/* * Process number limiting controller for cgroups. * * Used to allow a cgroup hierarchy to stop any new processes from fork()ing * after a certain limit is reached. * * Since it is trivial to hit the task limit without hitting any kmemcg limits * in place, PIDs are a fundamental resource. As such, PID exhaustion must be * preventable in the scope of a cgroup hierarchy by allowing resource limiting * of the number of tasks in a cgroup. * * In order to use the `pids` controller, set the maximum number of tasks in * pids.max (this is not available in the root cgroup for obvious reasons). The * number of processes currently in the cgroup is given by pids.current. * Organisational operations are not blocked by cgroup policies, so it is * possible to have pids.current > pids.max. However, it is not possible to * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking * would cause a cgroup policy to be violated. * * To set a cgroup to have no limit, set pids.max to "max". This is the default * for all new cgroups (N.B. that PID limits are hierarchical, so the most * stringent limit in the hierarchy is followed). * * pids.current tracks all child cgroup hierarchies, so parent/pids.current is * a superset of parent/child/pids.current. * * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> * * This file is subject to the terms and conditions of version 2 of the GNU * General Public License. See the file COPYING in the main directory of the * Linux distribution for more details. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cgroup.h> #include <linux/slab.h> #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) #define PIDS_MAX_STR "max" struct pids_cgroup { struct cgroup_subsys_state css; /* * Use 64-bit types so that we can safely represent "max" as * %PIDS_MAX = (%PID_MAX_LIMIT + 1). */ atomic64_t counter; int64_t limit; }; static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) { return container_of(css, struct pids_cgroup, css); } static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) { return css_pids(pids->css.parent); } static struct cgroup_subsys_state * pids_css_alloc(struct cgroup_subsys_state *parent) { struct pids_cgroup *pids; pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); if (!pids) return ERR_PTR(-ENOMEM); pids->limit = PIDS_MAX; atomic64_set(&pids->counter, 0); return &pids->css; } static void pids_css_free(struct cgroup_subsys_state *css) { kfree(css_pids(css)); } /** * pids_cancel - uncharge the local pid count * @pids: the pid cgroup state * @num: the number of pids to cancel * * This function will WARN if the pid count goes under 0, because such a case is * a bug in the pids controller proper. */ static void pids_cancel(struct pids_cgroup *pids, int num) { /* * A negative count (or overflow for that matter) is invalid, * and indicates a bug in the `pids` controller proper. */ WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); } /** * pids_uncharge - hierarchically uncharge the pid count * @pids: the pid cgroup state * @num: the number of pids to uncharge */ static void pids_uncharge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p; for (p = pids; p; p = parent_pids(p)) pids_cancel(p, num); } /** * pids_charge - hierarchically charge the pid count * @pids: the pid cgroup state * @num: the number of pids to charge * * This function does *not* follow the pid limit set. It cannot fail and the new * pid count may exceed the limit. This is only used for reverting failed * attaches, where there is no other way out than violating the limit. */ static void pids_charge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p; for (p = pids; p; p = parent_pids(p)) atomic64_add(num, &p->counter); } /** * pids_try_charge - hierarchically try to charge the pid count * @pids: the pid cgroup state * @num: the number of pids to charge * * This function follows the set limit. It will fail if the charge would cause * the new value to exceed the hierarchical limit. Returns 0 if the charge * succeded, otherwise -EAGAIN. */ static int pids_try_charge(struct pids_cgroup *pids, int num) { struct pids_cgroup *p, *q; for (p = pids; p; p = parent_pids(p)) { int64_t new = atomic64_add_return(num, &p->counter); /* * Since new is capped to the maximum number of pid_t, if * p->limit is %PIDS_MAX then we know that this test will never * fail. */ if (new > p->limit) goto revert; } return 0; revert: for (q = pids; q != p; q = parent_pids(q)) pids_cancel(q, num); pids_cancel(p, num); return -EAGAIN; } static int pids_can_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct pids_cgroup *pids = css_pids(css); struct task_struct *task; cgroup_taskset_for_each(task, tset) { struct cgroup_subsys_state *old_css; struct pids_cgroup *old_pids; /* * No need to pin @old_css between here and cancel_attach() * because cgroup core protects it from being freed before * the migration completes or fails. */ old_css = task_css(task, pids_cgrp_id); old_pids = css_pids(old_css); pids_charge(pids, 1); pids_uncharge(old_pids, 1); } return 0; } static void pids_cancel_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct pids_cgroup *pids = css_pids(css); struct task_struct *task; cgroup_taskset_for_each(task, tset) { struct cgroup_subsys_state *old_css; struct pids_cgroup *old_pids; old_css = task_css(task, pids_cgrp_id); old_pids = css_pids(old_css); pids_charge(old_pids, 1); pids_uncharge(pids, 1); } } static int pids_can_fork(struct task_struct *task, void **priv_p) { struct cgroup_subsys_state *css; struct pids_cgroup *pids; int err; /* * Use the "current" task_css for the pids subsystem as the tentative * css. It is possible we will charge the wrong hierarchy, in which * case we will forcefully revert/reapply the charge on the right * hierarchy after it is committed to the task proper. */ css = task_get_css(current, pids_cgrp_id); pids = css_pids(css); err = pids_try_charge(pids, 1); if (err) goto err_css_put; *priv_p = css; return 0; err_css_put: css_put(css); return err; } static void pids_cancel_fork(struct task_struct *task, void *priv) { struct cgroup_subsys_state *css = priv; struct pids_cgroup *pids = css_pids(css); pids_uncharge(pids, 1); css_put(css); } static void pids_fork(struct task_struct *task, void *priv) { struct cgroup_subsys_state *css; struct cgroup_subsys_state *old_css = priv; struct pids_cgroup *pids; struct pids_cgroup *old_pids = css_pids(old_css); css = task_get_css(task, pids_cgrp_id); pids = css_pids(css); /* * If the association has changed, we have to revert and reapply the * charge/uncharge on the wrong hierarchy to the current one. Since * the association can only change due to an organisation event, its * okay for us to ignore the limit in this case. */ if (pids != old_pids) { pids_uncharge(old_pids, 1); pids_charge(pids, 1); } css_put(css); css_put(old_css); } static void pids_exit(struct cgroup_subsys_state *css, struct cgroup_subsys_state *old_css, struct task_struct *task) { struct pids_cgroup *pids = css_pids(old_css); pids_uncharge(pids, 1); } static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup_subsys_state *css = of_css(of); struct pids_cgroup *pids = css_pids(css); int64_t limit; int err; buf = strstrip(buf); if (!strcmp(buf, PIDS_MAX_STR)) { limit = PIDS_MAX; goto set_limit; } err = kstrtoll(buf, 0, &limit); if (err) return err; if (limit < 0 || limit >= PIDS_MAX) return -EINVAL; set_limit: /* * Limit updates don't need to be mutex'd, since it isn't * critical that any racing fork()s follow the new limit. */ pids->limit = limit; return nbytes; } static int pids_max_show(struct seq_file *sf, void *v) { struct cgroup_subsys_state *css = seq_css(sf); struct pids_cgroup *pids = css_pids(css); int64_t limit = pids->limit; if (limit >= PIDS_MAX) seq_printf(sf, "%s\n", PIDS_MAX_STR); else seq_printf(sf, "%lld\n", limit); return 0; } static s64 pids_current_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct pids_cgroup *pids = css_pids(css); return atomic64_read(&pids->counter); } static struct cftype pids_files[] = { { .name = "max", .write = pids_max_write, .seq_show = pids_max_show, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "current", .read_s64 = pids_current_read, }, { } /* terminate */ }; struct cgroup_subsys pids_cgrp_subsys = { .css_alloc = pids_css_alloc, .css_free = pids_css_free, .can_attach = pids_can_attach, .cancel_attach = pids_cancel_attach, .can_fork = pids_can_fork, .cancel_fork = pids_cancel_fork, .fork = pids_fork, .exit = pids_exit, .legacy_cftypes = pids_files, .dfl_cftypes = pids_files, };