/* * Nuvoton NAU8825 audio codec driver * * Copyright 2015 Google Chromium project. * Author: Anatol Pomozov * Copyright 2015 Nuvoton Technology Corp. * Co-author: Meng-Huang Kuo * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nau8825.h" #define NAU_FREF_MAX 13500000 #define NAU_FVCO_MAX 124000000 #define NAU_FVCO_MIN 90000000 struct nau8825_fll { int mclk_src; int ratio; int fll_frac; int fll_int; int clk_ref_div; }; struct nau8825_fll_attr { unsigned int param; unsigned int val; }; /* scaling for mclk from sysclk_src output */ static const struct nau8825_fll_attr mclk_src_scaling[] = { { 1, 0x0 }, { 2, 0x2 }, { 4, 0x3 }, { 8, 0x4 }, { 16, 0x5 }, { 32, 0x6 }, { 3, 0x7 }, { 6, 0xa }, { 12, 0xb }, { 24, 0xc }, { 48, 0xd }, { 96, 0xe }, { 5, 0xf }, }; /* ratio for input clk freq */ static const struct nau8825_fll_attr fll_ratio[] = { { 512000, 0x01 }, { 256000, 0x02 }, { 128000, 0x04 }, { 64000, 0x08 }, { 32000, 0x10 }, { 8000, 0x20 }, { 4000, 0x40 }, }; static const struct nau8825_fll_attr fll_pre_scalar[] = { { 1, 0x0 }, { 2, 0x1 }, { 4, 0x2 }, { 8, 0x3 }, }; static const struct reg_default nau8825_reg_defaults[] = { { NAU8825_REG_ENA_CTRL, 0x00ff }, { NAU8825_REG_IIC_ADDR_SET, 0x0 }, { NAU8825_REG_CLK_DIVIDER, 0x0050 }, { NAU8825_REG_FLL1, 0x0 }, { NAU8825_REG_FLL2, 0x3126 }, { NAU8825_REG_FLL3, 0x0008 }, { NAU8825_REG_FLL4, 0x0010 }, { NAU8825_REG_FLL5, 0x0 }, { NAU8825_REG_FLL6, 0x6000 }, { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, { NAU8825_REG_HSD_CTRL, 0x000c }, { NAU8825_REG_JACK_DET_CTRL, 0x0 }, { NAU8825_REG_INTERRUPT_MASK, 0x0 }, { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, { NAU8825_REG_SAR_CTRL, 0x0015 }, { NAU8825_REG_KEYDET_CTRL, 0x0110 }, { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, { NAU8825_REG_GPIO34_CTRL, 0x0 }, { NAU8825_REG_GPIO12_CTRL, 0x0 }, { NAU8825_REG_TDM_CTRL, 0x0 }, { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, { NAU8825_REG_BIQ_CTRL, 0x0 }, { NAU8825_REG_BIQ_COF1, 0x0 }, { NAU8825_REG_BIQ_COF2, 0x0 }, { NAU8825_REG_BIQ_COF3, 0x0 }, { NAU8825_REG_BIQ_COF4, 0x0 }, { NAU8825_REG_BIQ_COF5, 0x0 }, { NAU8825_REG_BIQ_COF6, 0x0 }, { NAU8825_REG_BIQ_COF7, 0x0 }, { NAU8825_REG_BIQ_COF8, 0x0 }, { NAU8825_REG_BIQ_COF9, 0x0 }, { NAU8825_REG_BIQ_COF10, 0x0 }, { NAU8825_REG_ADC_RATE, 0x0010 }, { NAU8825_REG_DAC_CTRL1, 0x0001 }, { NAU8825_REG_DAC_CTRL2, 0x0 }, { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, { NAU8825_REG_MUTE_CTRL, 0x0 }, { NAU8825_REG_HSVOL_CTRL, 0x0 }, { NAU8825_REG_DACL_CTRL, 0x02cf }, { NAU8825_REG_DACR_CTRL, 0x00cf }, { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, { NAU8825_REG_CLASSG_CTRL, 0x0 }, { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, { NAU8825_REG_MISC_CTRL, 0x0 }, { NAU8825_REG_BIAS_ADJ, 0x0 }, { NAU8825_REG_TRIM_SETTINGS, 0x0 }, { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, { NAU8825_REG_RDAC, 0x0008 }, { NAU8825_REG_MIC_BIAS, 0x0006 }, { NAU8825_REG_BOOST, 0x0 }, { NAU8825_REG_FEPGA, 0x0 }, { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, { NAU8825_REG_CHARGE_PUMP, 0x0 }, }; static bool nau8825_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: case NAU8825_REG_MISC_CTRL: case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: case NAU8825_REG_BIAS_ADJ: case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: return true; default: return false; } } static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: case NAU8825_REG_INTERRUPT_MASK: case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: case NAU8825_REG_IMM_MODE_CTRL: case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: case NAU8825_REG_MISC_CTRL: case NAU8825_REG_BIAS_ADJ: case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: return true; default: return false; } } static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_RESET: case NAU8825_REG_IRQ_STATUS: case NAU8825_REG_INT_CLR_KEY_STATUS: case NAU8825_REG_IMM_RMS_L: case NAU8825_REG_IMM_RMS_R: case NAU8825_REG_I2C_DEVICE_ID: case NAU8825_REG_SARDOUT_RAM_STATUS: case NAU8825_REG_CHARGE_PUMP_INPUT_READ: case NAU8825_REG_GENERAL_STATUS: return true; default: return false; } } static int nau8825_pump_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_POST_PMU: /* Prevent startup click by letting charge pump to ramp up */ msleep(10); regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); break; case SND_SOC_DAPM_PRE_PMD: regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW, 0); break; default: return -EINVAL; } return 0; } static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Disables the TESTDAC to let DAC signal pass through. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, 0); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); break; default: return -EINVAL; } return 0; } static const char * const nau8825_adc_decimation[] = { "32", "64", "128", "256" }; static const struct soc_enum nau8825_adc_decimation_enum = SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); static const char * const nau8825_dac_oversampl[] = { "64", "256", "128", "", "32" }; static const struct soc_enum nau8825_dac_oversampl_enum = SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); static const struct snd_kcontrol_new nau8825_controls[] = { SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 0, 0xff, 0, adc_vol_tlv), SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 12, 8, 0x0f, 0, sidetone_vol_tlv), SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 6, 0, 0x3f, 1, dac_vol_tlv), SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 8, 37, 0, fepga_gain_tlv), SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 0, 8, 0xff, 0, crosstalk_vol_tlv), SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), }; /* DAC Mux 0x33[9] and 0x34[9] */ static const char * const nau8825_dac_src[] = { "DACL", "DACR", }; static SOC_ENUM_SINGLE_DECL( nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); static SOC_ENUM_SINGLE_DECL( nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); static const struct snd_kcontrol_new nau8825_dacl_mux = SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); static const struct snd_kcontrol_new nau8825_dacr_mux = SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 15, 1), SND_SOC_DAPM_INPUT("MIC"), SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, NULL, 0), SND_SOC_DAPM_ADC("ADC", NULL, NAU8825_REG_ENA_CTRL, 8, 0), SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 0), /* ADC for button press detection. A dapm supply widget is used to * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON * during suspend. */ SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACR_SFT, 0), SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACL_SFT, 0), SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), SND_SOC_DAPM_PGA_S("HP amp L", 0, NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), SND_SOC_DAPM_PGA_S("HP amp R", 0, NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, nau8825_pump_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output DACL", 7, NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("Output DACR", 7, NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), /* High current HPOL/R boost driver */ SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, NAU8825_REG_BOOST, 9, 1, NULL, 0), /* Class G operation control*/ SND_SOC_DAPM_PGA_S("Class G", 10, NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), }; static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { {"Frontend PGA", NULL, "MIC"}, {"ADC", NULL, "Frontend PGA"}, {"ADC", NULL, "ADC Clock"}, {"ADC", NULL, "ADC Power"}, {"AIFTX", NULL, "ADC"}, {"DDACL", NULL, "Playback"}, {"DDACR", NULL, "Playback"}, {"DDACL", NULL, "DDAC Clock"}, {"DDACR", NULL, "DDAC Clock"}, {"DACL Mux", "DACL", "DDACL"}, {"DACL Mux", "DACR", "DDACR"}, {"DACR Mux", "DACL", "DDACL"}, {"DACR Mux", "DACR", "DDACR"}, {"HP amp L", NULL, "DACL Mux"}, {"HP amp R", NULL, "DACR Mux"}, {"Charge Pump", NULL, "HP amp L"}, {"Charge Pump", NULL, "HP amp R"}, {"ADACL", NULL, "Charge Pump"}, {"ADACR", NULL, "Charge Pump"}, {"ADACL Clock", NULL, "ADACL"}, {"ADACR Clock", NULL, "ADACR"}, {"Output Driver L Stage 1", NULL, "ADACL Clock"}, {"Output Driver R Stage 1", NULL, "ADACR Clock"}, {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, {"Output DACL", NULL, "Output Driver L Stage 3"}, {"Output DACR", NULL, "Output Driver R Stage 3"}, {"HPOL Pulldown", NULL, "Output DACL"}, {"HPOR Pulldown", NULL, "Output DACR"}, {"HP Boost Driver", NULL, "HPOL Pulldown"}, {"HP Boost Driver", NULL, "HPOR Pulldown"}, {"Class G", NULL, "HP Boost Driver"}, {"HPOL", NULL, "Class G"}, {"HPOR", NULL, "Class G"}, }; static int nau8825_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); unsigned int val_len = 0; switch (params_width(params)) { case 16: val_len |= NAU8825_I2S_DL_16; break; case 20: val_len |= NAU8825_I2S_DL_20; break; case 24: val_len |= NAU8825_I2S_DL_24; break; case 32: val_len |= NAU8825_I2S_DL_32; break; default: return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, NAU8825_I2S_DL_MASK, val_len); return 0; } static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); unsigned int ctrl1_val = 0, ctrl2_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ctrl2_val |= NAU8825_I2S_MS_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= NAU8825_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= NAU8825_I2S_DF_I2S; break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= NAU8825_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_RIGHT_J: ctrl1_val |= NAU8825_I2S_DF_RIGTH; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= NAU8825_I2S_DF_PCM_AB; break; case SND_SOC_DAIFMT_DSP_B: ctrl1_val |= NAU8825_I2S_DF_PCM_AB; ctrl1_val |= NAU8825_I2S_PCMB_EN; break; default: return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, ctrl1_val); regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, ctrl2_val); return 0; } static const struct snd_soc_dai_ops nau8825_dai_ops = { .hw_params = nau8825_hw_params, .set_fmt = nau8825_set_dai_fmt, }; #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver nau8825_dai = { .name = "nau8825-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = NAU8825_RATES, .formats = NAU8825_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 1, .rates = NAU8825_RATES, .formats = NAU8825_FORMATS, }, .ops = &nau8825_dai_ops, }; /** * nau8825_enable_jack_detect - Specify a jack for event reporting * * @component: component to register the jack with * @jack: jack to use to report headset and button events on * * After this function has been called the headset insert/remove and button * events will be routed to the given jack. Jack can be null to stop * reporting. */ int nau8825_enable_jack_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); struct regmap *regmap = nau8825->regmap; nau8825->jack = jack; /* Ground HP Outputs[1:0], needed for headset auto detection * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); return 0; } EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); static bool nau8825_is_jack_inserted(struct regmap *regmap) { int status; regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); return !(status & NAU8825_GPIO2JD1); } static void nau8825_restart_jack_detection(struct regmap *regmap) { /* Chip needs one FSCLK cycle in order to generate interrupts, * as we cannot guarantee one will be provided by the system. Turning * master mode on then off enables us to generate that FSCLK cycle * with a minimum of contention on the clock bus. */ regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); /* this will restart the entire jack detection process including MIC/GND * switching and create interrupts. We have to go from 0 to 1 and back * to 0 to restart. */ regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_RESTART, 0); } static void nau8825_eject_jack(struct nau8825 *nau8825) { struct snd_soc_dapm_context *dapm = nau8825->dapm; struct regmap *regmap = nau8825->regmap; snd_soc_dapm_disable_pin(dapm, "SAR"); snd_soc_dapm_disable_pin(dapm, "MICBIAS"); /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); /* ground HPL/HPR, MICGRND1/2 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); snd_soc_dapm_sync(dapm); } static int nau8825_button_decode(int value) { int buttons = 0; /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ if (value & BIT(0)) buttons |= SND_JACK_BTN_0; if (value & BIT(1)) buttons |= SND_JACK_BTN_1; if (value & BIT(2)) buttons |= SND_JACK_BTN_2; if (value & BIT(3)) buttons |= SND_JACK_BTN_3; if (value & BIT(4)) buttons |= SND_JACK_BTN_4; if (value & BIT(5)) buttons |= SND_JACK_BTN_5; return buttons; } static int nau8825_jack_insert(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; struct snd_soc_dapm_context *dapm = nau8825->dapm; int jack_status_reg, mic_detected; int type = 0; regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); mic_detected = (jack_status_reg >> 10) & 3; switch (mic_detected) { case 0: /* no mic */ type = SND_JACK_HEADPHONE; break; case 1: dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); type = SND_JACK_HEADSET; /* Unground MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1 << 2); /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, NAU8825_MICBIAS_JKR2); /* Attach SARADC to MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_INPUT_MASK, NAU8825_SAR_INPUT_JKR2); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_force_enable_pin(dapm, "SAR"); snd_soc_dapm_sync(dapm); break; case 2: case 3: dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); type = SND_JACK_HEADSET; /* Unground MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 2 << 2); /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, NAU8825_MICBIAS_JKSLV); /* Attach SARADC to MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_INPUT_MASK, NAU8825_SAR_INPUT_JKSLV); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_force_enable_pin(dapm, "SAR"); snd_soc_dapm_sync(dapm); break; } /* Leaving HPOL/R grounded after jack insert by default. They will be * ungrounded as part of the widget power up sequence at the beginning * of playback to reduce pop. */ return type; } #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ SND_JACK_BTN_2 | SND_JACK_BTN_3) static irqreturn_t nau8825_interrupt(int irq, void *data) { struct nau8825 *nau8825 = (struct nau8825 *)data; struct regmap *regmap = nau8825->regmap; int active_irq, clear_irq = 0, event = 0, event_mask = 0; if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { dev_err(nau8825->dev, "failed to read irq status\n"); return IRQ_NONE; } if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == NAU8825_JACK_EJECTION_DETECTED) { nau8825_eject_jack(nau8825); event_mask |= SND_JACK_HEADSET; clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { int key_status; regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, &key_status); /* upper 8 bits of the register are for short pressed keys, * lower 8 bits - for long pressed buttons */ nau8825->button_pressed = nau8825_button_decode( key_status >> 8); event |= nau8825->button_pressed; event_mask |= NAU8825_BUTTONS; clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { event_mask = NAU8825_BUTTONS; clear_irq = NAU8825_KEY_RELEASE_IRQ; } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { if (nau8825_is_jack_inserted(regmap)) { event |= nau8825_jack_insert(nau8825); } else { dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); nau8825_eject_jack(nau8825); } event_mask |= SND_JACK_HEADSET; clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; } if (!clear_irq) clear_irq = active_irq; /* clears the rightmost interruption */ regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); if (event_mask) snd_soc_jack_report(nau8825->jack, event, event_mask); return IRQ_HANDLED; } static void nau8825_setup_buttons(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_TRACKING_GAIN_MASK, nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_COMPARE_TIME_MASK, nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_SAMPLING_TIME_MASK, nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_LEVELS_NR_MASK, (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_HYSTERESIS_MASK, nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); /* Enable short press and release interruptions */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 0); } static void nau8825_init_regs(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; /* Latch IIC LSB value */ regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); /* Enable Bias/Vmid */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); /* VMID Tieoff */ regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_VMID_SEL_MASK, nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); /* Disable Boost Driver, Automatic Short circuit protection enable */ regmap_update_bits(regmap, NAU8825_REG_BOOST, NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_OUTPUT_EN, nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_PULL_EN, nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_PULL_UP, nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_POLARITY, /* jkdet_polarity - 1 is for active-low */ nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_INSERT_DEBOUNCE_MASK, nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_EJECT_DEBOUNCE_MASK, nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); /* Mask unneeded IRQs: 1 - disable, 0 - enable */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); if (nau8825->sar_threshold_num) nau8825_setup_buttons(nau8825); /* Default oversampling/decimations settings are unusable * (audible hiss). Set it to something better. */ regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_MASK, NAU8825_ADC_SYNC_DOWN_128); regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_128); /* Disable DACR/L power */ regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input * signal to avoid any glitches due to power up transients in both * the analog and digital DAC circuit. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); /* CICCLP off */ regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); /* Class G timer 64ms */ regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, NAU8825_CLASSG_TIMER_MASK, 0x20 << NAU8825_CLASSG_TIMER_SFT); /* DAC clock delay 2ns, VREF */ regmap_update_bits(regmap, NAU8825_REG_RDAC, NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | (0x3 << NAU8825_RDAC_VREF_SFT)); } static const struct regmap_config nau8825_regmap_config = { .val_bits = 16, .reg_bits = 16, .max_register = NAU8825_REG_MAX, .readable_reg = nau8825_readable_reg, .writeable_reg = nau8825_writeable_reg, .volatile_reg = nau8825_volatile_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8825_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), }; static int nau8825_codec_probe(struct snd_soc_codec *codec) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec); nau8825->dapm = dapm; /* The interrupt clock is gated by x1[10:8], * one of them needs to be enabled all the time for * interrupts to happen. */ snd_soc_dapm_force_enable_pin(dapm, "DDACR"); snd_soc_dapm_sync(dapm); /* Unmask interruptions. Handler uses dapm object so we can enable * interruptions only after dapm is fully initialized. */ regmap_write(nau8825->regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); nau8825_restart_jack_detection(nau8825->regmap); return 0; } /** * nau8825_calc_fll_param - Calculate FLL parameters. * @fll_in: external clock provided to codec. * @fs: sampling rate. * @fll_param: Pointer to structure of FLL parameters. * * Calculate FLL parameters to configure codec. * * Returns 0 for success or negative error code. */ static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, struct nau8825_fll *fll_param) { u64 fvco, fvco_max; unsigned int fref, i, fvco_sel; /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK */ for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { fref = fll_in / fll_pre_scalar[i].param; if (fref <= NAU_FREF_MAX) break; } if (i == ARRAY_SIZE(fll_pre_scalar)) return -EINVAL; fll_param->clk_ref_div = fll_pre_scalar[i].val; /* Choose the FLL ratio based on FREF */ for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { if (fref >= fll_ratio[i].param) break; } if (i == ARRAY_SIZE(fll_ratio)) return -EINVAL; fll_param->ratio = fll_ratio[i].val; /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. * FDCO must be within the 90MHz - 124MHz or the FFL cannot be * guaranteed across the full range of operation. * FDCO = freq_out * 2 * mclk_src_scaling */ fvco_max = 0; fvco_sel = ARRAY_SIZE(mclk_src_scaling); for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { fvco = 256 * fs * 2 * mclk_src_scaling[i].param; if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && fvco_max < fvco) { fvco_max = fvco; fvco_sel = i; } } if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) return -EINVAL; fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional * input based on FDCO, FREF and FLL ratio. */ fvco = div_u64(fvco << 16, fref * fll_param->ratio); fll_param->fll_int = (fvco >> 16) & 0x3FF; fll_param->fll_frac = fvco & 0xFFFF; return 0; } static void nau8825_fll_apply(struct nau8825 *nau8825, struct nau8825_fll *fll_param) { regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, NAU8825_FLL_RATIO_MASK, fll_param->ratio); /* FLL 16-bit fractional input */ regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); /* FLL 10-bit integer input */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); /* FLL pre-scaler */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div); /* select divided VCO input */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); /* Disable free-running mode */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); if (fll_param->fll_frac) { regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_FILTER); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_SDM_EN, NAU8825_SDM_EN); } else { regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_SDM_EN, 0); } } /* freq_out must be 256*Fs in order to achieve the best performance */ static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); struct nau8825_fll fll_param; int ret, fs; fs = freq_out / 256; ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); if (ret < 0) { dev_err(codec->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, fll_param.fll_int, fll_param.clk_ref_div); nau8825_fll_apply(nau8825, &fll_param); mdelay(2); regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); return 0; } static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) { int ret = 0; nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); if (IS_ERR(nau8825->mclk)) { dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); return 0; } if (!nau8825->mclk_freq) { ret = clk_prepare_enable(nau8825->mclk); if (ret) { dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); return ret; } } if (nau8825->mclk_freq != freq) { freq = clk_round_rate(nau8825->mclk, freq); ret = clk_set_rate(nau8825->mclk, freq); if (ret) { dev_err(nau8825->dev, "Unable to set mclk rate\n"); return ret; } nau8825->mclk_freq = freq; } return 0; } static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, unsigned int freq) { struct regmap *regmap = nau8825->regmap; int ret; switch (clk_id) { case NAU8825_CLK_MCLK: regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); ret = nau8825_mclk_prepare(nau8825, freq); if (ret) return ret; break; case NAU8825_CLK_INTERNAL: regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, NAU8825_DCO_EN); regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; case NAU8825_CLK_FLL_MCLK: regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_MCLK); ret = nau8825_mclk_prepare(nau8825, freq); if (ret) return ret; break; case NAU8825_CLK_FLL_BLK: regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_BLK); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; case NAU8825_CLK_FLL_FS: regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_FS); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; default: dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); return 0; } static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id, int source, unsigned int freq, int dir) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); return nau8825_configure_sysclk(nau8825, clk_id, freq); } static int nau8825_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); int ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) { if (nau8825->mclk_freq) { ret = clk_prepare_enable(nau8825->mclk); if (ret) { dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); return ret; } } } break; case SND_SOC_BIAS_OFF: if (nau8825->mclk_freq) clk_disable_unprepare(nau8825->mclk); break; } return 0; } #ifdef CONFIG_PM static int nau8825_suspend(struct snd_soc_codec *codec) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); disable_irq(nau8825->irq); regcache_cache_only(nau8825->regmap, true); regcache_mark_dirty(nau8825->regmap); return 0; } static int nau8825_resume(struct snd_soc_codec *codec) { struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec); /* The chip may lose power and reset in S3. regcache_sync restores * register values including configurations for sysclk, irq, and * jack/button detection. */ regcache_cache_only(nau8825->regmap, false); regcache_sync(nau8825->regmap); /* Check the jack plug status directly. If the headset is unplugged * during S3 when the chip has no power, there will be no jack * detection irq even after the nau8825_restart_jack_detection below, * because the chip just thinks no headset has ever been plugged in. */ if (!nau8825_is_jack_inserted(nau8825->regmap)) { nau8825_eject_jack(nau8825); snd_soc_jack_report(nau8825->jack, 0, SND_JACK_HEADSET); } enable_irq(nau8825->irq); /* Run jack detection to check the type (OMTP or CTIA) of the headset * if there is one. This handles the case where a different type of * headset is plugged in during S3. This triggers an IRQ iff a headset * is already plugged in. */ nau8825_restart_jack_detection(nau8825->regmap); return 0; } #else #define nau8825_suspend NULL #define nau8825_resume NULL #endif static struct snd_soc_codec_driver nau8825_codec_driver = { .probe = nau8825_codec_probe, .set_sysclk = nau8825_set_sysclk, .set_pll = nau8825_set_pll, .set_bias_level = nau8825_set_bias_level, .suspend_bias_off = true, .suspend = nau8825_suspend, .resume = nau8825_resume, .controls = nau8825_controls, .num_controls = ARRAY_SIZE(nau8825_controls), .dapm_widgets = nau8825_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), .dapm_routes = nau8825_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), }; static void nau8825_reset_chip(struct regmap *regmap) { regmap_write(regmap, NAU8825_REG_RESET, 0x00); regmap_write(regmap, NAU8825_REG_RESET, 0x00); } static void nau8825_print_device_properties(struct nau8825 *nau8825) { int i; struct device *dev = nau8825->dev; dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); for (i = 0; i < nau8825->sar_threshold_num; i++) dev_dbg(dev, "sar-threshold[%d]=%d\n", i, nau8825->sar_threshold[i]); dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); dev_dbg(dev, "jack-insert-debounce: %d\n", nau8825->jack_insert_debounce); dev_dbg(dev, "jack-eject-debounce: %d\n", nau8825->jack_eject_debounce); } static int nau8825_read_device_properties(struct device *dev, struct nau8825 *nau8825) { nau8825->jkdet_enable = device_property_read_bool(dev, "nuvoton,jkdet-enable"); nau8825->jkdet_pull_enable = device_property_read_bool(dev, "nuvoton,jkdet-pull-enable"); nau8825->jkdet_pull_up = device_property_read_bool(dev, "nuvoton,jkdet-pull-up"); device_property_read_u32(dev, "nuvoton,jkdet-polarity", &nau8825->jkdet_polarity); device_property_read_u32(dev, "nuvoton,micbias-voltage", &nau8825->micbias_voltage); device_property_read_u32(dev, "nuvoton,vref-impedance", &nau8825->vref_impedance); device_property_read_u32(dev, "nuvoton,sar-threshold-num", &nau8825->sar_threshold_num); device_property_read_u32_array(dev, "nuvoton,sar-threshold", nau8825->sar_threshold, nau8825->sar_threshold_num); device_property_read_u32(dev, "nuvoton,sar-hysteresis", &nau8825->sar_hysteresis); device_property_read_u32(dev, "nuvoton,sar-voltage", &nau8825->sar_voltage); device_property_read_u32(dev, "nuvoton,sar-compare-time", &nau8825->sar_compare_time); device_property_read_u32(dev, "nuvoton,sar-sampling-time", &nau8825->sar_sampling_time); device_property_read_u32(dev, "nuvoton,short-key-debounce", &nau8825->key_debounce); device_property_read_u32(dev, "nuvoton,jack-insert-debounce", &nau8825->jack_insert_debounce); device_property_read_u32(dev, "nuvoton,jack-eject-debounce", &nau8825->jack_eject_debounce); nau8825->mclk = devm_clk_get(dev, "mclk"); if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { /* The MCLK is managed externally or not used at all */ nau8825->mclk = NULL; dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); } else if (IS_ERR(nau8825->mclk)) { return -EINVAL; } return 0; } static int nau8825_setup_irq(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; int ret; /* IRQ Output Enable */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_OUTPUT_EN, NAU8825_IRQ_OUTPUT_EN); /* Enable internal VCO needed for interruptions */ nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); /* Enable DDACR needed for interrupts * It is the same as force_enable_pin("DDACR") we do later */ regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACR, NAU8825_ENABLE_DACR); ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "nau8825", nau8825); if (ret) { dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", nau8825->irq, ret); return ret; } return 0; } static int nau8825_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct device *dev = &i2c->dev; struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); int ret, value; if (!nau8825) { nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); if (!nau8825) return -ENOMEM; ret = nau8825_read_device_properties(dev, nau8825); if (ret) return ret; } i2c_set_clientdata(i2c, nau8825); nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); if (IS_ERR(nau8825->regmap)) return PTR_ERR(nau8825->regmap); nau8825->dev = dev; nau8825->irq = i2c->irq; nau8825_print_device_properties(nau8825); nau8825_reset_chip(nau8825->regmap); ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); if (ret < 0) { dev_err(dev, "Failed to read device id from the NAU8825: %d\n", ret); return ret; } if ((value & NAU8825_SOFTWARE_ID_MASK) != NAU8825_SOFTWARE_ID_NAU8825) { dev_err(dev, "Not a NAU8825 chip\n"); return -ENODEV; } nau8825_init_regs(nau8825); if (i2c->irq) nau8825_setup_irq(nau8825); return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver, &nau8825_dai, 1); } static int nau8825_i2c_remove(struct i2c_client *client) { snd_soc_unregister_codec(&client->dev); return 0; } static const struct i2c_device_id nau8825_i2c_ids[] = { { "nau8825", 0 }, { } }; #ifdef CONFIG_OF static const struct of_device_id nau8825_of_ids[] = { { .compatible = "nuvoton,nau8825", }, {} }; MODULE_DEVICE_TABLE(of, nau8825_of_ids); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id nau8825_acpi_match[] = { { "10508825", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); #endif static struct i2c_driver nau8825_driver = { .driver = { .name = "nau8825", .of_match_table = of_match_ptr(nau8825_of_ids), .acpi_match_table = ACPI_PTR(nau8825_acpi_match), }, .probe = nau8825_i2c_probe, .remove = nau8825_i2c_remove, .id_table = nau8825_i2c_ids, }; module_i2c_driver(nau8825_driver); MODULE_DESCRIPTION("ASoC nau8825 driver"); MODULE_AUTHOR("Anatol Pomozov "); MODULE_LICENSE("GPL");