/* * Hisilicon thermal sensor driver * * Copyright (c) 2014-2015 Hisilicon Limited. * Copyright (c) 2014-2015 Linaro Limited. * * Xinwei Kong * Leo Yan * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include "thermal_core.h" #define HI6220_TEMP0_LAG (0x0) #define HI6220_TEMP0_TH (0x4) #define HI6220_TEMP0_RST_TH (0x8) #define HI6220_TEMP0_CFG (0xC) #define HI6220_TEMP0_CFG_SS_MSK (0xF000) #define HI6220_TEMP0_CFG_HDAK_MSK (0x30) #define HI6220_TEMP0_EN (0x10) #define HI6220_TEMP0_INT_EN (0x14) #define HI6220_TEMP0_INT_CLR (0x18) #define HI6220_TEMP0_RST_MSK (0x1C) #define HI6220_TEMP0_VALUE (0x28) #define HI3660_OFFSET(chan) ((chan) * 0x40) #define HI3660_TEMP(chan) (HI3660_OFFSET(chan) + 0x1C) #define HI3660_TH(chan) (HI3660_OFFSET(chan) + 0x20) #define HI3660_LAG(chan) (HI3660_OFFSET(chan) + 0x28) #define HI3660_INT_EN(chan) (HI3660_OFFSET(chan) + 0x2C) #define HI3660_INT_CLR(chan) (HI3660_OFFSET(chan) + 0x30) #define HI6220_TEMP_BASE (-60000) #define HI6220_TEMP_RESET (100000) #define HI6220_TEMP_STEP (785) #define HI6220_TEMP_LAG (3500) #define HI3660_TEMP_BASE (-63780) #define HI3660_TEMP_STEP (205) #define HI3660_TEMP_LAG (4000) #define HI6220_DEFAULT_SENSOR 2 #define HI3660_DEFAULT_SENSOR 1 struct hisi_thermal_data; struct hisi_thermal_sensor { struct hisi_thermal_data *data; struct thermal_zone_device *tzd; uint32_t id; uint32_t thres_temp; }; struct hisi_thermal_ops { int (*get_temp)(struct hisi_thermal_sensor *sensor); int (*enable_sensor)(struct hisi_thermal_sensor *sensor); int (*disable_sensor)(struct hisi_thermal_sensor *sensor); int (*irq_handler)(struct hisi_thermal_sensor *sensor); int (*probe)(struct hisi_thermal_data *data); }; struct hisi_thermal_data { const struct hisi_thermal_ops *ops; struct hisi_thermal_sensor sensor; struct platform_device *pdev; struct clk *clk; void __iomem *regs; int irq; }; /* * The temperature computation on the tsensor is as follow: * Unit: millidegree Celsius * Step: 200/255 (0.7843) * Temperature base: -60°C * * The register is programmed in temperature steps, every step is 785 * millidegree and begins at -60 000 m°C * * The temperature from the steps: * * Temp = TempBase + (steps x 785) * * and the steps from the temperature: * * steps = (Temp - TempBase) / 785 * */ static inline int hi6220_thermal_step_to_temp(int step) { return HI6220_TEMP_BASE + (step * HI6220_TEMP_STEP); } static inline int hi6220_thermal_temp_to_step(int temp) { return DIV_ROUND_UP(temp - HI6220_TEMP_BASE, HI6220_TEMP_STEP); } /* * for Hi3660, * Step: 189/922 (0.205) * Temperature base: -63.780°C * * The register is programmed in temperature steps, every step is 205 * millidegree and begins at -63 780 m°C */ static inline int hi3660_thermal_step_to_temp(int step) { return HI3660_TEMP_BASE + step * HI3660_TEMP_STEP; } static inline int hi3660_thermal_temp_to_step(int temp) { return DIV_ROUND_UP(temp - HI3660_TEMP_BASE, HI3660_TEMP_STEP); } /* * The lag register contains 5 bits encoding the temperature in steps. * * Each time the temperature crosses the threshold boundary, an * interrupt is raised. It could be when the temperature is going * above the threshold or below. However, if the temperature is * fluctuating around this value due to the load, we can receive * several interrupts which may not desired. * * We can setup a temperature representing the delta between the * threshold and the current temperature when the temperature is * decreasing. * * For instance: the lag register is 5°C, the threshold is 65°C, when * the temperature reaches 65°C an interrupt is raised and when the * temperature decrease to 65°C - 5°C another interrupt is raised. * * A very short lag can lead to an interrupt storm, a long lag * increase the latency to react to the temperature changes. In our * case, that is not really a problem as we are polling the * temperature. * * [0:4] : lag register * * The temperature is coded in steps, cf. HI6220_TEMP_STEP. * * Min : 0x00 : 0.0 °C * Max : 0x1F : 24.3 °C * * The 'value' parameter is in milliCelsius. */ static inline void hi6220_thermal_set_lag(void __iomem *addr, int value) { writel(DIV_ROUND_UP(value, HI6220_TEMP_STEP) & 0x1F, addr + HI6220_TEMP0_LAG); } static inline void hi6220_thermal_alarm_clear(void __iomem *addr, int value) { writel(value, addr + HI6220_TEMP0_INT_CLR); } static inline void hi6220_thermal_alarm_enable(void __iomem *addr, int value) { writel(value, addr + HI6220_TEMP0_INT_EN); } static inline void hi6220_thermal_alarm_set(void __iomem *addr, int temp) { writel(hi6220_thermal_temp_to_step(temp) | 0x0FFFFFF00, addr + HI6220_TEMP0_TH); } static inline void hi6220_thermal_reset_set(void __iomem *addr, int temp) { writel(hi6220_thermal_temp_to_step(temp), addr + HI6220_TEMP0_RST_TH); } static inline void hi6220_thermal_reset_enable(void __iomem *addr, int value) { writel(value, addr + HI6220_TEMP0_RST_MSK); } static inline void hi6220_thermal_enable(void __iomem *addr, int value) { writel(value, addr + HI6220_TEMP0_EN); } static inline int hi6220_thermal_get_temperature(void __iomem *addr) { return hi6220_thermal_step_to_temp(readl(addr + HI6220_TEMP0_VALUE)); } /* * [0:6] lag register * * The temperature is coded in steps, cf. HI3660_TEMP_STEP. * * Min : 0x00 : 0.0 °C * Max : 0x7F : 26.0 °C * */ static inline void hi3660_thermal_set_lag(void __iomem *addr, int id, int value) { writel(DIV_ROUND_UP(value, HI3660_TEMP_STEP) & 0x7F, addr + HI3660_LAG(id)); } static inline void hi3660_thermal_alarm_clear(void __iomem *addr, int id, int value) { writel(value, addr + HI3660_INT_CLR(id)); } static inline void hi3660_thermal_alarm_enable(void __iomem *addr, int id, int value) { writel(value, addr + HI3660_INT_EN(id)); } static inline void hi3660_thermal_alarm_set(void __iomem *addr, int id, int value) { writel(value, addr + HI3660_TH(id)); } static inline int hi3660_thermal_get_temperature(void __iomem *addr, int id) { return hi3660_thermal_step_to_temp(readl(addr + HI3660_TEMP(id))); } /* * Temperature configuration register - Sensor selection * * Bits [19:12] * * 0x0: local sensor (default) * 0x1: remote sensor 1 (ACPU cluster 1) * 0x2: remote sensor 2 (ACPU cluster 0) * 0x3: remote sensor 3 (G3D) */ static inline void hi6220_thermal_sensor_select(void __iomem *addr, int sensor) { writel((readl(addr + HI6220_TEMP0_CFG) & ~HI6220_TEMP0_CFG_SS_MSK) | (sensor << 12), addr + HI6220_TEMP0_CFG); } /* * Temperature configuration register - Hdak conversion polling interval * * Bits [5:4] * * 0x0 : 0.768 ms * 0x1 : 6.144 ms * 0x2 : 49.152 ms * 0x3 : 393.216 ms */ static inline void hi6220_thermal_hdak_set(void __iomem *addr, int value) { writel((readl(addr + HI6220_TEMP0_CFG) & ~HI6220_TEMP0_CFG_HDAK_MSK) | (value << 4), addr + HI6220_TEMP0_CFG); } static int hi6220_thermal_irq_handler(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; hi6220_thermal_alarm_clear(data->regs, 1); return 0; } static int hi3660_thermal_irq_handler(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; hi3660_thermal_alarm_clear(data->regs, sensor->id, 1); return 0; } static int hi6220_thermal_get_temp(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; return hi6220_thermal_get_temperature(data->regs); } static int hi3660_thermal_get_temp(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; return hi3660_thermal_get_temperature(data->regs, sensor->id); } static int hi6220_thermal_disable_sensor(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; /* disable sensor module */ hi6220_thermal_enable(data->regs, 0); hi6220_thermal_alarm_enable(data->regs, 0); hi6220_thermal_reset_enable(data->regs, 0); clk_disable_unprepare(data->clk); return 0; } static int hi3660_thermal_disable_sensor(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; /* disable sensor module */ hi3660_thermal_alarm_enable(data->regs, sensor->id, 0); return 0; } static int hi6220_thermal_enable_sensor(struct hisi_thermal_sensor *sensor) { struct hisi_thermal_data *data = sensor->data; int ret; /* enable clock for tsensor */ ret = clk_prepare_enable(data->clk); if (ret) return ret; /* disable module firstly */ hi6220_thermal_reset_enable(data->regs, 0); hi6220_thermal_enable(data->regs, 0); /* select sensor id */ hi6220_thermal_sensor_select(data->regs, sensor->id); /* setting the hdak time */ hi6220_thermal_hdak_set(data->regs, 0); /* setting lag value between current temp and the threshold */ hi6220_thermal_set_lag(data->regs, HI6220_TEMP_LAG); /* enable for interrupt */ hi6220_thermal_alarm_set(data->regs, sensor->thres_temp); hi6220_thermal_reset_set(data->regs, HI6220_TEMP_RESET); /* enable module */ hi6220_thermal_reset_enable(data->regs, 1); hi6220_thermal_enable(data->regs, 1); hi6220_thermal_alarm_clear(data->regs, 0); hi6220_thermal_alarm_enable(data->regs, 1); return 0; } static int hi3660_thermal_enable_sensor(struct hisi_thermal_sensor *sensor) { unsigned int value; struct hisi_thermal_data *data = sensor->data; /* disable interrupt */ hi3660_thermal_alarm_enable(data->regs, sensor->id, 0); /* setting lag value between current temp and the threshold */ hi3660_thermal_set_lag(data->regs, sensor->id, HI3660_TEMP_LAG); /* set interrupt threshold */ value = hi3660_thermal_temp_to_step(sensor->thres_temp); hi3660_thermal_alarm_set(data->regs, sensor->id, value); /* enable interrupt */ hi3660_thermal_alarm_clear(data->regs, sensor->id, 1); hi3660_thermal_alarm_enable(data->regs, sensor->id, 1); return 0; } static int hi6220_thermal_probe(struct hisi_thermal_data *data) { struct platform_device *pdev = data->pdev; struct device *dev = &pdev->dev; struct resource *res; int ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); data->regs = devm_ioremap_resource(dev, res); if (IS_ERR(data->regs)) { dev_err(dev, "failed to get io address\n"); return PTR_ERR(data->regs); } data->clk = devm_clk_get(dev, "thermal_clk"); if (IS_ERR(data->clk)) { ret = PTR_ERR(data->clk); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to get thermal clk: %d\n", ret); return ret; } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) return data->irq; data->sensor.id = HI6220_DEFAULT_SENSOR; return 0; } static int hi3660_thermal_probe(struct hisi_thermal_data *data) { struct platform_device *pdev = data->pdev; struct device *dev = &pdev->dev; struct resource *res; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); data->regs = devm_ioremap_resource(dev, res); if (IS_ERR(data->regs)) { dev_err(dev, "failed to get io address\n"); return PTR_ERR(data->regs); } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) return data->irq; data->sensor.id = HI3660_DEFAULT_SENSOR; return 0; } static int hisi_thermal_get_temp(void *__data, int *temp) { struct hisi_thermal_sensor *sensor = __data; struct hisi_thermal_data *data = sensor->data; *temp = data->ops->get_temp(sensor); dev_dbg(&data->pdev->dev, "id=%d, temp=%d, thres=%d\n", sensor->id, *temp, sensor->thres_temp); return 0; } static const struct thermal_zone_of_device_ops hisi_of_thermal_ops = { .get_temp = hisi_thermal_get_temp, }; static irqreturn_t hisi_thermal_alarm_irq_thread(int irq, void *dev) { struct hisi_thermal_data *data = dev; struct hisi_thermal_sensor *sensor = &data->sensor; int temp = 0; data->ops->irq_handler(sensor); hisi_thermal_get_temp(sensor, &temp); if (temp >= sensor->thres_temp) { dev_crit(&data->pdev->dev, "THERMAL ALARM: %d > %d\n", temp, sensor->thres_temp); thermal_zone_device_update(data->sensor.tzd, THERMAL_EVENT_UNSPECIFIED); } else { dev_crit(&data->pdev->dev, "THERMAL ALARM stopped: %d < %d\n", temp, sensor->thres_temp); } return IRQ_HANDLED; } static int hisi_thermal_register_sensor(struct platform_device *pdev, struct hisi_thermal_sensor *sensor) { int ret, i; const struct thermal_trip *trip; sensor->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, sensor->id, sensor, &hisi_of_thermal_ops); if (IS_ERR(sensor->tzd)) { ret = PTR_ERR(sensor->tzd); sensor->tzd = NULL; dev_err(&pdev->dev, "failed to register sensor id %d: %d\n", sensor->id, ret); return ret; } trip = of_thermal_get_trip_points(sensor->tzd); for (i = 0; i < of_thermal_get_ntrips(sensor->tzd); i++) { if (trip[i].type == THERMAL_TRIP_PASSIVE) { sensor->thres_temp = trip[i].temperature; break; } } return 0; } static const struct hisi_thermal_ops hi6220_ops = { .get_temp = hi6220_thermal_get_temp, .enable_sensor = hi6220_thermal_enable_sensor, .disable_sensor = hi6220_thermal_disable_sensor, .irq_handler = hi6220_thermal_irq_handler, .probe = hi6220_thermal_probe, }; static const struct hisi_thermal_ops hi3660_ops = { .get_temp = hi3660_thermal_get_temp, .enable_sensor = hi3660_thermal_enable_sensor, .disable_sensor = hi3660_thermal_disable_sensor, .irq_handler = hi3660_thermal_irq_handler, .probe = hi3660_thermal_probe, }; static const struct of_device_id of_hisi_thermal_match[] = { { .compatible = "hisilicon,tsensor", .data = &hi6220_ops, }, { .compatible = "hisilicon,hi3660-tsensor", .data = &hi3660_ops, }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_hisi_thermal_match); static void hisi_thermal_toggle_sensor(struct hisi_thermal_sensor *sensor, bool on) { struct thermal_zone_device *tzd = sensor->tzd; tzd->ops->set_mode(tzd, on ? THERMAL_DEVICE_ENABLED : THERMAL_DEVICE_DISABLED); } static int hisi_thermal_probe(struct platform_device *pdev) { struct hisi_thermal_data *data; struct device *dev = &pdev->dev; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->pdev = pdev; platform_set_drvdata(pdev, data); data->sensor.data = data; data->ops = of_device_get_match_data(dev); ret = data->ops->probe(data); if (ret) return ret; ret = hisi_thermal_register_sensor(pdev, &data->sensor); if (ret) { dev_err(dev, "failed to register thermal sensor: %d\n", ret); return ret; } ret = data->ops->enable_sensor(&data->sensor); if (ret) { dev_err(dev, "Failed to setup the sensor: %d\n", ret); return ret; } if (data->irq) { ret = devm_request_threaded_irq(dev, data->irq, NULL, hisi_thermal_alarm_irq_thread, IRQF_ONESHOT, "hisi_thermal", data); if (ret < 0) { dev_err(dev, "failed to request alarm irq: %d\n", ret); return ret; } } hisi_thermal_toggle_sensor(&data->sensor, true); return 0; } static int hisi_thermal_remove(struct platform_device *pdev) { struct hisi_thermal_data *data = platform_get_drvdata(pdev); struct hisi_thermal_sensor *sensor = &data->sensor; hisi_thermal_toggle_sensor(sensor, false); data->ops->disable_sensor(&data->sensor); return 0; } #ifdef CONFIG_PM_SLEEP static int hisi_thermal_suspend(struct device *dev) { struct hisi_thermal_data *data = dev_get_drvdata(dev); data->ops->disable_sensor(&data->sensor); return 0; } static int hisi_thermal_resume(struct device *dev) { struct hisi_thermal_data *data = dev_get_drvdata(dev); return data->ops->enable_sensor(&data->sensor); } #endif static SIMPLE_DEV_PM_OPS(hisi_thermal_pm_ops, hisi_thermal_suspend, hisi_thermal_resume); static struct platform_driver hisi_thermal_driver = { .driver = { .name = "hisi_thermal", .pm = &hisi_thermal_pm_ops, .of_match_table = of_hisi_thermal_match, }, .probe = hisi_thermal_probe, .remove = hisi_thermal_remove, }; module_platform_driver(hisi_thermal_driver); MODULE_AUTHOR("Xinwei Kong "); MODULE_AUTHOR("Leo Yan "); MODULE_DESCRIPTION("Hisilicon thermal driver"); MODULE_LICENSE("GPL v2");