/* * Copyright 2006 Dave Airlie * Copyright © 2006-2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Jesse Barnes */ #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) { return hdmi_to_dig_port(intel_hdmi)->base.base.dev; } static void assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) { struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); struct drm_i915_private *dev_priv = dev->dev_private; uint32_t enabled_bits; enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits, "HDMI port enabled, expecting disabled\n"); } struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = container_of(encoder, struct intel_digital_port, base.base); return &intel_dig_port->hdmi; } static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector) { return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base); } static u32 g4x_infoframe_index(enum hdmi_infoframe_type type) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_SELECT_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_SELECT_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_SELECT_VENDOR; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); return 0; } } static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VENDOR; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); return 0; } } static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI_HSW; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD_HSW; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VS_HSW; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); return 0; } } static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type, enum transcoder cpu_transcoder, struct drm_i915_private *dev_priv) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder); case HDMI_INFOFRAME_TYPE_SPD: return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder); case HDMI_INFOFRAME_TYPE_VENDOR: return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder); default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); return 0; } } static void g4x_write_infoframe(struct drm_encoder *encoder, enum hdmi_infoframe_type type, const void *frame, ssize_t len) { const uint32_t *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val = I915_READ(VIDEO_DIP_CTL); int i; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(VIDEO_DIP_CTL, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VIDEO_DIP_DATA, *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(VIDEO_DIP_DATA, 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(VIDEO_DIP_CTL, val); POSTING_READ(VIDEO_DIP_CTL); } static void ibx_write_infoframe(struct drm_encoder *encoder, enum hdmi_infoframe_type type, const void *frame, ssize_t len) { const uint32_t *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void cpt_write_infoframe(struct drm_encoder *encoder, enum hdmi_infoframe_type type, const void *frame, ssize_t len) { const uint32_t *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); /* The DIP control register spec says that we need to update the AVI * infoframe without clearing its enable bit */ if (type != HDMI_INFOFRAME_TYPE_AVI) val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void vlv_write_infoframe(struct drm_encoder *encoder, enum hdmi_infoframe_type type, const void *frame, ssize_t len) { const uint32_t *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void hsw_write_infoframe(struct drm_encoder *encoder, enum hdmi_infoframe_type type, const void *frame, ssize_t len) { const uint32_t *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); u32 data_reg; int i; u32 val = I915_READ(ctl_reg); data_reg = hsw_infoframe_data_reg(type, intel_crtc->config.cpu_transcoder, dev_priv); if (data_reg == 0) return; val &= ~hsw_infoframe_enable(type); I915_WRITE(ctl_reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(data_reg + i, *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(data_reg + i, 0); mmiowb(); val |= hsw_infoframe_enable(type); I915_WRITE(ctl_reg, val); POSTING_READ(ctl_reg); } /* * The data we write to the DIP data buffer registers is 1 byte bigger than the * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting * at 0). It's also a byte used by DisplayPort so the same DIP registers can be * used for both technologies. * * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 * DW1: DB3 | DB2 | DB1 | DB0 * DW2: DB7 | DB6 | DB5 | DB4 * DW3: ... * * (HB is Header Byte, DB is Data Byte) * * The hdmi pack() functions don't know about that hardware specific hole so we * trick them by giving an offset into the buffer and moving back the header * bytes by one. */ static void intel_write_infoframe(struct drm_encoder *encoder, union hdmi_infoframe *frame) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); uint8_t buffer[VIDEO_DIP_DATA_SIZE]; ssize_t len; /* see comment above for the reason for this offset */ len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1); if (len < 0) return; /* Insert the 'hole' (see big comment above) at position 3 */ buffer[0] = buffer[1]; buffer[1] = buffer[2]; buffer[2] = buffer[3]; buffer[3] = 0; len++; intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len); } static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); union hdmi_infoframe frame; int ret; /* Set user selected PAR to incoming mode's member */ adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio; ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, adjusted_mode); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return; } if (intel_hdmi->rgb_quant_range_selectable) { if (intel_crtc->config.limited_color_range) frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_LIMITED; else frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; } intel_write_infoframe(encoder, &frame); } static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder) { union hdmi_infoframe frame; int ret; ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx"); if (ret < 0) { DRM_ERROR("couldn't fill SPD infoframe\n"); return; } frame.spd.sdi = HDMI_SPD_SDI_PC; intel_write_infoframe(encoder, &frame); } static void intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { union hdmi_infoframe frame; int ret; ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, adjusted_mode); if (ret < 0) return; intel_write_infoframe(encoder, &frame); } static void g4x_set_infoframes(struct drm_encoder *encoder, bool enable, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; u32 reg = VIDEO_DIP_CTL; u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->port); assert_hdmi_port_disabled(intel_hdmi); /* If the registers were not initialized yet, they might be zeroes, * which means we're selecting the AVI DIP and we're setting its * frequency to once. This seems to really confuse the HW and make * things stop working (the register spec says the AVI always needs to * be sent every VSync). So here we avoid writing to the register more * than we need and also explicitly select the AVI DIP and explicitly * set its frequency to every VSync. Avoiding to write it twice seems to * be enough to solve the problem, but being defensive shouldn't hurt us * either. */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~VIDEO_DIP_ENABLE_VENDOR; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); } static void ibx_set_infoframes(struct drm_encoder *encoder, bool enable, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); } static void cpt_set_infoframes(struct drm_encoder *encoder, bool enable, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI); I915_WRITE(reg, val); POSTING_READ(reg); return; } /* Set both together, unset both together: see the spec. */ val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); } static void vlv_set_infoframes(struct drm_encoder *encoder, bool enable, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); } static void hsw_set_infoframes(struct drm_encoder *encoder, bool enable, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); if (!enable) { I915_WRITE(reg, 0); POSTING_READ(reg); return; } val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); } static void intel_hdmi_prepare(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; u32 hdmi_val; hdmi_val = SDVO_ENCODING_HDMI; if (!HAS_PCH_SPLIT(dev)) hdmi_val |= intel_hdmi->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; if (crtc->config.pipe_bpp > 24) hdmi_val |= HDMI_COLOR_FORMAT_12bpc; else hdmi_val |= SDVO_COLOR_FORMAT_8bpc; if (crtc->config.has_hdmi_sink) hdmi_val |= HDMI_MODE_SELECT_HDMI; if (crtc->config.has_audio) { WARN_ON(!crtc->config.has_hdmi_sink); DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n", pipe_name(crtc->pipe)); hdmi_val |= SDVO_AUDIO_ENABLE; intel_write_eld(&encoder->base, adjusted_mode); } if (HAS_PCH_CPT(dev)) hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); else if (IS_CHERRYVIEW(dev)) hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe); else hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val); POSTING_READ(intel_hdmi->hdmi_reg); } static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); enum intel_display_power_domain power_domain; u32 tmp; power_domain = intel_display_port_power_domain(encoder); if (!intel_display_power_enabled(dev_priv, power_domain)) return false; tmp = I915_READ(intel_hdmi->hdmi_reg); if (!(tmp & SDVO_ENABLE)) return false; if (HAS_PCH_CPT(dev)) *pipe = PORT_TO_PIPE_CPT(tmp); else if (IS_CHERRYVIEW(dev)) *pipe = SDVO_PORT_TO_PIPE_CHV(tmp); else *pipe = PORT_TO_PIPE(tmp); return true; } static void intel_hdmi_get_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; u32 tmp, flags = 0; int dotclock; tmp = I915_READ(intel_hdmi->hdmi_reg); if (tmp & SDVO_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & SDVO_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; if (tmp & HDMI_MODE_SELECT_HDMI) pipe_config->has_hdmi_sink = true; if (tmp & HDMI_MODE_SELECT_HDMI) pipe_config->has_audio = true; pipe_config->adjusted_mode.flags |= flags; if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) dotclock = pipe_config->port_clock * 2 / 3; else dotclock = pipe_config->port_clock; if (HAS_PCH_SPLIT(dev_priv->dev)) ironlake_check_encoder_dotclock(pipe_config, dotclock); pipe_config->adjusted_mode.crtc_clock = dotclock; } static void intel_enable_hdmi(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; u32 enable_bits = SDVO_ENABLE; if (intel_crtc->config.has_audio) enable_bits |= SDVO_AUDIO_ENABLE; temp = I915_READ(intel_hdmi->hdmi_reg); /* HW workaround for IBX, we need to move the port to transcoder A * before disabling it, so restore the transcoder select bit here. */ if (HAS_PCH_IBX(dev)) enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe); /* HW workaround, need to toggle enable bit off and on for 12bpc, but * we do this anyway which shows more stable in testing. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); POSTING_READ(intel_hdmi->hdmi_reg); } temp |= enable_bits; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* HW workaround, need to write this twice for issue that may result * in first write getting masked. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); } } static void vlv_enable_hdmi(struct intel_encoder *encoder) { } static void intel_disable_hdmi(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE; temp = I915_READ(intel_hdmi->hdmi_reg); /* HW workaround for IBX, we need to move the port to transcoder A * before disabling it. */ if (HAS_PCH_IBX(dev)) { struct drm_crtc *crtc = encoder->base.crtc; int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1; if (temp & SDVO_PIPE_B_SELECT) { temp &= ~SDVO_PIPE_B_SELECT; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* Again we need to write this twice. */ I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* Transcoder selection bits only update * effectively on vblank. */ if (crtc) intel_wait_for_vblank(dev, pipe); else msleep(50); } } /* HW workaround, need to toggle enable bit off and on for 12bpc, but * we do this anyway which shows more stable in testing. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); POSTING_READ(intel_hdmi->hdmi_reg); } temp &= ~enable_bits; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* HW workaround, need to write this twice for issue that may result * in first write getting masked. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); } } static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit) { struct drm_device *dev = intel_hdmi_to_dev(hdmi); if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev)) return 165000; else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) return 300000; else return 225000; } static enum drm_mode_status intel_hdmi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector), true)) return MODE_CLOCK_HIGH; if (mode->clock < 20000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; return MODE_OK; } static bool hdmi_12bpc_possible(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; int count = 0, count_hdmi = 0; if (!HAS_PCH_SPLIT(dev)) return false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (encoder->new_crtc != crtc) continue; count_hdmi += encoder->type == INTEL_OUTPUT_HDMI; count++; } /* * HDMI 12bpc affects the clocks, so it's only possible * when not cloning with other encoder types. */ return count_hdmi > 0 && count_hdmi == count; } bool intel_hdmi_compute_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2; int portclock_limit = hdmi_portclock_limit(intel_hdmi, false); int desired_bpp; pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink; if (intel_hdmi->color_range_auto) { /* See CEA-861-E - 5.1 Default Encoding Parameters */ if (pipe_config->has_hdmi_sink && drm_match_cea_mode(adjusted_mode) > 1) intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; else intel_hdmi->color_range = 0; } if (intel_hdmi->color_range) pipe_config->limited_color_range = true; if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev)) pipe_config->has_pch_encoder = true; if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio) pipe_config->has_audio = true; /* * HDMI is either 12 or 8, so if the display lets 10bpc sneak * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi * outputs. We also need to check that the higher clock still fits * within limits. */ if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink && clock_12bpc <= portclock_limit && hdmi_12bpc_possible(encoder->new_crtc)) { DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n"); desired_bpp = 12*3; /* Need to adjust the port link by 1.5x for 12bpc. */ pipe_config->port_clock = clock_12bpc; } else { DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n"); desired_bpp = 8*3; } if (!pipe_config->bw_constrained) { DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp); pipe_config->pipe_bpp = desired_bpp; } if (adjusted_mode->crtc_clock > portclock_limit) { DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n"); return false; } return true; } static enum drm_connector_status intel_hdmi_detect(struct drm_connector *connector, bool force) { struct drm_device *dev = connector->dev; struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = dev->dev_private; struct edid *edid; enum intel_display_power_domain power_domain; enum drm_connector_status status = connector_status_disconnected; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_get(dev_priv, power_domain); intel_hdmi->has_hdmi_sink = false; intel_hdmi->has_audio = false; intel_hdmi->rgb_quant_range_selectable = false; edid = drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); if (edid) { if (edid->input & DRM_EDID_INPUT_DIGITAL) { status = connector_status_connected; if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI) intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); intel_hdmi->has_audio = drm_detect_monitor_audio(edid); intel_hdmi->rgb_quant_range_selectable = drm_rgb_quant_range_selectable(edid); } kfree(edid); } if (status == connector_status_connected) { if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO) intel_hdmi->has_audio = (intel_hdmi->force_audio == HDMI_AUDIO_ON); intel_encoder->type = INTEL_OUTPUT_HDMI; } intel_display_power_put(dev_priv, power_domain); return status; } static int intel_hdmi_get_modes(struct drm_connector *connector) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); struct drm_i915_private *dev_priv = connector->dev->dev_private; enum intel_display_power_domain power_domain; int ret; /* We should parse the EDID data and find out if it's an HDMI sink so * we can send audio to it. */ power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_get(dev_priv, power_domain); ret = intel_ddc_get_modes(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); intel_display_power_put(dev_priv, power_domain); return ret; } static bool intel_hdmi_detect_audio(struct drm_connector *connector) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); struct drm_i915_private *dev_priv = connector->dev->dev_private; enum intel_display_power_domain power_domain; struct edid *edid; bool has_audio = false; power_domain = intel_display_port_power_domain(intel_encoder); intel_display_power_get(dev_priv, power_domain); edid = drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); if (edid) { if (edid->input & DRM_EDID_INPUT_DIGITAL) has_audio = drm_detect_monitor_audio(edid); kfree(edid); } intel_display_power_put(dev_priv, power_domain); return has_audio; } static int intel_hdmi_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi); struct drm_i915_private *dev_priv = connector->dev->dev_private; int ret; ret = drm_object_property_set_value(&connector->base, property, val); if (ret) return ret; if (property == dev_priv->force_audio_property) { enum hdmi_force_audio i = val; bool has_audio; if (i == intel_hdmi->force_audio) return 0; intel_hdmi->force_audio = i; if (i == HDMI_AUDIO_AUTO) has_audio = intel_hdmi_detect_audio(connector); else has_audio = (i == HDMI_AUDIO_ON); if (i == HDMI_AUDIO_OFF_DVI) intel_hdmi->has_hdmi_sink = 0; intel_hdmi->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { bool old_auto = intel_hdmi->color_range_auto; uint32_t old_range = intel_hdmi->color_range; switch (val) { case INTEL_BROADCAST_RGB_AUTO: intel_hdmi->color_range_auto = true; break; case INTEL_BROADCAST_RGB_FULL: intel_hdmi->color_range_auto = false; intel_hdmi->color_range = 0; break; case INTEL_BROADCAST_RGB_LIMITED: intel_hdmi->color_range_auto = false; intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; break; default: return -EINVAL; } if (old_auto == intel_hdmi->color_range_auto && old_range == intel_hdmi->color_range) return 0; goto done; } if (property == connector->dev->mode_config.aspect_ratio_property) { switch (val) { case DRM_MODE_PICTURE_ASPECT_NONE: intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE; break; case DRM_MODE_PICTURE_ASPECT_4_3: intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3; break; case DRM_MODE_PICTURE_ASPECT_16_9: intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9; break; default: return -EINVAL; } goto done; } return -EINVAL; done: if (intel_dig_port->base.base.crtc) intel_crtc_restore_mode(intel_dig_port->base.base.crtc); return 0; } static void intel_hdmi_pre_enable(struct intel_encoder *encoder) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct drm_display_mode *adjusted_mode = &intel_crtc->config.adjusted_mode; intel_hdmi_prepare(encoder); intel_hdmi->set_infoframes(&encoder->base, intel_crtc->config.has_hdmi_sink, adjusted_mode); } static void vlv_hdmi_pre_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct intel_hdmi *intel_hdmi = &dport->hdmi; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct drm_display_mode *adjusted_mode = &intel_crtc->config.adjusted_mode; enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; u32 val; /* Enable clock channels for this port */ mutex_lock(&dev_priv->dpio_lock); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); val = 0; if (pipe) val |= (1<<21); else val &= ~(1<<21); val |= 0x001000c4; vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); /* HDMI 1.0V-2dB */ vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040); vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); /* Program lane clock */ vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); mutex_unlock(&dev_priv->dpio_lock); intel_hdmi->set_infoframes(&encoder->base, intel_crtc->config.has_hdmi_sink, adjusted_mode); intel_enable_hdmi(encoder); vlv_wait_port_ready(dev_priv, dport); } static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; intel_hdmi_prepare(encoder); /* Program Tx lane resets to default */ mutex_lock(&dev_priv->dpio_lock); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | (1<dpio_lock); } static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); enum pipe pipe = intel_crtc->pipe; u32 val; mutex_lock(&dev_priv->dpio_lock); /* program left/right clock distribution */ if (pipe != PIPE_B) { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); if (ch == DPIO_CH0) val |= CHV_BUFLEFTENA1_FORCE; if (ch == DPIO_CH1) val |= CHV_BUFRIGHTENA1_FORCE; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); } else { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); if (ch == DPIO_CH0) val |= CHV_BUFLEFTENA2_FORCE; if (ch == DPIO_CH1) val |= CHV_BUFRIGHTENA2_FORCE; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); } /* program clock channel usage */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; if (pipe != PIPE_B) val &= ~CHV_PCS_USEDCLKCHANNEL; else val |= CHV_PCS_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; if (pipe != PIPE_B) val &= ~CHV_PCS_USEDCLKCHANNEL; else val |= CHV_PCS_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); /* * This a a bit weird since generally CL * matches the pipe, but here we need to * pick the CL based on the port. */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); if (pipe != PIPE_B) val &= ~CHV_CMN_USEDCLKCHANNEL; else val |= CHV_CMN_USEDCLKCHANNEL; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); mutex_unlock(&dev_priv->dpio_lock); } static void vlv_hdmi_post_disable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; /* Reset lanes to avoid HDMI flicker (VLV w/a) */ mutex_lock(&dev_priv->dpio_lock); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); mutex_unlock(&dev_priv->dpio_lock); } static void chv_hdmi_post_disable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); enum pipe pipe = intel_crtc->pipe; u32 val; mutex_lock(&dev_priv->dpio_lock); /* Propagate soft reset to data lane reset */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); mutex_unlock(&dev_priv->dpio_lock); } static void chv_hdmi_pre_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel ch = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; int data, i; u32 val; mutex_lock(&dev_priv->dpio_lock); /* Deassert soft data lane reset*/ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); val |= CHV_PCS_REQ_SOFTRESET_EN; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); /* Program Tx latency optimal setting */ for (i = 0; i < 4; i++) { /* Set the latency optimal bit */ data = (i == 1) ? 0x0 : 0x6; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i), data << DPIO_FRC_LATENCY_SHFIT); /* Set the upar bit */ data = (i == 1) ? 0x0 : 0x1; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), data << DPIO_UPAR_SHIFT); } /* Data lane stagger programming */ /* FIXME: Fix up value only after power analysis */ /* Clear calc init */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); /* FIXME: Program the support xxx V-dB */ /* Use 800mV-0dB */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); val &= ~DPIO_SWING_DEEMPH9P5_MASK; val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); } for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); val &= ~DPIO_SWING_MARGIN_MASK; val |= 102 << DPIO_SWING_MARGIN_SHIFT; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); } /* Disable unique transition scale */ for (i = 0; i < 4; i++) { val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); } /* Additional steps for 1200mV-0dB */ #if 0 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch)); if (ch) val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1; else val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0; vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) | (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT)); #endif /* Start swing calculation */ val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); /* LRC Bypass */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); val |= DPIO_LRC_BYPASS; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); mutex_unlock(&dev_priv->dpio_lock); intel_enable_hdmi(encoder); vlv_wait_port_ready(dev_priv, dport); } static void intel_hdmi_destroy(struct drm_connector *connector) { drm_connector_cleanup(connector); kfree(connector); } static const struct drm_connector_funcs intel_hdmi_connector_funcs = { .dpms = intel_connector_dpms, .detect = intel_hdmi_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_hdmi_set_property, .destroy = intel_hdmi_destroy, }; static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { .get_modes = intel_hdmi_get_modes, .mode_valid = intel_hdmi_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { .destroy = intel_encoder_destroy, }; static void intel_attach_aspect_ratio_property(struct drm_connector *connector) { if (!drm_mode_create_aspect_ratio_property(connector->dev)) drm_object_attach_property(&connector->base, connector->dev->mode_config.aspect_ratio_property, DRM_MODE_PICTURE_ASPECT_NONE); } static void intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) { intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); intel_hdmi->color_range_auto = true; intel_attach_aspect_ratio_property(connector); intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE; } void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; drm_connector_init(dev, connector, &intel_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; connector->stereo_allowed = 1; switch (port) { case PORT_B: intel_hdmi->ddc_bus = GMBUS_PORT_DPB; intel_encoder->hpd_pin = HPD_PORT_B; break; case PORT_C: intel_hdmi->ddc_bus = GMBUS_PORT_DPC; intel_encoder->hpd_pin = HPD_PORT_C; break; case PORT_D: if (IS_CHERRYVIEW(dev)) intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV; else intel_hdmi->ddc_bus = GMBUS_PORT_DPD; intel_encoder->hpd_pin = HPD_PORT_D; break; case PORT_A: intel_encoder->hpd_pin = HPD_PORT_A; /* Internal port only for eDP. */ default: BUG(); } if (IS_VALLEYVIEW(dev)) { intel_hdmi->write_infoframe = vlv_write_infoframe; intel_hdmi->set_infoframes = vlv_set_infoframes; } else if (!HAS_PCH_SPLIT(dev)) { intel_hdmi->write_infoframe = g4x_write_infoframe; intel_hdmi->set_infoframes = g4x_set_infoframes; } else if (HAS_DDI(dev)) { intel_hdmi->write_infoframe = hsw_write_infoframe; intel_hdmi->set_infoframes = hsw_set_infoframes; } else if (HAS_PCH_IBX(dev)) { intel_hdmi->write_infoframe = ibx_write_infoframe; intel_hdmi->set_infoframes = ibx_set_infoframes; } else { intel_hdmi->write_infoframe = cpt_write_infoframe; intel_hdmi->set_infoframes = cpt_set_infoframes; } if (HAS_DDI(dev)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_connector->unregister = intel_connector_unregister; intel_hdmi_add_properties(intel_hdmi, connector); intel_connector_attach_encoder(intel_connector, intel_encoder); drm_sysfs_connector_add(connector); /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } } void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); if (!intel_connector) { kfree(intel_dig_port); return; } intel_encoder = &intel_dig_port->base; drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS); intel_encoder->compute_config = intel_hdmi_compute_config; intel_encoder->disable = intel_disable_hdmi; intel_encoder->get_hw_state = intel_hdmi_get_hw_state; intel_encoder->get_config = intel_hdmi_get_config; if (IS_CHERRYVIEW(dev)) { intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable; intel_encoder->pre_enable = chv_hdmi_pre_enable; intel_encoder->enable = vlv_enable_hdmi; intel_encoder->post_disable = chv_hdmi_post_disable; } else if (IS_VALLEYVIEW(dev)) { intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; intel_encoder->pre_enable = vlv_hdmi_pre_enable; intel_encoder->enable = vlv_enable_hdmi; intel_encoder->post_disable = vlv_hdmi_post_disable; } else { intel_encoder->pre_enable = intel_hdmi_pre_enable; intel_encoder->enable = intel_enable_hdmi; } intel_encoder->type = INTEL_OUTPUT_HDMI; if (IS_CHERRYVIEW(dev)) { if (port == PORT_D) intel_encoder->crtc_mask = 1 << 2; else intel_encoder->crtc_mask = (1 << 0) | (1 << 1); } else { intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); } intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG; /* * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems * to work on real hardware. And since g4x can send infoframes to * only one port anyway, nothing is lost by allowing it. */ if (IS_G4X(dev)) intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI; intel_dig_port->port = port; intel_dig_port->hdmi.hdmi_reg = hdmi_reg; intel_dig_port->dp.output_reg = 0; intel_hdmi_init_connector(intel_dig_port, intel_connector); }