/* * Cryptographic API. * * Support for OMAP SHA1/MD5 HW acceleration. * * Copyright (c) 2010 Nokia Corporation * Author: Dmitry Kasatkin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from old omap-sha1-md5.c driver. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SHA_REG_DIGEST(x) (0x00 + ((x) * 0x04)) #define SHA_REG_DIN(x) (0x1C + ((x) * 0x04)) #define SHA1_MD5_BLOCK_SIZE SHA1_BLOCK_SIZE #define MD5_DIGEST_SIZE 16 #define SHA_REG_DIGCNT 0x14 #define SHA_REG_CTRL 0x18 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5) #define SHA_REG_CTRL_CLOSE_HASH (1 << 4) #define SHA_REG_CTRL_ALGO_CONST (1 << 3) #define SHA_REG_CTRL_ALGO (1 << 2) #define SHA_REG_CTRL_INPUT_READY (1 << 1) #define SHA_REG_CTRL_OUTPUT_READY (1 << 0) #define SHA_REG_REV 0x5C #define SHA_REG_REV_MAJOR 0xF0 #define SHA_REG_REV_MINOR 0x0F #define SHA_REG_MASK 0x60 #define SHA_REG_MASK_DMA_EN (1 << 3) #define SHA_REG_MASK_IT_EN (1 << 2) #define SHA_REG_MASK_SOFTRESET (1 << 1) #define SHA_REG_AUTOIDLE (1 << 0) #define SHA_REG_SYSSTATUS 0x64 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0) #define DEFAULT_TIMEOUT_INTERVAL HZ #define FLAGS_FIRST 0x0001 #define FLAGS_FINUP 0x0002 #define FLAGS_FINAL 0x0004 #define FLAGS_FAST 0x0008 #define FLAGS_SHA1 0x0010 #define FLAGS_DMA_ACTIVE 0x0020 #define FLAGS_OUTPUT_READY 0x0040 #define FLAGS_CLEAN 0x0080 #define FLAGS_INIT 0x0100 #define FLAGS_CPU 0x0200 #define FLAGS_HMAC 0x0400 #define FLAGS_ERROR 0x0800 /* 3rd byte */ #define FLAGS_BUSY 16 #define OP_UPDATE 1 #define OP_FINAL 2 struct omap_sham_dev; struct omap_sham_reqctx { struct omap_sham_dev *dd; unsigned long flags; unsigned long op; u8 digest[SHA1_DIGEST_SIZE]; size_t digcnt; u8 *buffer; size_t bufcnt; size_t buflen; dma_addr_t dma_addr; /* walk state */ struct scatterlist *sg; unsigned int offset; /* offset in current sg */ unsigned int total; /* total request */ }; struct omap_sham_hmac_ctx { struct crypto_shash *shash; u8 ipad[SHA1_MD5_BLOCK_SIZE]; u8 opad[SHA1_MD5_BLOCK_SIZE]; }; struct omap_sham_ctx { struct omap_sham_dev *dd; unsigned long flags; /* fallback stuff */ struct crypto_shash *fallback; struct omap_sham_hmac_ctx base[0]; }; #define OMAP_SHAM_QUEUE_LENGTH 1 struct omap_sham_dev { struct list_head list; unsigned long phys_base; struct device *dev; void __iomem *io_base; int irq; struct clk *iclk; spinlock_t lock; int err; int dma; int dma_lch; struct tasklet_struct done_task; struct tasklet_struct queue_task; unsigned long flags; struct crypto_queue queue; struct ahash_request *req; }; struct omap_sham_drv { struct list_head dev_list; spinlock_t lock; unsigned long flags; }; static struct omap_sham_drv sham = { .dev_list = LIST_HEAD_INIT(sham.dev_list), .lock = __SPIN_LOCK_UNLOCKED(sham.lock), }; static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset) { return __raw_readl(dd->io_base + offset); } static inline void omap_sham_write(struct omap_sham_dev *dd, u32 offset, u32 value) { __raw_writel(value, dd->io_base + offset); } static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address, u32 value, u32 mask) { u32 val; val = omap_sham_read(dd, address); val &= ~mask; val |= value; omap_sham_write(dd, address, val); } static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit) { unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL; while (!(omap_sham_read(dd, offset) & bit)) { if (time_is_before_jiffies(timeout)) return -ETIMEDOUT; } return 0; } static void omap_sham_copy_hash(struct ahash_request *req, int out) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); u32 *hash = (u32 *)ctx->digest; int i; if (likely(ctx->flags & FLAGS_SHA1)) { /* SHA1 results are in big endian */ for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) if (out) hash[i] = be32_to_cpu(omap_sham_read(ctx->dd, SHA_REG_DIGEST(i))); else omap_sham_write(ctx->dd, SHA_REG_DIGEST(i), cpu_to_be32(hash[i])); } else { /* MD5 results are in little endian */ for (i = 0; i < MD5_DIGEST_SIZE / sizeof(u32); i++) if (out) hash[i] = le32_to_cpu(omap_sham_read(ctx->dd, SHA_REG_DIGEST(i))); else omap_sham_write(ctx->dd, SHA_REG_DIGEST(i), cpu_to_le32(hash[i])); } } static int omap_sham_write_ctrl(struct omap_sham_dev *dd, size_t length, int final, int dma) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); u32 val = length << 5, mask; if (unlikely(!ctx->digcnt)) { clk_enable(dd->iclk); if (!(dd->flags & FLAGS_INIT)) { omap_sham_write_mask(dd, SHA_REG_MASK, SHA_REG_MASK_SOFTRESET, SHA_REG_MASK_SOFTRESET); if (omap_sham_wait(dd, SHA_REG_SYSSTATUS, SHA_REG_SYSSTATUS_RESETDONE)) { clk_disable(dd->iclk); return -ETIMEDOUT; } dd->flags |= FLAGS_INIT; dd->err = 0; } } else { omap_sham_write(dd, SHA_REG_DIGCNT, ctx->digcnt); } omap_sham_write_mask(dd, SHA_REG_MASK, SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0), SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); /* * Setting ALGO_CONST only for the first iteration * and CLOSE_HASH only for the last one. */ if (ctx->flags & FLAGS_SHA1) val |= SHA_REG_CTRL_ALGO; if (!ctx->digcnt) val |= SHA_REG_CTRL_ALGO_CONST; if (final) val |= SHA_REG_CTRL_CLOSE_HASH; mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH | SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH; omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask); return 0; } static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, const u8 *buf, size_t length, int final) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); int err, count, len32; const u32 *buffer = (const u32 *)buf; dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length, final); err = omap_sham_write_ctrl(dd, length, final, 0); if (err) return err; /* should be non-zero before next lines to disable clocks later */ ctx->digcnt += length; if (omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY)) return -ETIMEDOUT; if (final) ctx->flags |= FLAGS_FINAL; /* catch last interrupt */ len32 = DIV_ROUND_UP(length, sizeof(u32)); for (count = 0; count < len32; count++) omap_sham_write(dd, SHA_REG_DIN(count), buffer[count]); return -EINPROGRESS; } static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr, size_t length, int final) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); int err, len32; dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length, final); /* flush cache entries related to our page */ if (dma_addr == ctx->dma_addr) dma_sync_single_for_device(dd->dev, dma_addr, length, DMA_TO_DEVICE); len32 = DIV_ROUND_UP(length, sizeof(u32)); omap_set_dma_transfer_params(dd->dma_lch, OMAP_DMA_DATA_TYPE_S32, len32, 1, OMAP_DMA_SYNC_PACKET, dd->dma, OMAP_DMA_DST_SYNC_PREFETCH); omap_set_dma_src_params(dd->dma_lch, 0, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_dest_params(dd->dma_lch, 0, OMAP_DMA_AMODE_CONSTANT, dd->phys_base + SHA_REG_DIN(0), 0, 16); omap_set_dma_dest_burst_mode(dd->dma_lch, OMAP_DMA_DATA_BURST_16); omap_set_dma_src_burst_mode(dd->dma_lch, OMAP_DMA_DATA_BURST_4); err = omap_sham_write_ctrl(dd, length, final, 1); if (err) return err; ctx->digcnt += length; if (final) ctx->flags |= FLAGS_FINAL; /* catch last interrupt */ dd->flags |= FLAGS_DMA_ACTIVE; omap_start_dma(dd->dma_lch); return -EINPROGRESS; } static size_t omap_sham_append_buffer(struct omap_sham_reqctx *ctx, const u8 *data, size_t length) { size_t count = min(length, ctx->buflen - ctx->bufcnt); count = min(count, ctx->total); if (count <= 0) return 0; memcpy(ctx->buffer + ctx->bufcnt, data, count); ctx->bufcnt += count; return count; } static size_t omap_sham_append_sg(struct omap_sham_reqctx *ctx) { size_t count; while (ctx->sg) { count = omap_sham_append_buffer(ctx, sg_virt(ctx->sg) + ctx->offset, ctx->sg->length - ctx->offset); if (!count) break; ctx->offset += count; ctx->total -= count; if (ctx->offset == ctx->sg->length) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; else ctx->total = 0; } } return 0; } static int omap_sham_update_dma_slow(struct omap_sham_dev *dd) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int final; size_t count; if (!ctx->total) return 0; omap_sham_append_sg(ctx); final = (ctx->flags & FLAGS_FINUP) && !ctx->total; dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n", ctx->bufcnt, ctx->digcnt, final); if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) { count = ctx->bufcnt; ctx->bufcnt = 0; return omap_sham_xmit_dma(dd, ctx->dma_addr, count, final); } return 0; } static int omap_sham_update_dma_fast(struct omap_sham_dev *dd) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int length; int err; ctx->flags |= FLAGS_FAST; length = min(ctx->total, sg_dma_len(ctx->sg)); ctx->total = length; if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } ctx->total -= length; err = omap_sham_xmit_dma(dd, sg_dma_address(ctx->sg), length, 1); if (err != -EINPROGRESS) dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); return err; } static int omap_sham_update_cpu(struct omap_sham_dev *dd) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); int bufcnt; omap_sham_append_sg(ctx); bufcnt = ctx->bufcnt; ctx->bufcnt = 0; return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, 1); } static int omap_sham_update_dma_stop(struct omap_sham_dev *dd) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); omap_stop_dma(dd->dma_lch); if (ctx->flags & FLAGS_FAST) dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); return 0; } static void omap_sham_cleanup(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; unsigned long flags; spin_lock_irqsave(&dd->lock, flags); if (ctx->flags & FLAGS_CLEAN) { spin_unlock_irqrestore(&dd->lock, flags); return; } ctx->flags |= FLAGS_CLEAN; spin_unlock_irqrestore(&dd->lock, flags); if (ctx->digcnt) { clk_disable(dd->iclk); memcpy(req->result, ctx->digest, (ctx->flags & FLAGS_SHA1) ? SHA1_DIGEST_SIZE : MD5_DIGEST_SIZE); } if (ctx->dma_addr) dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen, DMA_TO_DEVICE); if (ctx->buffer) free_page((unsigned long)ctx->buffer); dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt); } static int omap_sham_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = NULL, *tmp; spin_lock_bh(&sham.lock); if (!tctx->dd) { list_for_each_entry(tmp, &sham.dev_list, list) { dd = tmp; break; } tctx->dd = dd; } else { dd = tctx->dd; } spin_unlock_bh(&sham.lock); ctx->dd = dd; ctx->flags = 0; ctx->flags |= FLAGS_FIRST; dev_dbg(dd->dev, "init: digest size: %d\n", crypto_ahash_digestsize(tfm)); if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE) ctx->flags |= FLAGS_SHA1; ctx->bufcnt = 0; ctx->digcnt = 0; ctx->buflen = PAGE_SIZE; ctx->buffer = (void *)__get_free_page( (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC); if (!ctx->buffer) return -ENOMEM; ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen); free_page((unsigned long)ctx->buffer); return -EINVAL; } if (tctx->flags & FLAGS_HMAC) { struct omap_sham_hmac_ctx *bctx = tctx->base; memcpy(ctx->buffer, bctx->ipad, SHA1_MD5_BLOCK_SIZE); ctx->bufcnt = SHA1_MD5_BLOCK_SIZE; ctx->flags |= FLAGS_HMAC; } return 0; } static int omap_sham_update_req(struct omap_sham_dev *dd) { struct ahash_request *req = dd->req; struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err; dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n", ctx->total, ctx->digcnt, (ctx->flags & FLAGS_FINUP) != 0); if (ctx->flags & FLAGS_CPU) err = omap_sham_update_cpu(dd); else if (ctx->flags & FLAGS_FAST) err = omap_sham_update_dma_fast(dd); else err = omap_sham_update_dma_slow(dd); /* wait for dma completion before can take more data */ dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt); return err; } static int omap_sham_final_req(struct omap_sham_dev *dd) { struct ahash_request *req = dd->req; struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err = 0, use_dma = 1; if (ctx->bufcnt <= 64) /* faster to handle last block with cpu */ use_dma = 0; if (use_dma) err = omap_sham_xmit_dma(dd, ctx->dma_addr, ctx->bufcnt, 1); else err = omap_sham_xmit_cpu(dd, ctx->buffer, ctx->bufcnt, 1); ctx->bufcnt = 0; dev_dbg(dd->dev, "final_req: err: %d\n", err); return err; } static int omap_sham_finish_req_hmac(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; int bs = crypto_shash_blocksize(bctx->shash); int ds = crypto_shash_digestsize(bctx->shash); struct { struct shash_desc shash; char ctx[crypto_shash_descsize(bctx->shash)]; } desc; desc.shash.tfm = bctx->shash; desc.shash.flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */ return crypto_shash_init(&desc.shash) ?: crypto_shash_update(&desc.shash, bctx->opad, bs) ?: crypto_shash_finup(&desc.shash, ctx->digest, ds, ctx->digest); } static void omap_sham_finish_req(struct ahash_request *req, int err) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); if (!err) { omap_sham_copy_hash(ctx->dd->req, 1); if (ctx->flags & FLAGS_HMAC) err = omap_sham_finish_req_hmac(req); } else { ctx->flags |= FLAGS_ERROR; } if ((ctx->flags & FLAGS_FINAL) || err) omap_sham_cleanup(req); clear_bit(FLAGS_BUSY, &ctx->dd->flags); if (req->base.complete) req->base.complete(&req->base, err); } static int omap_sham_handle_queue(struct omap_sham_dev *dd) { struct crypto_async_request *async_req, *backlog; struct omap_sham_reqctx *ctx; struct ahash_request *req, *prev_req; unsigned long flags; int err = 0; if (test_and_set_bit(FLAGS_BUSY, &dd->flags)) return 0; spin_lock_irqsave(&dd->lock, flags); backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (!async_req) clear_bit(FLAGS_BUSY, &dd->flags); spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return 0; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ahash_request_cast(async_req); prev_req = dd->req; dd->req = req; ctx = ahash_request_ctx(req); dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", ctx->op, req->nbytes); if (req != prev_req && ctx->digcnt) /* request has changed - restore hash */ omap_sham_copy_hash(req, 0); if (ctx->op == OP_UPDATE) { err = omap_sham_update_req(dd); if (err != -EINPROGRESS && (ctx->flags & FLAGS_FINUP)) /* no final() after finup() */ err = omap_sham_final_req(dd); } else if (ctx->op == OP_FINAL) { err = omap_sham_final_req(dd); } if (err != -EINPROGRESS) { /* done_task will not finish it, so do it here */ omap_sham_finish_req(req, err); tasklet_schedule(&dd->queue_task); } dev_dbg(dd->dev, "exit, err: %d\n", err); return err; } static int omap_sham_enqueue(struct ahash_request *req, unsigned int op) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_dev *dd = tctx->dd; unsigned long flags; int err; ctx->op = op; spin_lock_irqsave(&dd->lock, flags); err = ahash_enqueue_request(&dd->queue, req); spin_unlock_irqrestore(&dd->lock, flags); omap_sham_handle_queue(dd); return err; } static int omap_sham_update(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); if (!req->nbytes) return 0; ctx->total = req->nbytes; ctx->sg = req->src; ctx->offset = 0; if (ctx->flags & FLAGS_FINUP) { if ((ctx->digcnt + ctx->bufcnt + ctx->total) < 9) { /* * OMAP HW accel works only with buffers >= 9 * will switch to bypass in final() * final has the same request and data */ omap_sham_append_sg(ctx); return 0; } else if (ctx->bufcnt + ctx->total <= 64) { ctx->flags |= FLAGS_CPU; } else if (!ctx->bufcnt && sg_is_last(ctx->sg)) { /* may be can use faster functions */ int aligned = IS_ALIGNED((u32)ctx->sg->offset, sizeof(u32)); if (aligned && (ctx->flags & FLAGS_FIRST)) /* digest: first and final */ ctx->flags |= FLAGS_FAST; ctx->flags &= ~FLAGS_FIRST; } } else if (ctx->bufcnt + ctx->total <= ctx->buflen) { /* if not finaup -> not fast */ omap_sham_append_sg(ctx); return 0; } return omap_sham_enqueue(req, OP_UPDATE); } static int omap_sham_shash_digest(struct crypto_shash *shash, u32 flags, const u8 *data, unsigned int len, u8 *out) { struct { struct shash_desc shash; char ctx[crypto_shash_descsize(shash)]; } desc; desc.shash.tfm = shash; desc.shash.flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_shash_digest(&desc.shash, data, len, out); } static int omap_sham_final_shash(struct ahash_request *req) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_reqctx *ctx = ahash_request_ctx(req); return omap_sham_shash_digest(tctx->fallback, req->base.flags, ctx->buffer, ctx->bufcnt, req->result); } static int omap_sham_final(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err = 0; ctx->flags |= FLAGS_FINUP; if (!(ctx->flags & FLAGS_ERROR)) { /* OMAP HW accel works only with buffers >= 9 */ /* HMAC is always >= 9 because of ipad */ if ((ctx->digcnt + ctx->bufcnt) < 9) err = omap_sham_final_shash(req); else if (ctx->bufcnt) return omap_sham_enqueue(req, OP_FINAL); } omap_sham_cleanup(req); return err; } static int omap_sham_finup(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->flags |= FLAGS_FINUP; err1 = omap_sham_update(req); if (err1 == -EINPROGRESS) return err1; /* * final() has to be always called to cleanup resources * even if udpate() failed, except EINPROGRESS */ err2 = omap_sham_final(req); return err1 ?: err2; } static int omap_sham_digest(struct ahash_request *req) { return omap_sham_init(req) ?: omap_sham_finup(req); } static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; int bs = crypto_shash_blocksize(bctx->shash); int ds = crypto_shash_digestsize(bctx->shash); int err, i; err = crypto_shash_setkey(tctx->fallback, key, keylen); if (err) return err; if (keylen > bs) { err = omap_sham_shash_digest(bctx->shash, crypto_shash_get_flags(bctx->shash), key, keylen, bctx->ipad); if (err) return err; keylen = ds; } else { memcpy(bctx->ipad, key, keylen); } memset(bctx->ipad + keylen, 0, bs - keylen); memcpy(bctx->opad, bctx->ipad, bs); for (i = 0; i < bs; i++) { bctx->ipad[i] ^= 0x36; bctx->opad[i] ^= 0x5c; } return err; } static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(tfm); pr_info("enter\n"); /* Allocate a fallback and abort if it failed. */ tctx->fallback = crypto_alloc_shash(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tctx->fallback)) { pr_err("omap-sham: fallback driver '%s' " "could not be loaded.\n", alg_name); return PTR_ERR(tctx->fallback); } crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct omap_sham_reqctx)); if (alg_base) { struct omap_sham_hmac_ctx *bctx = tctx->base; tctx->flags |= FLAGS_HMAC; bctx->shash = crypto_alloc_shash(alg_base, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(bctx->shash)) { pr_err("omap-sham: base driver '%s' " "could not be loaded.\n", alg_base); crypto_free_shash(tctx->fallback); return PTR_ERR(bctx->shash); } } return 0; } static int omap_sham_cra_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, NULL); } static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha1"); } static int omap_sham_cra_md5_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "md5"); } static void omap_sham_cra_exit(struct crypto_tfm *tfm) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); crypto_free_shash(tctx->fallback); tctx->fallback = NULL; if (tctx->flags & FLAGS_HMAC) { struct omap_sham_hmac_ctx *bctx = tctx->base; crypto_free_shash(bctx->shash); } } static struct ahash_alg algs[] = { { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "omap-sha1", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "md5", .cra_driver_name = "omap-md5", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "omap-hmac-sha1", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha1_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(md5)", .cra_driver_name = "omap-hmac-md5", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_md5_init, .cra_exit = omap_sham_cra_exit, } } }; static void omap_sham_done_task(unsigned long data) { struct omap_sham_dev *dd = (struct omap_sham_dev *)data; struct ahash_request *req = dd->req; struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int ready = 0, err = 0; if (ctx->flags & FLAGS_OUTPUT_READY) { ctx->flags &= ~FLAGS_OUTPUT_READY; ready = 1; } if (dd->flags & FLAGS_DMA_ACTIVE) { dd->flags &= ~FLAGS_DMA_ACTIVE; omap_sham_update_dma_stop(dd); if (!dd->err) err = omap_sham_update_dma_slow(dd); } err = dd->err ? : err; if (err != -EINPROGRESS && (ready || err)) { dev_dbg(dd->dev, "update done: err: %d\n", err); /* finish curent request */ omap_sham_finish_req(req, err); /* start new request */ omap_sham_handle_queue(dd); } } static void omap_sham_queue_task(unsigned long data) { struct omap_sham_dev *dd = (struct omap_sham_dev *)data; omap_sham_handle_queue(dd); } static irqreturn_t omap_sham_irq(int irq, void *dev_id) { struct omap_sham_dev *dd = dev_id; struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); if (!ctx) { dev_err(dd->dev, "unknown interrupt.\n"); return IRQ_HANDLED; } if (unlikely(ctx->flags & FLAGS_FINAL)) /* final -> allow device to go to power-saving mode */ omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH); omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY, SHA_REG_CTRL_OUTPUT_READY); omap_sham_read(dd, SHA_REG_CTRL); ctx->flags |= FLAGS_OUTPUT_READY; dd->err = 0; tasklet_schedule(&dd->done_task); return IRQ_HANDLED; } static void omap_sham_dma_callback(int lch, u16 ch_status, void *data) { struct omap_sham_dev *dd = data; if (ch_status != OMAP_DMA_BLOCK_IRQ) { pr_err("omap-sham DMA error status: 0x%hx\n", ch_status); dd->err = -EIO; dd->flags &= ~FLAGS_INIT; /* request to re-initialize */ } tasklet_schedule(&dd->done_task); } static int omap_sham_dma_init(struct omap_sham_dev *dd) { int err; dd->dma_lch = -1; err = omap_request_dma(dd->dma, dev_name(dd->dev), omap_sham_dma_callback, dd, &dd->dma_lch); if (err) { dev_err(dd->dev, "Unable to request DMA channel\n"); return err; } return 0; } static void omap_sham_dma_cleanup(struct omap_sham_dev *dd) { if (dd->dma_lch >= 0) { omap_free_dma(dd->dma_lch); dd->dma_lch = -1; } } static int __devinit omap_sham_probe(struct platform_device *pdev) { struct omap_sham_dev *dd; struct device *dev = &pdev->dev; struct resource *res; int err, i, j; dd = kzalloc(sizeof(struct omap_sham_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto data_err; } dd->dev = dev; platform_set_drvdata(pdev, dd); INIT_LIST_HEAD(&dd->list); spin_lock_init(&dd->lock); tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd); tasklet_init(&dd->queue_task, omap_sham_queue_task, (unsigned long)dd); crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH); dd->irq = -1; /* Get the base address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto res_err; } dd->phys_base = res->start; /* Get the DMA */ res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!res) { dev_err(dev, "no DMA resource info\n"); err = -ENODEV; goto res_err; } dd->dma = res->start; /* Get the IRQ */ dd->irq = platform_get_irq(pdev, 0); if (dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = dd->irq; goto res_err; } err = request_irq(dd->irq, omap_sham_irq, IRQF_TRIGGER_LOW, dev_name(dev), dd); if (err) { dev_err(dev, "unable to request irq.\n"); goto res_err; } err = omap_sham_dma_init(dd); if (err) goto dma_err; /* Initializing the clock */ dd->iclk = clk_get(dev, "ick"); if (!dd->iclk) { dev_err(dev, "clock intialization failed.\n"); err = -ENODEV; goto clk_err; } dd->io_base = ioremap(dd->phys_base, SZ_4K); if (!dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto io_err; } clk_enable(dd->iclk); dev_info(dev, "hw accel on OMAP rev %u.%u\n", (omap_sham_read(dd, SHA_REG_REV) & SHA_REG_REV_MAJOR) >> 4, omap_sham_read(dd, SHA_REG_REV) & SHA_REG_REV_MINOR); clk_disable(dd->iclk); spin_lock(&sham.lock); list_add_tail(&dd->list, &sham.dev_list); spin_unlock(&sham.lock); for (i = 0; i < ARRAY_SIZE(algs); i++) { err = crypto_register_ahash(&algs[i]); if (err) goto err_algs; } return 0; err_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&algs[j]); iounmap(dd->io_base); io_err: clk_put(dd->iclk); clk_err: omap_sham_dma_cleanup(dd); dma_err: if (dd->irq >= 0) free_irq(dd->irq, dd); res_err: kfree(dd); dd = NULL; data_err: dev_err(dev, "initialization failed.\n"); return err; } static int __devexit omap_sham_remove(struct platform_device *pdev) { static struct omap_sham_dev *dd; int i; dd = platform_get_drvdata(pdev); if (!dd) return -ENODEV; spin_lock(&sham.lock); list_del(&dd->list); spin_unlock(&sham.lock); for (i = 0; i < ARRAY_SIZE(algs); i++) crypto_unregister_ahash(&algs[i]); tasklet_kill(&dd->done_task); tasklet_kill(&dd->queue_task); iounmap(dd->io_base); clk_put(dd->iclk); omap_sham_dma_cleanup(dd); if (dd->irq >= 0) free_irq(dd->irq, dd); kfree(dd); dd = NULL; return 0; } static struct platform_driver omap_sham_driver = { .probe = omap_sham_probe, .remove = omap_sham_remove, .driver = { .name = "omap-sham", .owner = THIS_MODULE, }, }; static int __init omap_sham_mod_init(void) { pr_info("loading %s driver\n", "omap-sham"); if (!cpu_class_is_omap2() || omap_type() != OMAP2_DEVICE_TYPE_SEC) { pr_err("Unsupported cpu\n"); return -ENODEV; } return platform_driver_register(&omap_sham_driver); } static void __exit omap_sham_mod_exit(void) { platform_driver_unregister(&omap_sham_driver); } module_init(omap_sham_mod_init); module_exit(omap_sham_mod_exit); MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Dmitry Kasatkin");