts_enabled) { rps->pm_iir |= pm_iir & dev_priv->pm_rps_events; schedule_work(&rps->work); } spin_unlock(&dev_priv->irq_lock); } if (INTEL_GEN(dev_priv) >= 8) return; if (pm_iir & PM_VEBOX_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); } static void guc_irq_handler(struct intel_guc *guc, u16 iir) { if (iir & GUC_INTR_GUC2HOST) intel_guc_to_host_event_handler(guc); } static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { I915_WRITE(PIPESTAT(pipe), PIPESTAT_INT_STATUS_MASK | PIPE_FIFO_UNDERRUN_STATUS); dev_priv->pipestat_irq_mask[pipe] = 0; } } static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, u32 iir, u32 pipe_stats[I915_MAX_PIPES]) { int pipe; spin_lock(&dev_priv->irq_lock); if (!dev_priv->display_irqs_enabled) { spin_unlock(&dev_priv->irq_lock); return; } for_each_pipe(dev_priv, pipe) { i915_reg_t reg; u32 status_mask, enable_mask, iir_bit = 0; /* * PIPESTAT bits get signalled even when the interrupt is * disabled with the mask bits, and some of the status bits do * not generate interrupts at all (like the underrun bit). Hence * we need to be careful that we only handle what we want to * handle. */ /* fifo underruns are filterered in the underrun handler. */ status_mask = PIPE_FIFO_UNDERRUN_STATUS; switch (pipe) { case PIPE_A: iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; break; case PIPE_B: iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; break; case PIPE_C: iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; break; } if (iir & iir_bit) status_mask |= dev_priv->pipestat_irq_mask[pipe]; if (!status_mask) continue; reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg) & status_mask; enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); /* * Clear the PIPE*STAT regs before the IIR * * Toggle the enable bits to make sure we get an * edge in the ISR pipe event bit if we don't clear * all the enabled status bits. Otherwise the edge * triggered IIR on i965/g4x wouldn't notice that * an interrupt is still pending. */ if (pipe_stats[pipe]) { I915_WRITE(reg, pipe_stats[pipe]); I915_WRITE(reg, enable_mask); } } spin_unlock(&dev_priv->irq_lock); } static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, u16 iir, u32 pipe_stats[I915_MAX_PIPES]) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(&dev_priv->drm, pipe); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } } static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, u32 iir, u32 pipe_stats[I915_MAX_PIPES]) { bool blc_event = false; enum pipe pipe; for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(&dev_priv->drm, pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev_priv); } static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, u32 iir, u32 pipe_stats[I915_MAX_PIPES]) { bool blc_event = false; enum pipe pipe; for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(&dev_priv->drm, pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev_priv); if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev_priv); } static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, u32 pipe_stats[I915_MAX_PIPES]) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(&dev_priv->drm, pipe); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev_priv); } static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) { u32 hotplug_status = 0, hotplug_status_mask; int i; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; else hotplug_status_mask = HOTPLUG_INT_STATUS_I915; /* * We absolutely have to clear all the pending interrupt * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port * interrupt bit won't have an edge, and the i965/g4x * edge triggered IIR will not notice that an interrupt * is still pending. We can't use PORT_HOTPLUG_EN to * guarantee the edge as the act of toggling the enable * bits can itself generate a new hotplug interrupt :( */ for (i = 0; i < 10; i++) { u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; if (tmp == 0) return hotplug_status; hotplug_status |= tmp; I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); } WARN_ONCE(1, "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", I915_READ(PORT_HOTPLUG_STAT)); return hotplug_status; } static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_status) { u32 pin_mask = 0, long_mask = 0; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; if (hotplug_trigger) { intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, hotplug_trigger, hpd_status_g4x, i9xx_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) dp_aux_irq_handler(dev_priv); } else { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; if (hotplug_trigger) { intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, hotplug_trigger, hpd_status_i915, i9xx_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } } } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 iir, gt_iir, pm_iir; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 ier = 0; gt_iir = I915_READ(GTIIR); pm_iir = I915_READ(GEN6_PMIIR); iir = I915_READ(VLV_IIR); if (gt_iir == 0 && pm_iir == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR * bits this time around. */ I915_WRITE(VLV_MASTER_IER, 0); ier = I915_READ(VLV_IER); I915_WRITE(VLV_IER, 0); if (gt_iir) I915_WRITE(GTIIR, gt_iir); if (pm_iir) I915_WRITE(GEN6_PMIIR, pm_iir); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & (I915_LPE_PIPE_A_INTERRUPT | I915_LPE_PIPE_B_INTERRUPT)) intel_lpe_audio_irq_handler(dev_priv); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) I915_WRITE(VLV_IIR, iir); I915_WRITE(VLV_IER, ier); I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); if (gt_iir) snb_gt_irq_handler(dev_priv, gt_iir); if (pm_iir) gen6_rps_irq_handler(dev_priv, pm_iir); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static irqreturn_t cherryview_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 master_ctl, iir; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 gt_iir[4]; u32 ier = 0; master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; iir = I915_READ(VLV_IIR); if (master_ctl == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL * bits this time around. */ I915_WRITE(GEN8_MASTER_IRQ, 0); ier = I915_READ(VLV_IER); I915_WRITE(VLV_IER, 0); gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & (I915_LPE_PIPE_A_INTERRUPT | I915_LPE_PIPE_B_INTERRUPT | I915_LPE_PIPE_C_INTERRUPT)) intel_lpe_audio_irq_handler(dev_priv); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) I915_WRITE(VLV_IIR, iir); I915_WRITE(VLV_IER, ier); I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; /* * Somehow the PCH doesn't seem to really ack the interrupt to the CPU * unless we touch the hotplug register, even if hotplug_trigger is * zero. Not acking leads to "The master control interrupt lied (SDE)!" * errors. */ dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); if (!hotplug_trigger) { u32 mask = PORTA_HOTPLUG_STATUS_MASK | PORTD_HOTPLUG_STATUS_MASK | PORTC_HOTPLUG_STATUS_MASK | PORTB_HOTPLUG_STATUS_MASK; dig_hotplug_reg &= ~mask; } I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); if (!hotplug_trigger) return; intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, pch_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); if (pch_iir & SDE_AUDIO_POWER_MASK) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK) dp_aux_irq_handler(dev_priv); if (pch_iir & SDE_GMBUS) gmbus_irq_handler(dev_priv); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); if (pch_iir & SDE_TRANSB_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); } static void ivb_err_int_handler(struct drm_i915_private *dev_priv) { u32 err_int = I915_READ(GEN7_ERR_INT); enum pipe pipe; if (err_int & ERR_INT_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { if (IS_IVYBRIDGE(dev_priv)) ivb_pipe_crc_irq_handler(dev_priv, pipe); else hsw_pipe_crc_irq_handler(dev_priv, pipe); } } I915_WRITE(GEN7_ERR_INT, err_int); } static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) { u32 serr_int = I915_READ(SERR_INT); enum pipe pipe; if (serr_int & SERR_INT_POISON) DRM_ERROR("PCH poison interrupt\n"); for_each_pipe(dev_priv, pipe) if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); I915_WRITE(SERR_INT, serr_int); } static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> SDE_AUDIO_POWER_SHIFT_CPT); DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK_CPT) dp_aux_irq_handler(dev_priv); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev_priv); if (pch_iir & SDE_AUDIO_CP_REQ_CPT) DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); if (pch_iir & SDE_AUDIO_CP_CHG_CPT) DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); if (pch_iir & SDE_FDI_MASK_CPT) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & SDE_ERROR_CPT) cpt_serr_int_handler(dev_priv); } static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir, const u32 *pins) { u32 ddi_hotplug_trigger; u32 tc_hotplug_trigger; u32 pin_mask = 0, long_mask = 0; if (HAS_PCH_MCC(dev_priv)) { ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; tc_hotplug_trigger = 0; } else { ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP; } if (ddi_hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, ddi_hotplug_trigger, dig_hotplug_reg, pins, icp_ddi_port_hotplug_long_detect); } if (tc_hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, tc_hotplug_trigger, dig_hotplug_reg, pins, icp_tc_port_hotplug_long_detect); } if (pin_mask) intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); if (pch_iir & SDE_GMBUS_ICP) gmbus_irq_handler(dev_priv); } static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP; u32 pin_mask = 0, long_mask = 0; if (ddi_hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, ddi_hotplug_trigger, dig_hotplug_reg, hpd_tgp, tgp_ddi_port_hotplug_long_detect); } if (tc_hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, tc_hotplug_trigger, dig_hotplug_reg, hpd_tgp, tgp_tc_port_hotplug_long_detect); } if (pin_mask) intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); if (pch_iir & SDE_GMBUS_ICP) gmbus_irq_handler(dev_priv); } static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & ~SDE_PORTE_HOTPLUG_SPT; u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; u32 pin_mask = 0, long_mask = 0; if (hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd_spt, spt_port_hotplug_long_detect); } if (hotplug2_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug2_trigger, dig_hotplug_reg, hpd_spt, spt_port_hotplug2_long_detect); } if (pin_mask) intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev_priv); } static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, ilk_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, u32 de_iir) { enum pipe pipe; u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; if (hotplug_trigger) ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); if (de_iir & DE_AUX_CHANNEL_A) dp_aux_irq_handler(dev_priv); if (de_iir & DE_GSE) intel_opregion_asle_intr(dev_priv); if (de_iir & DE_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (de_iir & DE_PIPE_VBLANK(pipe)) drm_handle_vblank(&dev_priv->drm, pipe); if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (de_iir & DE_PIPE_CRC_DONE(pipe)) i9xx_pipe_crc_irq_handler(dev_priv, pipe); } /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { u32 pch_iir = I915_READ(SDEIIR); if (HAS_PCH_CPT(dev_priv)) cpt_irq_handler(dev_priv, pch_iir); else ibx_irq_handler(dev_priv, pch_iir); /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) ironlake_rps_change_irq_handler(dev_priv); } static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, u32 de_iir) { enum pipe pipe; u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; if (hotplug_trigger) ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); if (de_iir & DE_ERR_INT_IVB) ivb_err_int_handler(dev_priv); if (de_iir & DE_EDP_PSR_INT_HSW) { u32 psr_iir = I915_READ(EDP_PSR_IIR); intel_psr_irq_handler(dev_priv, psr_iir); I915_WRITE(EDP_PSR_IIR, psr_iir); } if (de_iir & DE_AUX_CHANNEL_A_IVB) dp_aux_irq_handler(dev_priv); if (de_iir & DE_GSE_IVB) intel_opregion_asle_intr(dev_priv); for_each_pipe(dev_priv, pipe) { if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) drm_handle_vblank(&dev_priv->drm, pipe); } /* check event from PCH */ if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev_priv, pch_iir); /* clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } } /* * To handle irqs with the minimum potential races with fresh interrupts, we: * 1 - Disable Master Interrupt Control. * 2 - Find the source(s) of the interrupt. * 3 - Clear the Interrupt Identity bits (IIR). * 4 - Process the interrupt(s) that had bits set in the IIRs. * 5 - Re-enable Master Interrupt Control. */ static irqreturn_t ironlake_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; u32 de_iir, gt_iir, de_ier, sde_ier = 0; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(dev_priv)) { sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); } /* Find, clear, then process each source of interrupt */ gt_iir = I915_READ(GTIIR); if (gt_iir) { I915_WRITE(GTIIR, gt_iir); ret = IRQ_HANDLED; if (INTEL_GEN(dev_priv) >= 6) snb_gt_irq_handler(dev_priv, gt_iir); else ilk_gt_irq_handler(dev_priv, gt_iir); } de_iir = I915_READ(DEIIR); if (de_iir) { I915_WRITE(DEIIR, de_iir); ret = IRQ_HANDLED; if (INTEL_GEN(dev_priv) >= 7) ivb_display_irq_handler(dev_priv, de_iir); else ilk_display_irq_handler(dev_priv, de_iir); } if (INTEL_GEN(dev_priv) >= 6) { u32 pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) { I915_WRITE(GEN6_PMIIR, pm_iir); ret = IRQ_HANDLED; gen6_rps_irq_handler(dev_priv, pm_iir); } } I915_WRITE(DEIER, de_ier); if (!HAS_PCH_NOP(dev_priv)) I915_WRITE(SDEIER, sde_ier); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, bxt_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) { u32 pin_mask = 0, long_mask = 0; u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; long_pulse_detect_func long_pulse_detect; const u32 *hpd; if (INTEL_GEN(dev_priv) >= 12) { long_pulse_detect = gen12_port_hotplug_long_detect; hpd = hpd_gen12; } else { long_pulse_detect = gen11_port_hotplug_long_detect; hpd = hpd_gen11; } if (trigger_tc) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc, dig_hotplug_reg, hpd, long_pulse_detect); } if (trigger_tbt) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt, dig_hotplug_reg, hpd, long_pulse_detect); } if (pin_mask) intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); else DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir); } static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) { u32 mask; if (INTEL_GEN(dev_priv) >= 12) /* TODO: Add AUX entries for USBC */ return TGL_DE_PORT_AUX_DDIA | TGL_DE_PORT_AUX_DDIB | TGL_DE_PORT_AUX_DDIC; mask = GEN8_AUX_CHANNEL_A; if (INTEL_GEN(dev_priv) >= 9) mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11)) mask |= CNL_AUX_CHANNEL_F; if (IS_GEN(dev_priv, 11)) mask |= ICL_AUX_CHANNEL_E; return mask; } static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; else return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; } static irqreturn_t gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) { irqreturn_t ret = IRQ_NONE; u32 iir; enum pipe pipe; if (master_ctl & GEN8_DE_MISC_IRQ) { iir = I915_READ(GEN8_DE_MISC_IIR); if (iir) { bool found = false; I915_WRITE(GEN8_DE_MISC_IIR, iir); ret = IRQ_HANDLED; if (iir & GEN8_DE_MISC_GSE) { intel_opregion_asle_intr(dev_priv); found = true; } if (iir & GEN8_DE_EDP_PSR) { u32 psr_iir = I915_READ(EDP_PSR_IIR); intel_psr_irq_handler(dev_priv, psr_iir); I915_WRITE(EDP_PSR_IIR, psr_iir); found = true; } if (!found) DRM_ERROR("Unexpected DE Misc interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); } if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { iir = I915_READ(GEN11_DE_HPD_IIR); if (iir) { I915_WRITE(GEN11_DE_HPD_IIR, iir); ret = IRQ_HANDLED; gen11_hpd_irq_handler(dev_priv, iir); } else { DRM_ERROR("The master control interrupt lied, (DE HPD)!\n"); } } if (master_ctl & GEN8_DE_PORT_IRQ) { iir = I915_READ(GEN8_DE_PORT_IIR); if (iir) { u32 tmp_mask; bool found = false; I915_WRITE(GEN8_DE_PORT_IIR, iir); ret = IRQ_HANDLED; if (iir & gen8_de_port_aux_mask(dev_priv)) { dp_aux_irq_handler(dev_priv); found = true; } if (IS_GEN9_LP(dev_priv)) { tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; if (tmp_mask) { bxt_hpd_irq_handler(dev_priv, tmp_mask, hpd_bxt); found = true; } } else if (IS_BROADWELL(dev_priv)) { tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; if (tmp_mask) { ilk_hpd_irq_handler(dev_priv, tmp_mask, hpd_bdw); found = true; } } if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { gmbus_irq_handler(dev_priv); found = true; } if (!found) DRM_ERROR("Unexpected DE Port interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); } for_each_pipe(dev_priv, pipe) { u32 fault_errors; if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) continue; iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); if (!iir) { DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); continue; } ret = IRQ_HANDLED; I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); if (iir & GEN8_PIPE_VBLANK) drm_handle_vblank(&dev_priv->drm, pipe); if (iir & GEN8_PIPE_CDCLK_CRC_DONE) hsw_pipe_crc_irq_handler(dev_priv, pipe); if (iir & GEN8_PIPE_FIFO_UNDERRUN) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); if (fault_errors) DRM_ERROR("Fault errors on pipe %c: 0x%08x\n", pipe_name(pipe), fault_errors); } if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && master_ctl & GEN8_DE_PCH_IRQ) { /* * FIXME(BDW): Assume for now that the new interrupt handling * scheme also closed the SDE interrupt handling race we've seen * on older pch-split platforms. But this needs testing. */ iir = I915_READ(SDEIIR); if (iir) { I915_WRITE(SDEIIR, iir); ret = IRQ_HANDLED; if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP) tgp_irq_handler(dev_priv, iir); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC) icp_irq_handler(dev_priv, iir, hpd_mcc); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) icp_irq_handler(dev_priv, iir, hpd_icp); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) spt_irq_handler(dev_priv, iir); else cpt_irq_handler(dev_priv, iir); } else { /* * Like on previous PCH there seems to be something * fishy going on with forwarding PCH interrupts. */ DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); } } return ret; } static inline u32 gen8_master_intr_disable(void __iomem * const regs) { raw_reg_write(regs, GEN8_MASTER_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return raw_reg_read(regs, GEN8_MASTER_IRQ); } static inline void gen8_master_intr_enable(void __iomem * const regs) { raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); } static irqreturn_t gen8_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; void __iomem * const regs = dev_priv->uncore.regs; u32 master_ctl; u32 gt_iir[4]; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; master_ctl = gen8_master_intr_disable(regs); if (!master_ctl) { gen8_master_intr_enable(regs); return IRQ_NONE; } /* Find, clear, then process each source of interrupt */ gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ if (master_ctl & ~GEN8_GT_IRQS) { disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); gen8_de_irq_handler(dev_priv, master_ctl); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); } gen8_master_intr_enable(regs); gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir); return IRQ_HANDLED; } static u32 gen11_gt_engine_identity(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = gt->uncore->regs; u32 timeout_ts; u32 ident; lockdep_assert_held(>->i915->irq_lock); raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); /* * NB: Specs do not specify how long to spin wait, * so we do ~100us as an educated guess. */ timeout_ts = (local_clock() >> 10) + 100; do { ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); } while (!(ident & GEN11_INTR_DATA_VALID) && !time_after32(local_clock() >> 10, timeout_ts)); if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", bank, bit, ident); return 0; } raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), GEN11_INTR_DATA_VALID); return ident; } static void gen11_other_irq_handler(struct intel_gt *gt, const u8 instance, const u16 iir) { if (instance == OTHER_GUC_INSTANCE) return guc_irq_handler(>->uc.guc, iir); if (instance == OTHER_GTPM_INSTANCE) return gen11_rps_irq_handler(gt, iir); WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", instance, iir); } static void gen11_engine_irq_handler(struct intel_gt *gt, const u8 class, const u8 instance, const u16 iir) { struct intel_engine_cs *engine; if (instance <= MAX_ENGINE_INSTANCE) engine = gt->engine_class[class][instance]; else engine = NULL; if (likely(engine)) return gen8_cs_irq_handler(engine, iir); WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n", class, instance); } static void gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity) { const u8 class = GEN11_INTR_ENGINE_CLASS(identity); const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); const u16 intr = GEN11_INTR_ENGINE_INTR(identity); if (unlikely(!intr)) return; if (class <= COPY_ENGINE_CLASS) return gen11_engine_irq_handler(gt, class, instance, intr); if (class == OTHER_CLASS) return gen11_other_irq_handler(gt, instance, intr); WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", class, instance, intr); } static void gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank) { void __iomem * const regs = gt->uncore->regs; unsigned long intr_dw; unsigned int bit; lockdep_assert_held(>->i915->irq_lock); intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); for_each_set_bit(bit, &intr_dw, 32) { const u32 ident = gen11_gt_engine_identity(gt, bank, bit); gen11_gt_identity_handler(gt, ident); } /* Clear must be after shared has been served for engine */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); } static void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl) { struct drm_i915_private *i915 = gt->i915; unsigned int bank; spin_lock(&i915->irq_lock); for (bank = 0; bank < 2; bank++) { if (master_ctl & GEN11_GT_DW_IRQ(bank)) gen11_gt_bank_handler(gt, bank); } spin_unlock(&i915->irq_lock); } static u32 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl) { void __iomem * const regs = gt->uncore->regs; u32 iir; if (!(master_ctl & GEN11_GU_MISC_IRQ)) return 0; iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); if (likely(iir)) raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); return iir; } static void gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir) { if (iir & GEN11_GU_MISC_GSE) intel_opregion_asle_intr(gt->i915); } static inline u32 gen11_master_intr_disable(void __iomem * const regs) { raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); } static inline void gen11_master_intr_enable(void __iomem * const regs) { raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); } static irqreturn_t gen11_irq_handler(int irq, void *arg) { struct drm_i915_private * const i915 = arg; void __iomem * const regs = i915->uncore.regs; struct intel_gt *gt = &i915->gt; u32 master_ctl; u32 gu_misc_iir; if (!intel_irqs_enabled(i915)) return IRQ_NONE; master_ctl = gen11_master_intr_disable(regs); if (!master_ctl) { gen11_master_intr_enable(regs); return IRQ_NONE; } /* Find, clear, then process each source of interrupt. */ gen11_gt_irq_handler(gt, master_ctl); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ if (master_ctl & GEN11_DISPLAY_IRQ) { const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); disable_rpm_wakeref_asserts(&i915->runtime_pm); /* * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ * for the display related bits. */ gen8_de_irq_handler(i915, disp_ctl); enable_rpm_wakeref_asserts(&i915->runtime_pm); } gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); gen11_master_intr_enable(regs); gen11_gu_misc_irq_handler(gt, gu_misc_iir); return IRQ_HANDLED; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ int i8xx_enable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } int i945gm_enable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); if (dev_priv->i945gm_vblank.enabled++ == 0) schedule_work(&dev_priv->i945gm_vblank.work); return i8xx_enable_vblank(crtc); } int i965_enable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } int ilk_enable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; u32 bit = INTEL_GEN(dev_priv) >= 7 ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ilk_enable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); /* Even though there is no DMC, frame counter can get stuck when * PSR is active as no frames are generated. */ if (HAS_PSR(dev_priv)) drm_crtc_vblank_restore(crtc); return 0; } int bdw_enable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); /* Even if there is no DMC, frame counter can get stuck when * PSR is active as no frames are generated, so check only for PSR. */ if (HAS_PSR(dev_priv)) drm_crtc_vblank_restore(crtc); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ void i8xx_disable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } void i945gm_disable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); i8xx_disable_vblank(crtc); if (--dev_priv->i945gm_vblank.enabled == 0) schedule_work(&dev_priv->i945gm_vblank.work); } void i965_disable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } void ilk_disable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; u32 bit = INTEL_GEN(dev_priv) >= 7 ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ilk_disable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } void bdw_disable_vblank(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); enum pipe pipe = to_intel_crtc(crtc)->pipe; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void i945gm_vblank_work_func(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, i945gm_vblank.work); /* * Vblank interrupts fail to wake up the device from C3, * hence we want to prevent C3 usage while vblank interrupts * are enabled. */ pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos, READ_ONCE(dev_priv->i945gm_vblank.enabled) ? dev_priv->i945gm_vblank.c3_disable_latency : PM_QOS_DEFAULT_VALUE); } static int cstate_disable_latency(const char *name) { const struct cpuidle_driver *drv; int i; drv = cpuidle_get_driver(); if (!drv) return 0; for (i = 0; i < drv->state_count; i++) { const struct cpuidle_state *state = &drv->states[i]; if (!strcmp(state->name, name)) return state->exit_latency ? state->exit_latency - 1 : 0; } return 0; } static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv) { INIT_WORK(&dev_priv->i945gm_vblank.work, i945gm_vblank_work_func); dev_priv->i945gm_vblank.c3_disable_latency = cstate_disable_latency("C3"); pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); } static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv) { cancel_work_sync(&dev_priv->i945gm_vblank.work); pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos); } static void ibx_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; if (HAS_PCH_NOP(dev_priv)) return; GEN3_IRQ_RESET(uncore, SDE); if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) I915_WRITE(SERR_INT, 0xffffffff); } /* * SDEIER is also touched by the interrupt handler to work around missed PCH * interrupts. Hence we can't update it after the interrupt handler is enabled - * instead we unconditionally enable all PCH interrupt sources here, but then * only unmask them as needed with SDEIMR. * * This function needs to be called before interrupts are enabled. */ static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv) { if (HAS_PCH_NOP(dev_priv)) return; WARN_ON(I915_READ(SDEIER) != 0); I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); } static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; GEN3_IRQ_RESET(uncore, GT); if (INTEL_GEN(dev_priv) >= 6) GEN3_IRQ_RESET(uncore, GEN6_PM); } static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; if (IS_CHERRYVIEW(dev_priv)) intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); else intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK); i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); i9xx_pipestat_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, VLV_); dev_priv->irq_mask = ~0u; } static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 pipestat_mask; u32 enable_mask; enum pipe pipe; pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); for_each_pipe(dev_priv, pipe) i915_enable_pipestat(dev_priv, pipe, pipestat_mask); enable_mask = I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_LPE_PIPE_A_INTERRUPT | I915_LPE_PIPE_B_INTERRUPT; if (IS_CHERRYVIEW(dev_priv)) enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | I915_LPE_PIPE_C_INTERRUPT; WARN_ON(dev_priv->irq_mask != ~0u); dev_priv->irq_mask = ~enable_mask; GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); } /* drm_dma.h hooks */ static void ironlake_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; GEN3_IRQ_RESET(uncore, DE); if (IS_GEN(dev_priv, 7)) intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); if (IS_HASWELL(dev_priv)) { intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); } gen5_gt_irq_reset(dev_priv); ibx_irq_reset(dev_priv); } static void valleyview_irq_reset(struct drm_i915_private *dev_priv) { I915_WRITE(VLV_MASTER_IER, 0); POSTING_READ(VLV_MASTER_IER); gen5_gt_irq_reset(dev_priv); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; GEN8_IRQ_RESET_NDX(uncore, GT, 0); GEN8_IRQ_RESET_NDX(uncore, GT, 1); GEN8_IRQ_RESET_NDX(uncore, GT, 2); GEN8_IRQ_RESET_NDX(uncore, GT, 3); } static void gen8_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; int pipe; gen8_master_intr_disable(dev_priv->uncore.regs); gen8_gt_irq_reset(dev_priv); intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); GEN3_IRQ_RESET(uncore, GEN8_PCU_); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_reset(dev_priv); } static void gen11_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; /* Disable RCS, BCS, VCS and VECS class engines. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0); /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0); } static void gen11_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; int pipe; gen11_master_intr_disable(dev_priv->uncore.regs); gen11_gt_irq_reset(&dev_priv->gt); intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); GEN3_IRQ_RESET(uncore, GEN8_PCU_); if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) GEN3_IRQ_RESET(uncore, SDE); } void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, u8 pipe_mask) { struct intel_uncore *uncore = &dev_priv->uncore; u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; enum pipe pipe; spin_lock_irq(&dev_priv->irq_lock); if (!intel_irqs_enabled(dev_priv)) { spin_unlock_irq(&dev_priv->irq_lock); return; } for_each_pipe_masked(dev_priv, pipe, pipe_mask) GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, dev_priv->de_irq_mask[pipe], ~dev_priv->de_irq_mask[pipe] | extra_ier); spin_unlock_irq(&dev_priv->irq_lock); } void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, u8 pipe_mask) { struct intel_uncore *uncore = &dev_priv->uncore; enum pipe pipe; spin_lock_irq(&dev_priv->irq_lock); if (!intel_irqs_enabled(dev_priv)) { spin_unlock_irq(&dev_priv->irq_lock); return; } for_each_pipe_masked(dev_priv, pipe, pipe_mask) GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); spin_unlock_irq(&dev_priv->irq_lock); /* make sure we're done processing display irqs */ intel_synchronize_irq(dev_priv); } static void cherryview_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN8_PCU_); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, const u32 hpd[HPD_NUM_PINS]) { struct intel_encoder *encoder; u32 enabled_irqs = 0; for_each_intel_encoder(&dev_priv->drm, encoder) if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) enabled_irqs |= hpd[encoder->hpd_pin]; return enabled_irqs; } static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) { u32 hotplug; /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec). * The pulse duration bits are reserved on LPT+. */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTB_PULSE_DURATION_MASK | PORTC_PULSE_DURATION_MASK | PORTD_PULSE_DURATION_MASK); hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; /* * When CPU and PCH are on the same package, port A * HPD must be enabled in both north and south. */ if (HAS_PCH_LPT_LP(dev_priv)) hotplug |= PORTA_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; if (HAS_PCH_IBX(dev_priv)) { hotplug_irqs = SDE_HOTPLUG_MASK; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); } else { hotplug_irqs = SDE_HOTPLUG_MASK_CPT; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); } ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); ibx_hpd_detection_setup(dev_priv); } static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv, u32 ddi_hotplug_enable_mask, u32 tc_hotplug_enable_mask) { u32 hotplug; hotplug = I915_READ(SHOTPLUG_CTL_DDI); hotplug |= ddi_hotplug_enable_mask; I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); if (tc_hotplug_enable_mask) { hotplug = I915_READ(SHOTPLUG_CTL_TC); hotplug |= tc_hotplug_enable_mask; I915_WRITE(SHOTPLUG_CTL_TC, hotplug); } } static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp); ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK); } static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; hotplug_irqs = SDE_DDI_MASK_TGP; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc); ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0); } static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp); ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK); } static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv) { u32 hotplug; hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); } static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; const u32 *hpd; u32 val; hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd); hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK; val = I915_READ(GEN11_DE_HPD_IMR); val &= ~hotplug_irqs; I915_WRITE(GEN11_DE_HPD_IMR, val); POSTING_READ(GEN11_DE_HPD_IMR); gen11_hpd_detection_setup(dev_priv); if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP) tgp_hpd_irq_setup(dev_priv); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) icp_hpd_irq_setup(dev_priv); } static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) { u32 val, hotplug; /* Display WA #1179 WaHardHangonHotPlug: cnp */ if (HAS_PCH_CNP(dev_priv)) { val = I915_READ(SOUTH_CHICKEN1); val &= ~CHASSIS_CLK_REQ_DURATION_MASK; val |= CHASSIS_CLK_REQ_DURATION(0xf); I915_WRITE(SOUTH_CHICKEN1, val); } /* Enable digital hotplug on the PCH */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug |= PORTA_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE | PORTD_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); hotplug = I915_READ(PCH_PORT_HOTPLUG2); hotplug |= PORTE_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); } static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; hotplug_irqs = SDE_HOTPLUG_MASK_SPT; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); spt_hpd_detection_setup(dev_priv); } static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) { u32 hotplug; /* * Enable digital hotplug on the CPU, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * The pulse duration bits are reserved on HSW+. */ hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms; I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); } static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; if (INTEL_GEN(dev_priv) >= 8) { hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); } else if (INTEL_GEN(dev_priv) >= 7) { hotplug_irqs = DE_DP_A_HOTPLUG_IVB; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); } else { hotplug_irqs = DE_DP_A_HOTPLUG; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); } ilk_hpd_detection_setup(dev_priv); ibx_hpd_irq_setup(dev_priv); } static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, u32 enabled_irqs) { u32 hotplug; hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug |= PORTA_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE; DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", hotplug, enabled_irqs); hotplug &= ~BXT_DDI_HPD_INVERT_MASK; /* * For BXT invert bit has to be set based on AOB design * for HPD detection logic, update it based on VBT fields. */ if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) hotplug |= BXT_DDIA_HPD_INVERT; if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) hotplug |= BXT_DDIB_HPD_INVERT; if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) hotplug |= BXT_DDIC_HPD_INVERT; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) { __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); } static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, enabled_irqs; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); __bxt_hpd_detection_setup(dev_priv, enabled_irqs); } static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) { u32 mask; if (HAS_PCH_NOP(dev_priv)) return; if (HAS_PCH_IBX(dev_priv)) mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; else mask = SDE_GMBUS_CPT; gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); I915_WRITE(SDEIMR, ~mask); if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) ibx_hpd_detection_setup(dev_priv); else spt_hpd_detection_setup(dev_priv); } static void gen5_gt_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 pm_irqs, gt_irqs; pm_irqs = gt_irqs = 0; dev_priv->gt_irq_mask = ~0; if (HAS_L3_DPF(dev_priv)) { /* L3 parity interrupt is always unmasked. */ dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); gt_irqs |= GT_PARITY_ERROR(dev_priv); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (IS_GEN(dev_priv, 5)) { gt_irqs |= ILK_BSD_USER_INTERRUPT; } else { gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; } GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs); if (INTEL_GEN(dev_priv) >= 6) { /* * RPS interrupts will get enabled/disabled on demand when RPS * itself is enabled/disabled. */ if (HAS_ENGINE(dev_priv, VECS0)) { pm_irqs |= PM_VEBOX_USER_INTERRUPT; dev_priv->gt.pm_ier |= PM_VEBOX_USER_INTERRUPT; } dev_priv->gt.pm_imr = 0xffffffff; GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->gt.pm_imr, pm_irqs); } } static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 display_mask, extra_mask; if (INTEL_GEN(dev_priv) >= 7) { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | DE_DP_A_HOTPLUG_IVB); } else { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | DE_POISON); extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | DE_DP_A_HOTPLUG); } if (IS_HASWELL(dev_priv)) { gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); intel_psr_irq_control(dev_priv, dev_priv->psr.debug); display_mask |= DE_EDP_PSR_INT_HSW; } dev_priv->irq_mask = ~display_mask; ibx_irq_pre_postinstall(dev_priv); GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, display_mask | extra_mask); gen5_gt_irq_postinstall(dev_priv); ilk_hpd_detection_setup(dev_priv); ibx_irq_postinstall(dev_priv); if (IS_IRONLAKE_M(dev_priv)) { /* Enable PCU event interrupts * * spinlocking not required here for correctness since interrupt * setup is guaranteed to run in single-threaded context. But we * need it to make the assert_spin_locked happy. */ spin_lock_irq(&dev_priv->irq_lock); ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); spin_unlock_irq(&dev_priv->irq_lock); } } void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) { lockdep_assert_held(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = true; if (intel_irqs_enabled(dev_priv)) { vlv_display_irq_reset(dev_priv); vlv_display_irq_postinstall(dev_priv); } } void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) { lockdep_assert_held(&dev_priv->irq_lock); if (!dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = false; if (intel_irqs_enabled(dev_priv)) vlv_display_irq_reset(dev_priv); } static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) { gen5_gt_irq_postinstall(dev_priv); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); POSTING_READ(VLV_MASTER_IER); } static void gen8_gt_irq_postinstall(struct drm_i915_private *i915) { struct intel_gt *gt = &i915->gt; struct intel_uncore *uncore = gt->uncore; /* These are interrupts we'll toggle with the ring mask register */ u32 gt_interrupts[] = { (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT), (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT), 0, (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT) }; gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]); GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. Same wil be the case for GuC interrupts. */ GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier); GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]); } static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; u32 de_pipe_enables; u32 de_port_masked = GEN8_AUX_CHANNEL_A; u32 de_port_enables; u32 de_misc_masked = GEN8_DE_EDP_PSR; enum pipe pipe; if (INTEL_GEN(dev_priv) <= 10) de_misc_masked |= GEN8_DE_MISC_GSE; if (INTEL_GEN(dev_priv) >= 9) { de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; if (IS_GEN9_LP(dev_priv)) de_port_masked |= BXT_DE_PORT_GMBUS; } else { de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; } if (INTEL_GEN(dev_priv) >= 11) de_port_masked |= ICL_AUX_CHANNEL_E; if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11) de_port_masked |= CNL_AUX_CHANNEL_F; de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; de_port_enables = de_port_masked; if (IS_GEN9_LP(dev_priv)) de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; else if (IS_BROADWELL(dev_priv)) de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); intel_psr_irq_control(dev_priv, dev_priv->psr.debug); for_each_pipe(dev_priv, pipe) { dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, dev_priv->de_irq_mask[pipe], de_pipe_enables); } GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); if (INTEL_GEN(dev_priv) >= 11) { u32 de_hpd_masked = 0; u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK; GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables); gen11_hpd_detection_setup(dev_priv); } else if (IS_GEN9_LP(dev_priv)) { bxt_hpd_detection_setup(dev_priv); } else if (IS_BROADWELL(dev_priv)) { ilk_hpd_detection_setup(dev_priv); } } static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) { if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_pre_postinstall(dev_priv); gen8_gt_irq_postinstall(dev_priv); gen8_de_irq_postinstall(dev_priv); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_postinstall(dev_priv); gen8_master_intr_enable(dev_priv->uncore.regs); } static void gen11_gt_irq_postinstall(struct intel_gt *gt) { const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT; struct intel_uncore *uncore = gt->uncore; const u32 dmask = irqs << 16 | irqs; const u32 smask = irqs << 16; BUILD_BUG_ON(irqs & 0xffff0000); /* Enable RCS, BCS, VCS and VECS class interrupts. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask); /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. */ gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); /* Same thing for GuC interrupts */ intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0); } static void icp_irq_postinstall(struct drm_i915_private *dev_priv) { u32 mask = SDE_GMBUS_ICP; WARN_ON(I915_READ(SDEIER) != 0); I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); I915_WRITE(SDEIMR, ~mask); if (HAS_PCH_TGP(dev_priv)) icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK); else if (HAS_PCH_MCC(dev_priv)) icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0); else icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK); } static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 gu_misc_masked = GEN11_GU_MISC_GSE; if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) icp_irq_postinstall(dev_priv); gen11_gt_irq_postinstall(&dev_priv->gt); gen8_de_irq_postinstall(dev_priv); GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); gen11_master_intr_enable(uncore->regs); POSTING_READ(GEN11_GFX_MSTR_IRQ); } static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) { gen8_gt_irq_postinstall(dev_priv); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); } static void i8xx_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; i9xx_pipestat_irq_reset(dev_priv); GEN2_IRQ_RESET(uncore); } static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u16 enable_mask; intel_uncore_write16(uncore, EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } static void i8xx_error_irq_ack(struct drm_i915_private *i915, u16 *eir, u16 *eir_stuck) { struct intel_uncore *uncore = &i915->uncore; u16 emr; *eir = intel_uncore_read16(uncore, EIR); if (*eir) intel_uncore_write16(uncore, EIR, *eir); *eir_stuck = intel_uncore_read16(uncore, EIR); if (*eir_stuck == 0) return; /* * Toggle all EMR bits to make sure we get an edge * in the ISR master error bit if we don't clear * all the EIR bits. Otherwise the edge triggered * IIR on i965/g4x wouldn't notice that an interrupt * is still pending. Also some EIR bits can't be * cleared except by handling the underlying error * (or by a GPU reset) so we mask any bit that * remains set. */ emr = intel_uncore_read16(uncore, EMR); intel_uncore_write16(uncore, EMR, 0xffff); intel_uncore_write16(uncore, EMR, emr | *eir_stuck); } static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, u16 eir, u16 eir_stuck) { DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); if (eir_stuck) DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck); } static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, u32 *eir, u32 *eir_stuck) { u32 emr; *eir = I915_READ(EIR); I915_WRITE(EIR, *eir); *eir_stuck = I915_READ(EIR); if (*eir_stuck == 0) return; /* * Toggle all EMR bits to make sure we get an edge * in the ISR master error bit if we don't clear * all the EIR bits. Otherwise the edge triggered * IIR on i965/g4x wouldn't notice that an interrupt * is still pending. Also some EIR bits can't be * cleared except by handling the underlying error * (or by a GPU reset) so we mask any bit that * remains set. */ emr = I915_READ(EMR); I915_WRITE(EMR, 0xffffffff); I915_WRITE(EMR, emr | *eir_stuck); } static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, u32 eir, u32 eir_stuck) { DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); if (eir_stuck) DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck); } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u16 eir = 0, eir_stuck = 0; u16 iir; iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); if (iir & I915_MASTER_ERROR_INTERRUPT) i8xx_error_irq_handler(dev_priv, eir, eir_stuck); i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void i915_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; if (I915_HAS_HOTPLUG(dev_priv)) { i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } i9xx_pipestat_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN2_); } static void i915_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 enable_mask; I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev_priv)) { /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); i915_enable_asle_pipestat(dev_priv); } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u32 eir = 0, eir_stuck = 0; u32 hotplug_status = 0; u32 iir; iir = I915_READ(GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; if (I915_HAS_HOTPLUG(dev_priv) && iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); I915_WRITE(GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_handler(dev_priv, eir, eir_stuck); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void i965_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); i9xx_pipestat_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN2_); } static void i965_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 enable_mask; u32 error_mask; /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev_priv)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (IS_G4X(dev_priv)) enable_mask |= I915_BSD_USER_INTERRUPT; GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); i915_enable_asle_pipestat(dev_priv); } static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_en; lockdep_assert_held(&dev_priv->irq_lock); /* Note HDMI and DP share hotplug bits */ /* enable bits are the same for all generations */ hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev_priv)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; /* Ignore TV since it's buggy */ i915_hotplug_interrupt_update_locked(dev_priv, HOTPLUG_INT_EN_MASK | CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | CRT_HOTPLUG_ACTIVATION_PERIOD_64, hotplug_en); } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u32 eir = 0, eir_stuck = 0; u32 hotplug_status = 0; u32 iir; iir = I915_READ(GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); I915_WRITE(GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]); if (iir & I915_BSD_USER_INTERRUPT) intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_handler(dev_priv, eir, eir_stuck); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } /** * intel_irq_init - initializes irq support * @dev_priv: i915 device instance * * This function initializes all the irq support including work items, timers * and all the vtables. It does not setup the interrupt itself though. */ void intel_irq_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct intel_rps *rps = &dev_priv->gt_pm.rps; int i; if (IS_I945GM(dev_priv)) i945gm_vblank_work_init(dev_priv); intel_hpd_init_work(dev_priv); INIT_WORK(&rps->work, gen6_pm_rps_work); INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); for (i = 0; i < MAX_L3_SLICES; ++i) dev_priv->l3_parity.remap_info[i] = NULL; /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11) dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16; /* Let's track the enabled rps events */ if (IS_VALLEYVIEW(dev_priv)) /* WaGsvRC0ResidencyMethod:vlv */ dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED; else dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); /* We share the register with other engine */ if (INTEL_GEN(dev_priv) > 9) GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000); rps->pm_intrmsk_mbz = 0; /* * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer * if GEN6_PM_UP_EI_EXPIRED is masked. * * TODO: verify if this can be reproduced on VLV,CHV. */ if (INTEL_GEN(dev_priv) <= 7) rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; if (INTEL_GEN(dev_priv) >= 8) rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; dev->vblank_disable_immediate = true; /* Most platforms treat the display irq block as an always-on * power domain. vlv/chv can disable it at runtime and need * special care to avoid writing any of the display block registers * outside of the power domain. We defer setting up the display irqs * in this case to the runtime pm. */ dev_priv->display_irqs_enabled = true; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->display_irqs_enabled = false; dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; /* If we have MST support, we want to avoid doing short HPD IRQ storm * detection, as short HPD storms will occur as a natural part of * sideband messaging with MST. * On older platforms however, IRQ storms can occur with both long and * short pulses, as seen on some G4x systems. */ dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); if (HAS_GMCH(dev_priv)) { if (I915_HAS_HOTPLUG(dev_priv)) dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else { if (HAS_PCH_MCC(dev_priv)) /* EHL doesn't need most of gen11_hpd_irq_setup */ dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup; else if (INTEL_GEN(dev_priv) >= 11) dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; else if (IS_GEN9_LP(dev_priv)) dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; else dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; } } /** * intel_irq_fini - deinitializes IRQ support * @i915: i915 device instance * * This function deinitializes all the IRQ support. */ void intel_irq_fini(struct drm_i915_private *i915) { int i; if (IS_I945GM(i915)) i945gm_vblank_work_fini(i915); for (i = 0; i < MAX_L3_SLICES; ++i) kfree(i915->l3_parity.remap_info[i]); } static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) return cherryview_irq_handler; else if (IS_VALLEYVIEW(dev_priv)) return valleyview_irq_handler; else if (IS_GEN(dev_priv, 4)) return i965_irq_handler; else if (IS_GEN(dev_priv, 3)) return i915_irq_handler; else return i8xx_irq_handler; } else { if (INTEL_GEN(dev_priv) >= 11) return gen11_irq_handler; else if (INTEL_GEN(dev_priv) >= 8) return gen8_irq_handler; else return ironlake_irq_handler; } } static void intel_irq_reset(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) cherryview_irq_reset(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) valleyview_irq_reset(dev_priv); else if (IS_GEN(dev_priv, 4)) i965_irq_reset(dev_priv); else if (IS_GEN(dev_priv, 3)) i915_irq_reset(dev_priv); else i8xx_irq_reset(dev_priv); } else { if (INTEL_GEN(dev_priv) >= 11) gen11_irq_reset(dev_priv); else if (INTEL_GEN(dev_priv) >= 8) gen8_irq_reset(dev_priv); else ironlake_irq_reset(dev_priv); } } static void intel_irq_postinstall(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) cherryview_irq_postinstall(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) valleyview_irq_postinstall(dev_priv); else if (IS_GEN(dev_priv, 4)) i965_irq_postinstall(dev_priv); else if (IS_GEN(dev_priv, 3)) i915_irq_postinstall(dev_priv); else i8xx_irq_postinstall(dev_priv); } else { if (INTEL_GEN(dev_priv) >= 11) gen11_irq_postinstall(dev_priv); else if (INTEL_GEN(dev_priv) >= 8) gen8_irq_postinstall(dev_priv); else ironlake_irq_postinstall(dev_priv); } } /** * intel_irq_install - enables the hardware interrupt * @dev_priv: i915 device instance * * This function enables the hardware interrupt handling, but leaves the hotplug * handling still disabled. It is called after intel_irq_init(). * * In the driver load and resume code we need working interrupts in a few places * but don't want to deal with the hassle of concurrent probe and hotplug * workers. Hence the split into this two-stage approach. */ int intel_irq_install(struct drm_i915_private *dev_priv) { int irq = dev_priv->drm.pdev->irq; int ret; /* * We enable some interrupt sources in our postinstall hooks, so mark * interrupts as enabled _before_ actually enabling them to avoid * special cases in our ordering checks. */ dev_priv->runtime_pm.irqs_enabled = true; dev_priv->drm.irq_enabled = true; intel_irq_reset(dev_priv); ret = request_irq(irq, intel_irq_handler(dev_priv), IRQF_SHARED, DRIVER_NAME, dev_priv); if (ret < 0) { dev_priv->drm.irq_enabled = false; return ret; } intel_irq_postinstall(dev_priv); return ret; } /** * intel_irq_uninstall - finilizes all irq handling * @dev_priv: i915 device instance * * This stops interrupt and hotplug handling and unregisters and frees all * resources acquired in the init functions. */ void intel_irq_uninstall(struct drm_i915_private *dev_priv) { int irq = dev_priv->drm.pdev->irq; /* * FIXME we can get called twice during driver load * error handling due to intel_modeset_cleanup() * calling us out of sequence. Would be nice if * it didn't do that... */ if (!dev_priv->drm.irq_enabled) return; dev_priv->drm.irq_enabled = false; intel_irq_reset(dev_priv); free_irq(irq, dev_priv); intel_hpd_cancel_work(dev_priv); dev_priv->runtime_pm.irqs_enabled = false; } /** * intel_runtime_pm_disable_interrupts - runtime interrupt disabling * @dev_priv: i915 device instance * * This function is used to disable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) { intel_irq_reset(dev_priv); dev_priv->runtime_pm.irqs_enabled = false; intel_synchronize_irq(dev_priv); } /** * intel_runtime_pm_enable_interrupts - runtime interrupt enabling * @dev_priv: i915 device instance * * This function is used to enable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->runtime_pm.irqs_enabled = true; intel_irq_reset(dev_priv); intel_irq_postinstall(dev_priv); } bool intel_irqs_enabled(struct drm_i915_private *dev_priv) { /* * We only use drm_irq_uninstall() at unload and VT switch, so * this is the only thing we need to check. */ return dev_priv->runtime_pm.irqs_enabled; } void intel_synchronize_irq(struct drm_i915_private *i915) { synchronize_irq(i915->drm.pdev->irq); }