/* * SMP initialisation and IPI support * Based on arch/arm/kernel/smp.c * * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * as from 2.5, kernels no longer have an init_tasks structure * so we need some other way of telling a new secondary core * where to place its SVC stack */ struct secondary_data secondary_data; volatile unsigned long secondary_holding_pen_release = INVALID_HWID; enum ipi_msg_type { IPI_RESCHEDULE, IPI_CALL_FUNC, IPI_CALL_FUNC_SINGLE, IPI_CPU_STOP, }; static DEFINE_RAW_SPINLOCK(boot_lock); /* * Write secondary_holding_pen_release in a way that is guaranteed to be * visible to all observers, irrespective of whether they're taking part * in coherency or not. This is necessary for the hotplug code to work * reliably. */ static void __cpuinit write_pen_release(u64 val) { void *start = (void *)&secondary_holding_pen_release; unsigned long size = sizeof(secondary_holding_pen_release); secondary_holding_pen_release = val; __flush_dcache_area(start, size); } /* * Boot a secondary CPU, and assign it the specified idle task. * This also gives us the initial stack to use for this CPU. */ static int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; /* * Set synchronisation state between this boot processor * and the secondary one */ raw_spin_lock(&boot_lock); /* * Update the pen release flag. */ write_pen_release(cpu_logical_map(cpu)); /* * Send an event, causing the secondaries to read pen_release. */ sev(); timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { if (secondary_holding_pen_release == INVALID_HWID) break; udelay(10); } /* * Now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ raw_spin_unlock(&boot_lock); return secondary_holding_pen_release != INVALID_HWID ? -ENOSYS : 0; } static DECLARE_COMPLETION(cpu_running); int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) { int ret; /* * We need to tell the secondary core where to find its stack and the * page tables. */ secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; __flush_dcache_area(&secondary_data, sizeof(secondary_data)); /* * Now bring the CPU into our world. */ ret = boot_secondary(cpu, idle); if (ret == 0) { /* * CPU was successfully started, wait for it to come online or * time out. */ wait_for_completion_timeout(&cpu_running, msecs_to_jiffies(1000)); if (!cpu_online(cpu)) { pr_crit("CPU%u: failed to come online\n", cpu); ret = -EIO; } } else { pr_err("CPU%u: failed to boot: %d\n", cpu, ret); } secondary_data.stack = NULL; return ret; } /* * This is the secondary CPU boot entry. We're using this CPUs * idle thread stack, but a set of temporary page tables. */ asmlinkage void __cpuinit secondary_start_kernel(void) { struct mm_struct *mm = &init_mm; unsigned int cpu = smp_processor_id(); printk("CPU%u: Booted secondary processor\n", cpu); /* * All kernel threads share the same mm context; grab a * reference and switch to it. */ atomic_inc(&mm->mm_count); current->active_mm = mm; cpumask_set_cpu(cpu, mm_cpumask(mm)); /* * TTBR0 is only used for the identity mapping at this stage. Make it * point to zero page to avoid speculatively fetching new entries. */ cpu_set_reserved_ttbr0(); flush_tlb_all(); preempt_disable(); trace_hardirqs_off(); /* * Let the primary processor know we're out of the * pen, then head off into the C entry point */ write_pen_release(INVALID_HWID); /* * Synchronise with the boot thread. */ raw_spin_lock(&boot_lock); raw_spin_unlock(&boot_lock); /* * Enable local interrupts. */ notify_cpu_starting(cpu); local_irq_enable(); local_fiq_enable(); /* * OK, now it's safe to let the boot CPU continue. Wait for * the CPU migration code to notice that the CPU is online * before we continue. */ set_cpu_online(cpu, true); complete(&cpu_running); /* * OK, it's off to the idle thread for us */ cpu_idle(); } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = loops_per_jiffy * num_online_cpus(); pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n", num_online_cpus(), bogosum / (500000/HZ), (bogosum / (5000/HZ)) % 100); } void __init smp_prepare_boot_cpu(void) { } static void (*smp_cross_call)(const struct cpumask *, unsigned int); static const struct smp_enable_ops *enable_ops[] __initconst = { &smp_spin_table_ops, &smp_psci_ops, NULL, }; static const struct smp_enable_ops *smp_enable_ops[NR_CPUS]; static const struct smp_enable_ops * __init smp_get_enable_ops(const char *name) { const struct smp_enable_ops *ops = enable_ops[0]; while (ops) { if (!strcmp(name, ops->name)) return ops; ops++; } return NULL; } /* * Enumerate the possible CPU set from the device tree and build the * cpu logical map array containing MPIDR values related to logical * cpus. Assumes that cpu_logical_map(0) has already been initialized. */ void __init smp_init_cpus(void) { const char *enable_method; struct device_node *dn = NULL; int i, cpu = 1; bool bootcpu_valid = false; while ((dn = of_find_node_by_type(dn, "cpu"))) { const u32 *cell; u64 hwid; /* * A cpu node with missing "reg" property is * considered invalid to build a cpu_logical_map * entry. */ cell = of_get_property(dn, "reg", NULL); if (!cell) { pr_err("%s: missing reg property\n", dn->full_name); goto next; } hwid = of_read_number(cell, of_n_addr_cells(dn)); /* * Non affinity bits must be set to 0 in the DT */ if (hwid & ~MPIDR_HWID_BITMASK) { pr_err("%s: invalid reg property\n", dn->full_name); goto next; } /* * Duplicate MPIDRs are a recipe for disaster. Scan * all initialized entries and check for * duplicates. If any is found just ignore the cpu. * cpu_logical_map was initialized to INVALID_HWID to * avoid matching valid MPIDR values. */ for (i = 1; (i < cpu) && (i < NR_CPUS); i++) { if (cpu_logical_map(i) == hwid) { pr_err("%s: duplicate cpu reg properties in the DT\n", dn->full_name); goto next; } } /* * The numbering scheme requires that the boot CPU * must be assigned logical id 0. Record it so that * the logical map built from DT is validated and can * be used. */ if (hwid == cpu_logical_map(0)) { if (bootcpu_valid) { pr_err("%s: duplicate boot cpu reg property in DT\n", dn->full_name); goto next; } bootcpu_valid = true; /* * cpu_logical_map has already been * initialized and the boot cpu doesn't need * the enable-method so continue without * incrementing cpu. */ continue; } if (cpu >= NR_CPUS) goto next; /* * We currently support only the "spin-table" enable-method. */ enable_method = of_get_property(dn, "enable-method", NULL); if (!enable_method) { pr_err("%s: missing enable-method property\n", dn->full_name); goto next; } smp_enable_ops[cpu] = smp_get_enable_ops(enable_method); if (!smp_enable_ops[cpu]) { pr_err("%s: invalid enable-method property: %s\n", dn->full_name, enable_method); goto next; } if (smp_enable_ops[cpu]->init_cpu(dn, cpu)) goto next; pr_debug("cpu logical map 0x%llx\n", hwid); cpu_logical_map(cpu) = hwid; next: cpu++; } /* sanity check */ if (cpu > NR_CPUS) pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", cpu, NR_CPUS); if (!bootcpu_valid) { pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n"); return; } /* * All the cpus that made it to the cpu_logical_map have been * validated so set them as possible cpus. */ for (i = 0; i < NR_CPUS; i++) if (cpu_logical_map(i) != INVALID_HWID) set_cpu_possible(i, true); } void __init smp_prepare_cpus(unsigned int max_cpus) { int cpu, err; unsigned int ncores = num_possible_cpus(); /* * are we trying to boot more cores than exist? */ if (max_cpus > ncores) max_cpus = ncores; /* Don't bother if we're effectively UP */ if (max_cpus <= 1) return; /* * Initialise the present map (which describes the set of CPUs * actually populated at the present time) and release the * secondaries from the bootloader. * * Make sure we online at most (max_cpus - 1) additional CPUs. */ max_cpus--; for_each_possible_cpu(cpu) { if (max_cpus == 0) break; if (cpu == smp_processor_id()) continue; if (!smp_enable_ops[cpu]) continue; err = smp_enable_ops[cpu]->prepare_cpu(cpu); if (err) continue; set_cpu_present(cpu, true); max_cpus--; } } void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) { smp_cross_call = fn; } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_cross_call(mask, IPI_CALL_FUNC); } void arch_send_call_function_single_ipi(int cpu) { smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); } static const char *ipi_types[NR_IPI] = { #define S(x,s) [x - IPI_RESCHEDULE] = s S(IPI_RESCHEDULE, "Rescheduling interrupts"), S(IPI_CALL_FUNC, "Function call interrupts"), S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), S(IPI_CPU_STOP, "CPU stop interrupts"), }; void show_ipi_list(struct seq_file *p, int prec) { unsigned int cpu, i; for (i = 0; i < NR_IPI; i++) { seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, prec >= 4 ? " " : ""); for_each_present_cpu(cpu) seq_printf(p, "%10u ", __get_irq_stat(cpu, ipi_irqs[i])); seq_printf(p, " %s\n", ipi_types[i]); } } u64 smp_irq_stat_cpu(unsigned int cpu) { u64 sum = 0; int i; for (i = 0; i < NR_IPI; i++) sum += __get_irq_stat(cpu, ipi_irqs[i]); return sum; } static DEFINE_RAW_SPINLOCK(stop_lock); /* * ipi_cpu_stop - handle IPI from smp_send_stop() */ static void ipi_cpu_stop(unsigned int cpu) { if (system_state == SYSTEM_BOOTING || system_state == SYSTEM_RUNNING) { raw_spin_lock(&stop_lock); pr_crit("CPU%u: stopping\n", cpu); dump_stack(); raw_spin_unlock(&stop_lock); } set_cpu_online(cpu, false); local_fiq_disable(); local_irq_disable(); while (1) cpu_relax(); } /* * Main handler for inter-processor interrupts */ void handle_IPI(int ipinr, struct pt_regs *regs) { unsigned int cpu = smp_processor_id(); struct pt_regs *old_regs = set_irq_regs(regs); if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); switch (ipinr) { case IPI_RESCHEDULE: scheduler_ipi(); break; case IPI_CALL_FUNC: irq_enter(); generic_smp_call_function_interrupt(); irq_exit(); break; case IPI_CALL_FUNC_SINGLE: irq_enter(); generic_smp_call_function_single_interrupt(); irq_exit(); break; case IPI_CPU_STOP: irq_enter(); ipi_cpu_stop(cpu); irq_exit(); break; default: pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); break; } set_irq_regs(old_regs); } void smp_send_reschedule(int cpu) { smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); } void smp_send_stop(void) { unsigned long timeout; if (num_online_cpus() > 1) { cpumask_t mask; cpumask_copy(&mask, cpu_online_mask); cpu_clear(smp_processor_id(), mask); smp_cross_call(&mask, IPI_CPU_STOP); } /* Wait up to one second for other CPUs to stop */ timeout = USEC_PER_SEC; while (num_online_cpus() > 1 && timeout--) udelay(1); if (num_online_cpus() > 1) pr_warning("SMP: failed to stop secondary CPUs\n"); } /* * not supported here */ int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; }