/* n2-drv.c: Niagara-2 RNG driver. * * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/preempt.h> #include <linux/hw_random.h> #include <linux/of.h> #include <linux/of_device.h> #include <asm/hypervisor.h> #include "n2rng.h" #define DRV_MODULE_NAME "n2rng" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "0.2" #define DRV_MODULE_RELDATE "July 27, 2011" static char version[] = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_DESCRIPTION("Niagara2 RNG driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); /* The Niagara2 RNG provides a 64-bit read-only random number * register, plus a control register. Access to the RNG is * virtualized through the hypervisor so that both guests and control * nodes can access the device. * * The entropy source consists of raw entropy sources, each * constructed from a voltage controlled oscillator whose phase is * jittered by thermal noise sources. * * The oscillator in each of the three raw entropy sources run at * different frequencies. Normally, all three generator outputs are * gathered, xored together, and fed into a CRC circuit, the output of * which is the 64-bit read-only register. * * Some time is necessary for all the necessary entropy to build up * such that a full 64-bits of entropy are available in the register. * In normal operating mode (RNG_CTL_LFSR is set), the chip implements * an interlock which blocks register reads until sufficient entropy * is available. * * A control register is provided for adjusting various aspects of RNG * operation, and to enable diagnostic modes. Each of the three raw * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also * provided are fields for controlling the minimum time in cycles * between read accesses to the register (RNG_CTL_WAIT, this controls * the interlock described in the previous paragraph). * * The standard setting is to have the mode bit (RNG_CTL_LFSR) set, * all three entropy sources enabled, and the interlock time set * appropriately. * * The CRC polynomial used by the chip is: * * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1 * * The RNG_CTL_VCO value of each noise cell must be programmed * separately. This is why 4 control register values must be provided * to the hypervisor. During a write, the hypervisor writes them all, * one at a time, to the actual RNG_CTL register. The first three * values are used to setup the desired RNG_CTL_VCO for each entropy * source, for example: * * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3 * * And then the fourth value sets the final chip state and enables * desired. */ static int n2rng_hv_err_trans(unsigned long hv_err) { switch (hv_err) { case HV_EOK: return 0; case HV_EWOULDBLOCK: return -EAGAIN; case HV_ENOACCESS: return -EPERM; case HV_EIO: return -EIO; case HV_EBUSY: return -EBUSY; case HV_EBADALIGN: case HV_ENORADDR: return -EFAULT; default: return -EINVAL; } } static unsigned long n2rng_generic_read_control_v2(unsigned long ra, unsigned long unit) { unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status; int block = 0, busy = 0; while (1) { hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state, &ticks, &watchdog_delta, &watchdog_status); if (hv_err == HV_EOK) break; if (hv_err == HV_EBUSY) { if (++busy >= N2RNG_BUSY_LIMIT) break; udelay(1); } else if (hv_err == HV_EWOULDBLOCK) { if (++block >= N2RNG_BLOCK_LIMIT) break; __delay(ticks); } else break; } return hv_err; } /* In multi-socket situations, the hypervisor might need to * queue up the RNG control register write if it's for a unit * that is on a cpu socket other than the one we are executing on. * * We poll here waiting for a successful read of that control * register to make sure the write has been actually performed. */ static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit) { unsigned long ra = __pa(&np->scratch_control[0]); return n2rng_generic_read_control_v2(ra, unit); } static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit, unsigned long state, unsigned long control_ra, unsigned long watchdog_timeout, unsigned long *ticks) { unsigned long hv_err; if (np->hvapi_major == 1) { hv_err = sun4v_rng_ctl_write_v1(control_ra, state, watchdog_timeout, ticks); } else { hv_err = sun4v_rng_ctl_write_v2(control_ra, state, watchdog_timeout, unit); if (hv_err == HV_EOK) hv_err = n2rng_control_settle_v2(np, unit); *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; } return hv_err; } static int n2rng_generic_read_data(unsigned long data_ra) { unsigned long ticks, hv_err; int block = 0, hcheck = 0; while (1) { hv_err = sun4v_rng_data_read(data_ra, &ticks); if (hv_err == HV_EOK) return 0; if (hv_err == HV_EWOULDBLOCK) { if (++block >= N2RNG_BLOCK_LIMIT) return -EWOULDBLOCK; __delay(ticks); } else if (hv_err == HV_ENOACCESS) { return -EPERM; } else if (hv_err == HV_EIO) { if (++hcheck >= N2RNG_HCHECK_LIMIT) return -EIO; udelay(10000); } else return -ENODEV; } } static unsigned long n2rng_read_diag_data_one(struct n2rng *np, unsigned long unit, unsigned long data_ra, unsigned long data_len, unsigned long *ticks) { unsigned long hv_err; if (np->hvapi_major == 1) { hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks); } else { hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len, unit, ticks); if (!*ticks) *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; } return hv_err; } static int n2rng_generic_read_diag_data(struct n2rng *np, unsigned long unit, unsigned long data_ra, unsigned long data_len) { unsigned long ticks, hv_err; int block = 0; while (1) { hv_err = n2rng_read_diag_data_one(np, unit, data_ra, data_len, &ticks); if (hv_err == HV_EOK) return 0; if (hv_err == HV_EWOULDBLOCK) { if (++block >= N2RNG_BLOCK_LIMIT) return -EWOULDBLOCK; __delay(ticks); } else if (hv_err == HV_ENOACCESS) { return -EPERM; } else if (hv_err == HV_EIO) { return -EIO; } else return -ENODEV; } } static int n2rng_generic_write_control(struct n2rng *np, unsigned long control_ra, unsigned long unit, unsigned long state) { unsigned long hv_err, ticks; int block = 0, busy = 0; while (1) { hv_err = n2rng_write_ctl_one(np, unit, state, control_ra, np->wd_timeo, &ticks); if (hv_err == HV_EOK) return 0; if (hv_err == HV_EWOULDBLOCK) { if (++block >= N2RNG_BLOCK_LIMIT) return -EWOULDBLOCK; __delay(ticks); } else if (hv_err == HV_EBUSY) { if (++busy >= N2RNG_BUSY_LIMIT) return -EBUSY; udelay(1); } else return -ENODEV; } } /* Just try to see if we can successfully access the control register * of the RNG on the domain on which we are currently executing. */ static int n2rng_try_read_ctl(struct n2rng *np) { unsigned long hv_err; unsigned long x; if (np->hvapi_major == 1) { hv_err = sun4v_rng_get_diag_ctl(); } else { /* We purposefully give invalid arguments, HV_NOACCESS * is higher priority than the errors we'd get from * these other cases, and that's the error we are * truly interested in. */ hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x); switch (hv_err) { case HV_EWOULDBLOCK: case HV_ENOACCESS: break; default: hv_err = HV_EOK; break; } } return n2rng_hv_err_trans(hv_err); } #define CONTROL_DEFAULT_BASE \ ((2 << RNG_CTL_ASEL_SHIFT) | \ (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \ RNG_CTL_LFSR) #define CONTROL_DEFAULT_0 \ (CONTROL_DEFAULT_BASE | \ (1 << RNG_CTL_VCO_SHIFT) | \ RNG_CTL_ES1) #define CONTROL_DEFAULT_1 \ (CONTROL_DEFAULT_BASE | \ (2 << RNG_CTL_VCO_SHIFT) | \ RNG_CTL_ES2) #define CONTROL_DEFAULT_2 \ (CONTROL_DEFAULT_BASE | \ (3 << RNG_CTL_VCO_SHIFT) | \ RNG_CTL_ES3) #define CONTROL_DEFAULT_3 \ (CONTROL_DEFAULT_BASE | \ RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3) static void n2rng_control_swstate_init(struct n2rng *np) { int i; np->flags |= N2RNG_FLAG_CONTROL; np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT; np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT; np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT; for (i = 0; i < np->num_units; i++) { struct n2rng_unit *up = &np->units[i]; up->control[0] = CONTROL_DEFAULT_0; up->control[1] = CONTROL_DEFAULT_1; up->control[2] = CONTROL_DEFAULT_2; up->control[3] = CONTROL_DEFAULT_3; } np->hv_state = HV_RNG_STATE_UNCONFIGURED; } static int n2rng_grab_diag_control(struct n2rng *np) { int i, busy_count, err = -ENODEV; busy_count = 0; for (i = 0; i < 100; i++) { err = n2rng_try_read_ctl(np); if (err != -EAGAIN) break; if (++busy_count > 100) { dev_err(&np->op->dev, "Grab diag control timeout.\n"); return -ENODEV; } udelay(1); } return err; } static int n2rng_init_control(struct n2rng *np) { int err = n2rng_grab_diag_control(np); /* Not in the control domain, that's OK we are only a consumer * of the RNG data, we don't setup and program it. */ if (err == -EPERM) return 0; if (err) return err; n2rng_control_swstate_init(np); return 0; } static int n2rng_data_read(struct hwrng *rng, u32 *data) { struct n2rng *np = (struct n2rng *) rng->priv; unsigned long ra = __pa(&np->test_data); int len; if (!(np->flags & N2RNG_FLAG_READY)) { len = 0; } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) { np->flags &= ~N2RNG_FLAG_BUFFER_VALID; *data = np->buffer; len = 4; } else { int err = n2rng_generic_read_data(ra); if (!err) { np->buffer = np->test_data >> 32; *data = np->test_data & 0xffffffff; len = 4; } else { dev_err(&np->op->dev, "RNG error, restesting\n"); np->flags &= ~N2RNG_FLAG_READY; if (!(np->flags & N2RNG_FLAG_SHUTDOWN)) schedule_delayed_work(&np->work, 0); len = 0; } } return len; } /* On a guest node, just make sure we can read random data properly. * If a control node reboots or reloads it's n2rng driver, this won't * work during that time. So we have to keep probing until the device * becomes usable. */ static int n2rng_guest_check(struct n2rng *np) { unsigned long ra = __pa(&np->test_data); return n2rng_generic_read_data(ra); } static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit, u64 *pre_control, u64 pre_state, u64 *buffer, unsigned long buf_len, u64 *post_control, u64 post_state) { unsigned long post_ctl_ra = __pa(post_control); unsigned long pre_ctl_ra = __pa(pre_control); unsigned long buffer_ra = __pa(buffer); int err; err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state); if (err) return err; err = n2rng_generic_read_diag_data(np, unit, buffer_ra, buf_len); (void) n2rng_generic_write_control(np, post_ctl_ra, unit, post_state); return err; } static u64 advance_polynomial(u64 poly, u64 val, int count) { int i; for (i = 0; i < count; i++) { int highbit_set = ((s64)val < 0); val <<= 1; if (highbit_set) val ^= poly; } return val; } static int n2rng_test_buffer_find(struct n2rng *np, u64 val) { int i, count = 0; /* Purposefully skip over the first word. */ for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) { if (np->test_buffer[i] == val) count++; } return count; } static void n2rng_dump_test_buffer(struct n2rng *np) { int i; for (i = 0; i < SELFTEST_BUFFER_WORDS; i++) dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n", i, np->test_buffer[i]); } static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit) { u64 val = SELFTEST_VAL; int err, matches, limit; matches = 0; for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) { matches += n2rng_test_buffer_find(np, val); if (matches >= SELFTEST_MATCH_GOAL) break; val = advance_polynomial(SELFTEST_POLY, val, 1); } err = 0; if (limit >= SELFTEST_LOOPS_MAX) { err = -ENODEV; dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit); n2rng_dump_test_buffer(np); } else dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit); return err; } static int n2rng_control_selftest(struct n2rng *np, unsigned long unit) { int err; np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT); np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT); np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT); np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) | RNG_CTL_LFSR | ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT)); err = n2rng_entropy_diag_read(np, unit, np->test_control, HV_RNG_STATE_HEALTHCHECK, np->test_buffer, sizeof(np->test_buffer), &np->units[unit].control[0], np->hv_state); if (err) return err; return n2rng_check_selftest_buffer(np, unit); } static int n2rng_control_check(struct n2rng *np) { int i; for (i = 0; i < np->num_units; i++) { int err = n2rng_control_selftest(np, i); if (err) return err; } return 0; } /* The sanity checks passed, install the final configuration into the * chip, it's ready to use. */ static int n2rng_control_configure_units(struct n2rng *np) { int unit, err; err = 0; for (unit = 0; unit < np->num_units; unit++) { struct n2rng_unit *up = &np->units[unit]; unsigned long ctl_ra = __pa(&up->control[0]); int esrc; u64 base; base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) | (2 << RNG_CTL_ASEL_SHIFT) | RNG_CTL_LFSR); /* XXX This isn't the best. We should fetch a bunch * XXX of words using each entropy source combined XXX * with each VCO setting, and see which combinations * XXX give the best random data. */ for (esrc = 0; esrc < 3; esrc++) up->control[esrc] = base | (esrc << RNG_CTL_VCO_SHIFT) | (RNG_CTL_ES1 << esrc); up->control[3] = base | (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3); err = n2rng_generic_write_control(np, ctl_ra, unit, HV_RNG_STATE_CONFIGURED); if (err) break; } return err; } static void n2rng_work(struct work_struct *work) { struct n2rng *np = container_of(work, struct n2rng, work.work); int err = 0; if (!(np->flags & N2RNG_FLAG_CONTROL)) { err = n2rng_guest_check(np); } else { preempt_disable(); err = n2rng_control_check(np); preempt_enable(); if (!err) err = n2rng_control_configure_units(np); } if (!err) { np->flags |= N2RNG_FLAG_READY; dev_info(&np->op->dev, "RNG ready\n"); } if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN)) schedule_delayed_work(&np->work, HZ * 2); } static void n2rng_driver_version(void) { static int n2rng_version_printed; if (n2rng_version_printed++ == 0) pr_info("%s", version); } static const struct of_device_id n2rng_match[]; static int n2rng_probe(struct platform_device *op) { const struct of_device_id *match; int multi_capable; int err = -ENOMEM; struct n2rng *np; match = of_match_device(n2rng_match, &op->dev); if (!match) return -EINVAL; multi_capable = (match->data != NULL); n2rng_driver_version(); np = kzalloc(sizeof(*np), GFP_KERNEL); if (!np) goto out; np->op = op; INIT_DELAYED_WORK(&np->work, n2rng_work); if (multi_capable) np->flags |= N2RNG_FLAG_MULTI; err = -ENODEV; np->hvapi_major = 2; if (sun4v_hvapi_register(HV_GRP_RNG, np->hvapi_major, &np->hvapi_minor)) { np->hvapi_major = 1; if (sun4v_hvapi_register(HV_GRP_RNG, np->hvapi_major, &np->hvapi_minor)) { dev_err(&op->dev, "Cannot register suitable " "HVAPI version.\n"); goto out_free; } } if (np->flags & N2RNG_FLAG_MULTI) { if (np->hvapi_major < 2) { dev_err(&op->dev, "multi-unit-capable RNG requires " "HVAPI major version 2 or later, got %lu\n", np->hvapi_major); goto out_hvapi_unregister; } np->num_units = of_getintprop_default(op->dev.of_node, "rng-#units", 0); if (!np->num_units) { dev_err(&op->dev, "VF RNG lacks rng-#units property\n"); goto out_hvapi_unregister; } } else np->num_units = 1; dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n", np->hvapi_major, np->hvapi_minor); np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units, GFP_KERNEL); err = -ENOMEM; if (!np->units) goto out_hvapi_unregister; err = n2rng_init_control(np); if (err) goto out_free_units; dev_info(&op->dev, "Found %s RNG, units: %d\n", ((np->flags & N2RNG_FLAG_MULTI) ? "multi-unit-capable" : "single-unit"), np->num_units); np->hwrng.name = "n2rng"; np->hwrng.data_read = n2rng_data_read; np->hwrng.priv = (unsigned long) np; err = hwrng_register(&np->hwrng); if (err) goto out_free_units; platform_set_drvdata(op, np); schedule_delayed_work(&np->work, 0); return 0; out_free_units: kfree(np->units); np->units = NULL; out_hvapi_unregister: sun4v_hvapi_unregister(HV_GRP_RNG); out_free: kfree(np); out: return err; } static int n2rng_remove(struct platform_device *op) { struct n2rng *np = platform_get_drvdata(op); np->flags |= N2RNG_FLAG_SHUTDOWN; cancel_delayed_work_sync(&np->work); hwrng_unregister(&np->hwrng); sun4v_hvapi_unregister(HV_GRP_RNG); kfree(np->units); np->units = NULL; kfree(np); return 0; } static const struct of_device_id n2rng_match[] = { { .name = "random-number-generator", .compatible = "SUNW,n2-rng", }, { .name = "random-number-generator", .compatible = "SUNW,vf-rng", .data = (void *) 1, }, { .name = "random-number-generator", .compatible = "SUNW,kt-rng", .data = (void *) 1, }, {}, }; MODULE_DEVICE_TABLE(of, n2rng_match); static struct platform_driver n2rng_driver = { .driver = { .name = "n2rng", .owner = THIS_MODULE, .of_match_table = n2rng_match, }, .probe = n2rng_probe, .remove = n2rng_remove, }; module_platform_driver(n2rng_driver);