/* * Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com> * Copyright (c) 2013 Synaptics Incorporated * Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com> * Copyright (c) 2014 Red Hat, Inc * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include <linux/kernel.h> #include <linux/hid.h> #include <linux/input.h> #include <linux/input/mt.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/sched.h> #include "hid-ids.h" #define RMI_MOUSE_REPORT_ID 0x01 /* Mouse emulation Report */ #define RMI_WRITE_REPORT_ID 0x09 /* Output Report */ #define RMI_READ_ADDR_REPORT_ID 0x0a /* Output Report */ #define RMI_READ_DATA_REPORT_ID 0x0b /* Input Report */ #define RMI_ATTN_REPORT_ID 0x0c /* Input Report */ #define RMI_SET_RMI_MODE_REPORT_ID 0x0f /* Feature Report */ /* flags */ #define RMI_READ_REQUEST_PENDING 0 #define RMI_READ_DATA_PENDING 1 #define RMI_STARTED 2 #define RMI_SLEEP_NORMAL 0x0 #define RMI_SLEEP_DEEP_SLEEP 0x1 /* device flags */ #define RMI_DEVICE BIT(0) #define RMI_DEVICE_HAS_PHYS_BUTTONS BIT(1) /* * retrieve the ctrl registers * the ctrl register has a size of 20 but a fw bug split it into 16 + 4, * and there is no way to know if the first 20 bytes are here or not. * We use only the first 12 bytes, so get only them. */ #define RMI_F11_CTRL_REG_COUNT 12 enum rmi_mode_type { RMI_MODE_OFF = 0, RMI_MODE_ATTN_REPORTS = 1, RMI_MODE_NO_PACKED_ATTN_REPORTS = 2, }; struct rmi_function { unsigned page; /* page of the function */ u16 query_base_addr; /* base address for queries */ u16 command_base_addr; /* base address for commands */ u16 control_base_addr; /* base address for controls */ u16 data_base_addr; /* base address for datas */ unsigned int interrupt_base; /* cross-function interrupt number * (uniq in the device)*/ unsigned int interrupt_count; /* number of interrupts */ unsigned int report_size; /* size of a report */ unsigned long irq_mask; /* mask of the interrupts * (to be applied against ATTN IRQ) */ }; /** * struct rmi_data - stores information for hid communication * * @page_mutex: Locks current page to avoid changing pages in unexpected ways. * @page: Keeps track of the current virtual page * * @wait: Used for waiting for read data * * @writeReport: output buffer when writing RMI registers * @readReport: input buffer when reading RMI registers * * @input_report_size: size of an input report (advertised by HID) * @output_report_size: size of an output report (advertised by HID) * * @flags: flags for the current device (started, reading, etc...) * * @f11: placeholder of internal RMI function F11 description * @f30: placeholder of internal RMI function F30 description * * @max_fingers: maximum finger count reported by the device * @max_x: maximum x value reported by the device * @max_y: maximum y value reported by the device * * @gpio_led_count: count of GPIOs + LEDs reported by F30 * @button_count: actual physical buttons count * @button_mask: button mask used to decode GPIO ATTN reports * @button_state_mask: pull state of the buttons * * @input: pointer to the kernel input device * * @reset_work: worker which will be called in case of a mouse report * @hdev: pointer to the struct hid_device */ struct rmi_data { struct mutex page_mutex; int page; wait_queue_head_t wait; u8 *writeReport; u8 *readReport; int input_report_size; int output_report_size; unsigned long flags; struct rmi_function f01; struct rmi_function f11; struct rmi_function f30; unsigned int max_fingers; unsigned int max_x; unsigned int max_y; unsigned int x_size_mm; unsigned int y_size_mm; bool read_f11_ctrl_regs; u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT]; unsigned int gpio_led_count; unsigned int button_count; unsigned long button_mask; unsigned long button_state_mask; struct input_dev *input; struct work_struct reset_work; struct hid_device *hdev; unsigned long device_flags; unsigned long firmware_id; u8 f01_ctrl0; u8 interrupt_enable_mask; bool restore_interrupt_mask; }; #define RMI_PAGE(addr) (((addr) >> 8) & 0xff) static int rmi_write_report(struct hid_device *hdev, u8 *report, int len); /** * rmi_set_page - Set RMI page * @hdev: The pointer to the hid_device struct * @page: The new page address. * * RMI devices have 16-bit addressing, but some of the physical * implementations (like SMBus) only have 8-bit addressing. So RMI implements * a page address at 0xff of every page so we can reliable page addresses * every 256 registers. * * The page_mutex lock must be held when this function is entered. * * Returns zero on success, non-zero on failure. */ static int rmi_set_page(struct hid_device *hdev, u8 page) { struct rmi_data *data = hid_get_drvdata(hdev); int retval; data->writeReport[0] = RMI_WRITE_REPORT_ID; data->writeReport[1] = 1; data->writeReport[2] = 0xFF; data->writeReport[4] = page; retval = rmi_write_report(hdev, data->writeReport, data->output_report_size); if (retval != data->output_report_size) { dev_err(&hdev->dev, "%s: set page failed: %d.", __func__, retval); return retval; } data->page = page; return 0; } static int rmi_set_mode(struct hid_device *hdev, u8 mode) { int ret; const u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode}; u8 *buf; buf = kmemdup(txbuf, sizeof(txbuf), GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, buf, sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT); kfree(buf); if (ret < 0) { dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode, ret); return ret; } return 0; } static int rmi_write_report(struct hid_device *hdev, u8 *report, int len) { int ret; ret = hid_hw_output_report(hdev, (void *)report, len); if (ret < 0) { dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret); return ret; } return ret; } static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf, const int len) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; int bytes_read; int bytes_needed; int retries; int read_input_count; mutex_lock(&data->page_mutex); if (RMI_PAGE(addr) != data->page) { ret = rmi_set_page(hdev, RMI_PAGE(addr)); if (ret < 0) goto exit; } for (retries = 5; retries > 0; retries--) { data->writeReport[0] = RMI_READ_ADDR_REPORT_ID; data->writeReport[1] = 0; /* old 1 byte read count */ data->writeReport[2] = addr & 0xFF; data->writeReport[3] = (addr >> 8) & 0xFF; data->writeReport[4] = len & 0xFF; data->writeReport[5] = (len >> 8) & 0xFF; set_bit(RMI_READ_REQUEST_PENDING, &data->flags); ret = rmi_write_report(hdev, data->writeReport, data->output_report_size); if (ret != data->output_report_size) { clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); dev_err(&hdev->dev, "failed to write request output report (%d)\n", ret); goto exit; } bytes_read = 0; bytes_needed = len; while (bytes_read < len) { if (!wait_event_timeout(data->wait, test_bit(RMI_READ_DATA_PENDING, &data->flags), msecs_to_jiffies(1000))) { hid_warn(hdev, "%s: timeout elapsed\n", __func__); ret = -EAGAIN; break; } read_input_count = data->readReport[1]; memcpy(buf + bytes_read, &data->readReport[2], read_input_count < bytes_needed ? read_input_count : bytes_needed); bytes_read += read_input_count; bytes_needed -= read_input_count; clear_bit(RMI_READ_DATA_PENDING, &data->flags); } if (ret >= 0) { ret = 0; break; } } exit: clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); mutex_unlock(&data->page_mutex); return ret; } static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf) { return rmi_read_block(hdev, addr, buf, 1); } static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf, const int len) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; mutex_lock(&data->page_mutex); if (RMI_PAGE(addr) != data->page) { ret = rmi_set_page(hdev, RMI_PAGE(addr)); if (ret < 0) goto exit; } data->writeReport[0] = RMI_WRITE_REPORT_ID; data->writeReport[1] = len; data->writeReport[2] = addr & 0xFF; data->writeReport[3] = (addr >> 8) & 0xFF; memcpy(&data->writeReport[4], buf, len); ret = rmi_write_report(hdev, data->writeReport, data->output_report_size); if (ret < 0) { dev_err(&hdev->dev, "failed to write request output report (%d)\n", ret); goto exit; } ret = 0; exit: mutex_unlock(&data->page_mutex); return ret; } static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf) { return rmi_write_block(hdev, addr, buf, 1); } static void rmi_f11_process_touch(struct rmi_data *hdata, int slot, u8 finger_state, u8 *touch_data) { int x, y, wx, wy; int wide, major, minor; int z; input_mt_slot(hdata->input, slot); input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER, finger_state == 0x01); if (finger_state == 0x01) { x = (touch_data[0] << 4) | (touch_data[2] & 0x0F); y = (touch_data[1] << 4) | (touch_data[2] >> 4); wx = touch_data[3] & 0x0F; wy = touch_data[3] >> 4; wide = (wx > wy); major = max(wx, wy); minor = min(wx, wy); z = touch_data[4]; /* y is inverted */ y = hdata->max_y - y; input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x); input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y); input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide); input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z); input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major); input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor); } } static int rmi_reset_attn_mode(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); if (ret) return ret; if (data->restore_interrupt_mask) { ret = rmi_write(hdev, data->f01.control_base_addr + 1, &data->interrupt_enable_mask); if (ret) { hid_err(hdev, "can not write F01 control register\n"); return ret; } } return 0; } static void rmi_reset_work(struct work_struct *work) { struct rmi_data *hdata = container_of(work, struct rmi_data, reset_work); /* switch the device to RMI if we receive a generic mouse report */ rmi_reset_attn_mode(hdata->hdev); } static inline int rmi_schedule_reset(struct hid_device *hdev) { struct rmi_data *hdata = hid_get_drvdata(hdev); return schedule_work(&hdata->reset_work); } static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data, int size) { struct rmi_data *hdata = hid_get_drvdata(hdev); int offset; int i; if (!(irq & hdata->f11.irq_mask) || size <= 0) return 0; offset = (hdata->max_fingers >> 2) + 1; for (i = 0; i < hdata->max_fingers; i++) { int fs_byte_position = i >> 2; int fs_bit_position = (i & 0x3) << 1; int finger_state = (data[fs_byte_position] >> fs_bit_position) & 0x03; int position = offset + 5 * i; if (position + 5 > size) { /* partial report, go on with what we received */ printk_once(KERN_WARNING "%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n", dev_driver_string(&hdev->dev), dev_name(&hdev->dev)); hid_dbg(hdev, "Incomplete finger report\n"); break; } rmi_f11_process_touch(hdata, i, finger_state, &data[position]); } input_mt_sync_frame(hdata->input); input_sync(hdata->input); return hdata->f11.report_size; } static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data, int size) { struct rmi_data *hdata = hid_get_drvdata(hdev); int i; int button = 0; bool value; if (!(irq & hdata->f30.irq_mask)) return 0; if (size < (int)hdata->f30.report_size) { hid_warn(hdev, "Click Button pressed, but the click data is missing\n"); return 0; } for (i = 0; i < hdata->gpio_led_count; i++) { if (test_bit(i, &hdata->button_mask)) { value = (data[i / 8] >> (i & 0x07)) & BIT(0); if (test_bit(i, &hdata->button_state_mask)) value = !value; input_event(hdata->input, EV_KEY, BTN_LEFT + button++, value); } } return hdata->f30.report_size; } static int rmi_input_event(struct hid_device *hdev, u8 *data, int size) { struct rmi_data *hdata = hid_get_drvdata(hdev); unsigned long irq_mask = 0; unsigned index = 2; if (!(test_bit(RMI_STARTED, &hdata->flags))) return 0; irq_mask |= hdata->f11.irq_mask; irq_mask |= hdata->f30.irq_mask; if (data[1] & ~irq_mask) hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n", data[1] & ~irq_mask, __FILE__, __LINE__); if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) { index += rmi_f11_input_event(hdev, data[1], &data[index], size - index); index += rmi_f30_input_event(hdev, data[1], &data[index], size - index); } else { index += rmi_f30_input_event(hdev, data[1], &data[index], size - index); index += rmi_f11_input_event(hdev, data[1], &data[index], size - index); } return 1; } static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size) { struct rmi_data *hdata = hid_get_drvdata(hdev); if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) { hid_dbg(hdev, "no read request pending\n"); return 0; } memcpy(hdata->readReport, data, size < hdata->input_report_size ? size : hdata->input_report_size); set_bit(RMI_READ_DATA_PENDING, &hdata->flags); wake_up(&hdata->wait); return 1; } static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size) { int valid_size = size; /* * On the Dell XPS 13 9333, the bus sometimes get confused and fills * the report with a sentinel value "ff". Synaptics told us that such * behavior does not comes from the touchpad itself, so we filter out * such reports here. */ while ((data[valid_size - 1] == 0xff) && valid_size > 0) valid_size--; return valid_size; } static int rmi_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { size = rmi_check_sanity(hdev, data, size); if (size < 2) return 0; switch (data[0]) { case RMI_READ_DATA_REPORT_ID: return rmi_read_data_event(hdev, data, size); case RMI_ATTN_REPORT_ID: return rmi_input_event(hdev, data, size); default: return 1; } return 0; } static int rmi_event(struct hid_device *hdev, struct hid_field *field, struct hid_usage *usage, __s32 value) { struct rmi_data *data = hid_get_drvdata(hdev); if ((data->device_flags & RMI_DEVICE) && (field->application == HID_GD_POINTER || field->application == HID_GD_MOUSE)) { if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) { if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON) return 0; if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y) && !value) return 1; } rmi_schedule_reset(hdev); return 1; } return 0; } #ifdef CONFIG_PM static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; u8 f01_ctrl0; f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode; ret = rmi_write(hdev, data->f01.control_base_addr, &f01_ctrl0); if (ret) { hid_err(hdev, "can not write sleep mode\n"); return ret; } return 0; } static int rmi_suspend(struct hid_device *hdev, pm_message_t message) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; u8 buf[RMI_F11_CTRL_REG_COUNT]; if (!(data->device_flags & RMI_DEVICE)) return 0; ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, RMI_F11_CTRL_REG_COUNT); if (ret) hid_warn(hdev, "can not read F11 control registers\n"); else memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT); if (!device_may_wakeup(hdev->dev.parent)) return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP); return 0; } static int rmi_post_reset(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; if (!(data->device_flags & RMI_DEVICE)) return 0; ret = rmi_reset_attn_mode(hdev); if (ret) { hid_err(hdev, "can not set rmi mode\n"); return ret; } if (data->read_f11_ctrl_regs) { ret = rmi_write_block(hdev, data->f11.control_base_addr, data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT); if (ret) hid_warn(hdev, "can not write F11 control registers after reset\n"); } if (!device_may_wakeup(hdev->dev.parent)) { ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL); if (ret) { hid_err(hdev, "can not write sleep mode\n"); return ret; } } return ret; } static int rmi_post_resume(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); if (!(data->device_flags & RMI_DEVICE)) return 0; return rmi_reset_attn_mode(hdev); } #endif /* CONFIG_PM */ #define RMI4_MAX_PAGE 0xff #define RMI4_PAGE_SIZE 0x0100 #define PDT_START_SCAN_LOCATION 0x00e9 #define PDT_END_SCAN_LOCATION 0x0005 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff) struct pdt_entry { u8 query_base_addr:8; u8 command_base_addr:8; u8 control_base_addr:8; u8 data_base_addr:8; u8 interrupt_source_count:3; u8 bits3and4:2; u8 function_version:2; u8 bit7:1; u8 function_number:8; } __attribute__((__packed__)); static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count) { return GENMASK(irq_count + irq_base - 1, irq_base); } static void rmi_register_function(struct rmi_data *data, struct pdt_entry *pdt_entry, int page, unsigned interrupt_count) { struct rmi_function *f = NULL; u16 page_base = page << 8; switch (pdt_entry->function_number) { case 0x01: f = &data->f01; break; case 0x11: f = &data->f11; break; case 0x30: f = &data->f30; break; } if (f) { f->page = page; f->query_base_addr = page_base | pdt_entry->query_base_addr; f->command_base_addr = page_base | pdt_entry->command_base_addr; f->control_base_addr = page_base | pdt_entry->control_base_addr; f->data_base_addr = page_base | pdt_entry->data_base_addr; f->interrupt_base = interrupt_count; f->interrupt_count = pdt_entry->interrupt_source_count; f->irq_mask = rmi_gen_mask(f->interrupt_base, f->interrupt_count); data->interrupt_enable_mask |= f->irq_mask; } } static int rmi_scan_pdt(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); struct pdt_entry entry; int page; bool page_has_function; int i; int retval; int interrupt = 0; u16 page_start, pdt_start , pdt_end; hid_info(hdev, "Scanning PDT...\n"); for (page = 0; (page <= RMI4_MAX_PAGE); page++) { page_start = RMI4_PAGE_SIZE * page; pdt_start = page_start + PDT_START_SCAN_LOCATION; pdt_end = page_start + PDT_END_SCAN_LOCATION; page_has_function = false; for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) { retval = rmi_read_block(hdev, i, &entry, sizeof(entry)); if (retval) { hid_err(hdev, "Read of PDT entry at %#06x failed.\n", i); goto error_exit; } if (RMI4_END_OF_PDT(entry.function_number)) break; page_has_function = true; hid_info(hdev, "Found F%02X on page %#04x\n", entry.function_number, page); rmi_register_function(data, &entry, page, interrupt); interrupt += entry.interrupt_source_count; } if (!page_has_function) break; } hid_info(hdev, "%s: Done with PDT scan.\n", __func__); retval = 0; error_exit: return retval; } #define RMI_DEVICE_F01_BASIC_QUERY_LEN 11 static int rmi_populate_f01(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN]; u8 info[3]; int ret; bool has_query42; bool has_lts; bool has_sensor_id; bool has_ds4_queries = false; bool has_build_id_query = false; bool has_package_id_query = false; u16 query_offset = data->f01.query_base_addr; u16 prod_info_addr; u8 ds4_query_len; ret = rmi_read_block(hdev, query_offset, basic_queries, RMI_DEVICE_F01_BASIC_QUERY_LEN); if (ret) { hid_err(hdev, "Can not read basic queries from Function 0x1.\n"); return ret; } has_lts = !!(basic_queries[0] & BIT(2)); has_sensor_id = !!(basic_queries[1] & BIT(3)); has_query42 = !!(basic_queries[1] & BIT(7)); query_offset += 11; prod_info_addr = query_offset + 6; query_offset += 10; if (has_lts) query_offset += 20; if (has_sensor_id) query_offset++; if (has_query42) { ret = rmi_read(hdev, query_offset, info); if (ret) { hid_err(hdev, "Can not read query42.\n"); return ret; } has_ds4_queries = !!(info[0] & BIT(0)); query_offset++; } if (has_ds4_queries) { ret = rmi_read(hdev, query_offset, &ds4_query_len); if (ret) { hid_err(hdev, "Can not read DS4 Query length.\n"); return ret; } query_offset++; if (ds4_query_len > 0) { ret = rmi_read(hdev, query_offset, info); if (ret) { hid_err(hdev, "Can not read DS4 query.\n"); return ret; } has_package_id_query = !!(info[0] & BIT(0)); has_build_id_query = !!(info[0] & BIT(1)); } } if (has_package_id_query) prod_info_addr++; if (has_build_id_query) { ret = rmi_read_block(hdev, prod_info_addr, info, 3); if (ret) { hid_err(hdev, "Can not read product info.\n"); return ret; } data->firmware_id = info[1] << 8 | info[0]; data->firmware_id += info[2] * 65536; } ret = rmi_read_block(hdev, data->f01.control_base_addr, info, 2); if (ret) { hid_err(hdev, "can not read f01 ctrl registers\n"); return ret; } data->f01_ctrl0 = info[0]; if (!info[1]) { /* * Do to a firmware bug in some touchpads the F01 interrupt * enable control register will be cleared on reset. * This will stop the touchpad from reporting data, so * if F01 CTRL1 is 0 then we need to explicitly enable * interrupts for the functions we want data for. */ data->restore_interrupt_mask = true; ret = rmi_write(hdev, data->f01.control_base_addr + 1, &data->interrupt_enable_mask); if (ret) { hid_err(hdev, "can not write to control reg 1: %d.\n", ret); return ret; } } return 0; } static int rmi_populate_f11(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); u8 buf[20]; int ret; bool has_query9; bool has_query10 = false; bool has_query11; bool has_query12; bool has_query27; bool has_query28; bool has_query36 = false; bool has_physical_props; bool has_gestures; bool has_rel; bool has_data40 = false; bool has_dribble = false; bool has_palm_detect = false; unsigned x_size, y_size; u16 query_offset; if (!data->f11.query_base_addr) { hid_err(hdev, "No 2D sensor found, giving up.\n"); return -ENODEV; } /* query 0 contains some useful information */ ret = rmi_read(hdev, data->f11.query_base_addr, buf); if (ret) { hid_err(hdev, "can not get query 0: %d.\n", ret); return ret; } has_query9 = !!(buf[0] & BIT(3)); has_query11 = !!(buf[0] & BIT(4)); has_query12 = !!(buf[0] & BIT(5)); has_query27 = !!(buf[0] & BIT(6)); has_query28 = !!(buf[0] & BIT(7)); /* query 1 to get the max number of fingers */ ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf); if (ret) { hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret); return ret; } data->max_fingers = (buf[0] & 0x07) + 1; if (data->max_fingers > 5) data->max_fingers = 10; data->f11.report_size = data->max_fingers * 5 + DIV_ROUND_UP(data->max_fingers, 4); if (!(buf[0] & BIT(4))) { hid_err(hdev, "No absolute events, giving up.\n"); return -ENODEV; } has_rel = !!(buf[0] & BIT(3)); has_gestures = !!(buf[0] & BIT(5)); ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf); if (ret) { hid_err(hdev, "can not get absolute data sources: %d.\n", ret); return ret; } has_dribble = !!(buf[0] & BIT(4)); /* * At least 4 queries are guaranteed to be present in F11 * +1 for query 5 which is present since absolute events are * reported and +1 for query 12. */ query_offset = 6; if (has_rel) ++query_offset; /* query 6 is present */ if (has_gestures) { /* query 8 to find out if query 10 exists */ ret = rmi_read(hdev, data->f11.query_base_addr + query_offset + 1, buf); if (ret) { hid_err(hdev, "can not read gesture information: %d.\n", ret); return ret; } has_palm_detect = !!(buf[0] & BIT(0)); has_query10 = !!(buf[0] & BIT(2)); query_offset += 2; /* query 7 and 8 are present */ } if (has_query9) ++query_offset; if (has_query10) ++query_offset; if (has_query11) ++query_offset; /* query 12 to know if the physical properties are reported */ if (has_query12) { ret = rmi_read(hdev, data->f11.query_base_addr + query_offset, buf); if (ret) { hid_err(hdev, "can not get query 12: %d.\n", ret); return ret; } has_physical_props = !!(buf[0] & BIT(5)); if (has_physical_props) { query_offset += 1; ret = rmi_read_block(hdev, data->f11.query_base_addr + query_offset, buf, 4); if (ret) { hid_err(hdev, "can not read query 15-18: %d.\n", ret); return ret; } x_size = buf[0] | (buf[1] << 8); y_size = buf[2] | (buf[3] << 8); data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10); data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10); hid_info(hdev, "%s: size in mm: %d x %d\n", __func__, data->x_size_mm, data->y_size_mm); /* * query 15 - 18 contain the size of the sensor * and query 19 - 26 contain bezel dimensions */ query_offset += 12; } } if (has_query27) ++query_offset; if (has_query28) { ret = rmi_read(hdev, data->f11.query_base_addr + query_offset, buf); if (ret) { hid_err(hdev, "can not get query 28: %d.\n", ret); return ret; } has_query36 = !!(buf[0] & BIT(6)); } if (has_query36) { query_offset += 2; ret = rmi_read(hdev, data->f11.query_base_addr + query_offset, buf); if (ret) { hid_err(hdev, "can not get query 36: %d.\n", ret); return ret; } has_data40 = !!(buf[0] & BIT(5)); } if (has_data40) data->f11.report_size += data->max_fingers * 2; ret = rmi_read_block(hdev, data->f11.control_base_addr, data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT); if (ret) { hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret); return ret; } /* data->f11_ctrl_regs now contains valid register data */ data->read_f11_ctrl_regs = true; data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8); data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8); if (has_dribble) { data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6); ret = rmi_write(hdev, data->f11.control_base_addr, data->f11_ctrl_regs); if (ret) { hid_err(hdev, "can not write to control reg 0: %d.\n", ret); return ret; } } if (has_palm_detect) { data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0); ret = rmi_write(hdev, data->f11.control_base_addr + 11, &data->f11_ctrl_regs[11]); if (ret) { hid_err(hdev, "can not write to control reg 11: %d.\n", ret); return ret; } } return 0; } static int rmi_populate_f30(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); u8 buf[20]; int ret; bool has_gpio, has_led; unsigned bytes_per_ctrl; u8 ctrl2_addr; int ctrl2_3_length; int i; /* function F30 is for physical buttons */ if (!data->f30.query_base_addr) { hid_err(hdev, "No GPIO/LEDs found, giving up.\n"); return -ENODEV; } ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2); if (ret) { hid_err(hdev, "can not get F30 query registers: %d.\n", ret); return ret; } has_gpio = !!(buf[0] & BIT(3)); has_led = !!(buf[0] & BIT(2)); data->gpio_led_count = buf[1] & 0x1f; /* retrieve ctrl 2 & 3 registers */ bytes_per_ctrl = (data->gpio_led_count + 7) / 8; /* Ctrl0 is present only if both has_gpio and has_led are set*/ ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0; /* Ctrl1 is always be present */ ctrl2_addr += bytes_per_ctrl; ctrl2_3_length = 2 * bytes_per_ctrl; data->f30.report_size = bytes_per_ctrl; ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr, buf, ctrl2_3_length); if (ret) { hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n", ctrl2_3_length, ret); return ret; } for (i = 0; i < data->gpio_led_count; i++) { int byte_position = i >> 3; int bit_position = i & 0x07; u8 dir_byte = buf[byte_position]; u8 data_byte = buf[byte_position + bytes_per_ctrl]; bool dir = (dir_byte >> bit_position) & BIT(0); bool dat = (data_byte >> bit_position) & BIT(0); if (dir == 0) { /* input mode */ if (dat) { /* actual buttons have pull up resistor */ data->button_count++; set_bit(i, &data->button_mask); set_bit(i, &data->button_state_mask); } } } return 0; } static int rmi_populate(struct hid_device *hdev) { struct rmi_data *data = hid_get_drvdata(hdev); int ret; ret = rmi_scan_pdt(hdev); if (ret) { hid_err(hdev, "PDT scan failed with code %d.\n", ret); return ret; } ret = rmi_populate_f01(hdev); if (ret) { hid_err(hdev, "Error while initializing F01 (%d).\n", ret); return ret; } ret = rmi_populate_f11(hdev); if (ret) { hid_err(hdev, "Error while initializing F11 (%d).\n", ret); return ret; } if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) { ret = rmi_populate_f30(hdev); if (ret) hid_warn(hdev, "Error while initializing F30 (%d).\n", ret); } return 0; } static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi) { struct rmi_data *data = hid_get_drvdata(hdev); struct input_dev *input = hi->input; int ret; int res_x, res_y, i; data->input = input; hid_dbg(hdev, "Opening low level driver\n"); ret = hid_hw_open(hdev); if (ret) return ret; if (!(data->device_flags & RMI_DEVICE)) return 0; /* Allow incoming hid reports */ hid_device_io_start(hdev); ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); if (ret < 0) { dev_err(&hdev->dev, "failed to set rmi mode\n"); goto exit; } ret = rmi_set_page(hdev, 0); if (ret < 0) { dev_err(&hdev->dev, "failed to set page select to 0.\n"); goto exit; } ret = rmi_populate(hdev); if (ret) goto exit; hid_info(hdev, "firmware id: %ld\n", data->firmware_id); __set_bit(EV_ABS, input->evbit); input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0); input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0); if (data->x_size_mm && data->y_size_mm) { res_x = (data->max_x - 1) / data->x_size_mm; res_y = (data->max_y - 1) / data->y_size_mm; input_abs_set_res(input, ABS_MT_POSITION_X, res_x); input_abs_set_res(input, ABS_MT_POSITION_Y, res_y); } input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0); input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0); input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0); input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0); ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER); if (ret < 0) goto exit; if (data->button_count) { __set_bit(EV_KEY, input->evbit); for (i = 0; i < data->button_count; i++) __set_bit(BTN_LEFT + i, input->keybit); if (data->button_count == 1) __set_bit(INPUT_PROP_BUTTONPAD, input->propbit); } set_bit(RMI_STARTED, &data->flags); exit: hid_device_io_stop(hdev); hid_hw_close(hdev); return ret; } static int rmi_input_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { struct rmi_data *data = hid_get_drvdata(hdev); /* * we want to make HID ignore the advertised HID collection * for RMI deivces */ if (data->device_flags & RMI_DEVICE) { if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) && ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)) return 0; return -1; } return 0; } static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type, unsigned id, struct hid_report **report) { int i; *report = hdev->report_enum[type].report_id_hash[id]; if (*report) { for (i = 0; i < (*report)->maxfield; i++) { unsigned app = (*report)->field[i]->application; if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR) return 1; } } return 0; } static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct rmi_data *data = NULL; int ret; size_t alloc_size; struct hid_report *input_report; struct hid_report *output_report; struct hid_report *feature_report; data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL); if (!data) return -ENOMEM; INIT_WORK(&data->reset_work, rmi_reset_work); data->hdev = hdev; hid_set_drvdata(hdev, data); hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS; ret = hid_parse(hdev); if (ret) { hid_err(hdev, "parse failed\n"); return ret; } if (id->driver_data) data->device_flags = id->driver_data; /* * Check for the RMI specific report ids. If they are misisng * simply return and let the events be processed by hid-input */ if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT, RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) { hid_dbg(hdev, "device does not have set mode feature report\n"); goto start; } if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT, RMI_ATTN_REPORT_ID, &input_report)) { hid_dbg(hdev, "device does not have attention input report\n"); goto start; } data->input_report_size = hid_report_len(input_report); if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT, RMI_WRITE_REPORT_ID, &output_report)) { hid_dbg(hdev, "device does not have rmi write output report\n"); goto start; } data->output_report_size = hid_report_len(output_report); data->device_flags |= RMI_DEVICE; alloc_size = data->output_report_size + data->input_report_size; data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL); if (!data->writeReport) { ret = -ENOMEM; return ret; } data->readReport = data->writeReport + data->output_report_size; init_waitqueue_head(&data->wait); mutex_init(&data->page_mutex); start: ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); if (ret) { hid_err(hdev, "hw start failed\n"); return ret; } if ((data->device_flags & RMI_DEVICE) && !test_bit(RMI_STARTED, &data->flags)) /* * The device maybe in the bootloader if rmi_input_configured * failed to find F11 in the PDT. Print an error, but don't * return an error from rmi_probe so that hidraw will be * accessible from userspace. That way a userspace tool * can be used to reload working firmware on the touchpad. */ hid_err(hdev, "Device failed to be properly configured\n"); return 0; } static void rmi_remove(struct hid_device *hdev) { struct rmi_data *hdata = hid_get_drvdata(hdev); clear_bit(RMI_STARTED, &hdata->flags); hid_hw_stop(hdev); } static const struct hid_device_id rmi_id[] = { { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14), .driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS }, { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) }, { } }; MODULE_DEVICE_TABLE(hid, rmi_id); static struct hid_driver rmi_driver = { .name = "hid-rmi", .id_table = rmi_id, .probe = rmi_probe, .remove = rmi_remove, .event = rmi_event, .raw_event = rmi_raw_event, .input_mapping = rmi_input_mapping, .input_configured = rmi_input_configured, #ifdef CONFIG_PM .suspend = rmi_suspend, .resume = rmi_post_resume, .reset_resume = rmi_post_reset, #endif }; module_hid_driver(rmi_driver); MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>"); MODULE_DESCRIPTION("RMI HID driver"); MODULE_LICENSE("GPL");