/* * Low-Level PCI Support for PC * * (c) 1999--2000 Martin Mares */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 | PCI_PROBE_MMCONF; unsigned int pci_early_dump_regs; static int pci_bf_sort; static int smbios_type_b1_flag; int pci_routeirq; int noioapicquirk; #ifdef CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS int noioapicreroute = 0; #else int noioapicreroute = 1; #endif int pcibios_last_bus = -1; unsigned long pirq_table_addr; const struct pci_raw_ops *__read_mostly raw_pci_ops; const struct pci_raw_ops *__read_mostly raw_pci_ext_ops; int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn, int reg, int len, u32 *val) { if (domain == 0 && reg < 256 && raw_pci_ops) return raw_pci_ops->read(domain, bus, devfn, reg, len, val); if (raw_pci_ext_ops) return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val); return -EINVAL; } int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn, int reg, int len, u32 val) { if (domain == 0 && reg < 256 && raw_pci_ops) return raw_pci_ops->write(domain, bus, devfn, reg, len, val); if (raw_pci_ext_ops) return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val); return -EINVAL; } static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { return raw_pci_read(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { return raw_pci_write(pci_domain_nr(bus), bus->number, devfn, where, size, value); } struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; /* * This interrupt-safe spinlock protects all accesses to PCI * configuration space. */ DEFINE_RAW_SPINLOCK(pci_config_lock); static int can_skip_ioresource_align(const struct dmi_system_id *d) { pci_probe |= PCI_CAN_SKIP_ISA_ALIGN; printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident); return 0; } static const struct dmi_system_id can_skip_pciprobe_dmi_table[] = { /* * Systems where PCI IO resource ISA alignment can be skipped * when the ISA enable bit in the bridge control is not set */ { .callback = can_skip_ioresource_align, .ident = "IBM System x3800", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IBM"), DMI_MATCH(DMI_PRODUCT_NAME, "x3800"), }, }, { .callback = can_skip_ioresource_align, .ident = "IBM System x3850", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IBM"), DMI_MATCH(DMI_PRODUCT_NAME, "x3850"), }, }, { .callback = can_skip_ioresource_align, .ident = "IBM System x3950", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IBM"), DMI_MATCH(DMI_PRODUCT_NAME, "x3950"), }, }, {} }; void __init dmi_check_skip_isa_align(void) { dmi_check_system(can_skip_pciprobe_dmi_table); } static void pcibios_fixup_device_resources(struct pci_dev *dev) { struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE]; struct resource *bar_r; int bar; if (pci_probe & PCI_NOASSIGN_BARS) { /* * If the BIOS did not assign the BAR, zero out the * resource so the kernel doesn't attmept to assign * it later on in pci_assign_unassigned_resources */ for (bar = 0; bar <= PCI_STD_RESOURCE_END; bar++) { bar_r = &dev->resource[bar]; if (bar_r->start == 0 && bar_r->end != 0) { bar_r->flags = 0; bar_r->end = 0; } } } if (pci_probe & PCI_NOASSIGN_ROMS) { if (rom_r->parent) return; if (rom_r->start) { /* we deal with BIOS assigned ROM later */ return; } rom_r->start = rom_r->end = rom_r->flags = 0; } } /* * Called after each bus is probed, but before its children * are examined. */ void pcibios_fixup_bus(struct pci_bus *b) { struct pci_dev *dev; pci_read_bridge_bases(b); list_for_each_entry(dev, &b->devices, bus_list) pcibios_fixup_device_resources(dev); } void pcibios_add_bus(struct pci_bus *bus) { acpi_pci_add_bus(bus); } void pcibios_remove_bus(struct pci_bus *bus) { acpi_pci_remove_bus(bus); } /* * Only use DMI information to set this if nothing was passed * on the kernel command line (which was parsed earlier). */ static int set_bf_sort(const struct dmi_system_id *d) { if (pci_bf_sort == pci_bf_sort_default) { pci_bf_sort = pci_dmi_bf; printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident); } return 0; } static void read_dmi_type_b1(const struct dmi_header *dm, void *private_data) { u8 *d = (u8 *)dm + 4; if (dm->type != 0xB1) return; switch (((*(u32 *)d) >> 9) & 0x03) { case 0x00: printk(KERN_INFO "dmi type 0xB1 record - unknown flag\n"); break; case 0x01: /* set pci=bfsort */ smbios_type_b1_flag = 1; break; case 0x02: /* do not set pci=bfsort */ smbios_type_b1_flag = 2; break; default: break; } } static int find_sort_method(const struct dmi_system_id *d) { dmi_walk(read_dmi_type_b1, NULL); if (smbios_type_b1_flag == 1) { set_bf_sort(d); return 0; } return -1; } /* * Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus) */ #ifdef __i386__ static int assign_all_busses(const struct dmi_system_id *d) { pci_probe |= PCI_ASSIGN_ALL_BUSSES; printk(KERN_INFO "%s detected: enabling PCI bus# renumbering" " (pci=assign-busses)\n", d->ident); return 0; } #endif static int set_scan_all(const struct dmi_system_id *d) { printk(KERN_INFO "PCI: %s detected, enabling pci=pcie_scan_all\n", d->ident); pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); return 0; } static const struct dmi_system_id pciprobe_dmi_table[] = { #ifdef __i386__ /* * Laptops which need pci=assign-busses to see Cardbus cards */ { .callback = assign_all_busses, .ident = "Samsung X20 Laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"), DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"), }, }, #endif /* __i386__ */ { .callback = set_bf_sort, .ident = "Dell PowerEdge 1950", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 1955", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 2900", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge 2950", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"), }, }, { .callback = set_bf_sort, .ident = "Dell PowerEdge R900", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell"), DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"), }, }, { .callback = find_sort_method, .ident = "Dell System", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL20p G3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL20p G4", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL30p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL25p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL35p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL45p G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL45p G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL460c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL465c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL480c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant BL685c G1", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL360", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL380", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"), }, }, #ifdef __i386__ { .callback = assign_all_busses, .ident = "Compaq EVO N800c", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Compaq"), DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"), }, }, #endif { .callback = set_bf_sort, .ident = "HP ProLiant DL385 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"), }, }, { .callback = set_bf_sort, .ident = "HP ProLiant DL585 G2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"), }, }, { .callback = set_scan_all, .ident = "Stratus/NEC ftServer", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Stratus"), DMI_MATCH(DMI_PRODUCT_NAME, "ftServer"), }, }, {} }; void __init dmi_check_pciprobe(void) { dmi_check_system(pciprobe_dmi_table); } struct pci_bus *pcibios_scan_root(int busnum) { return pci_scan_bus_on_node(busnum, &pci_root_ops, get_mp_bus_to_node(busnum)); } void __init pcibios_set_cache_line_size(void) { struct cpuinfo_x86 *c = &boot_cpu_data; /* * Set PCI cacheline size to that of the CPU if the CPU has reported it. * (For older CPUs that don't support cpuid, we se it to 32 bytes * It's also good for 386/486s (which actually have 16) * as quite a few PCI devices do not support smaller values. */ if (c->x86_clflush_size > 0) { pci_dfl_cache_line_size = c->x86_clflush_size >> 2; printk(KERN_DEBUG "PCI: pci_cache_line_size set to %d bytes\n", pci_dfl_cache_line_size << 2); } else { pci_dfl_cache_line_size = 32 >> 2; printk(KERN_DEBUG "PCI: Unknown cacheline size. Setting to 32 bytes\n"); } } int __init pcibios_init(void) { if (!raw_pci_ops) { printk(KERN_WARNING "PCI: System does not support PCI\n"); return 0; } pcibios_set_cache_line_size(); pcibios_resource_survey(); if (pci_bf_sort >= pci_force_bf) pci_sort_breadthfirst(); return 0; } char * __init pcibios_setup(char *str) { if (!strcmp(str, "off")) { pci_probe = 0; return NULL; } else if (!strcmp(str, "bfsort")) { pci_bf_sort = pci_force_bf; return NULL; } else if (!strcmp(str, "nobfsort")) { pci_bf_sort = pci_force_nobf; return NULL; } #ifdef CONFIG_PCI_BIOS else if (!strcmp(str, "bios")) { pci_probe = PCI_PROBE_BIOS; return NULL; } else if (!strcmp(str, "nobios")) { pci_probe &= ~PCI_PROBE_BIOS; return NULL; } else if (!strcmp(str, "biosirq")) { pci_probe |= PCI_BIOS_IRQ_SCAN; return NULL; } else if (!strncmp(str, "pirqaddr=", 9)) { pirq_table_addr = simple_strtoul(str+9, NULL, 0); return NULL; } #endif #ifdef CONFIG_PCI_DIRECT else if (!strcmp(str, "conf1")) { pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS; return NULL; } else if (!strcmp(str, "conf2")) { pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS; return NULL; } #endif #ifdef CONFIG_PCI_MMCONFIG else if (!strcmp(str, "nommconf")) { pci_probe &= ~PCI_PROBE_MMCONF; return NULL; } else if (!strcmp(str, "check_enable_amd_mmconf")) { pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF; return NULL; } #endif else if (!strcmp(str, "noacpi")) { acpi_noirq_set(); return NULL; } else if (!strcmp(str, "noearly")) { pci_probe |= PCI_PROBE_NOEARLY; return NULL; } #ifndef CONFIG_X86_VISWS else if (!strcmp(str, "usepirqmask")) { pci_probe |= PCI_USE_PIRQ_MASK; return NULL; } else if (!strncmp(str, "irqmask=", 8)) { pcibios_irq_mask = simple_strtol(str+8, NULL, 0); return NULL; } else if (!strncmp(str, "lastbus=", 8)) { pcibios_last_bus = simple_strtol(str+8, NULL, 0); return NULL; } #endif else if (!strcmp(str, "rom")) { pci_probe |= PCI_ASSIGN_ROMS; return NULL; } else if (!strcmp(str, "norom")) { pci_probe |= PCI_NOASSIGN_ROMS; return NULL; } else if (!strcmp(str, "nobar")) { pci_probe |= PCI_NOASSIGN_BARS; return NULL; } else if (!strcmp(str, "assign-busses")) { pci_probe |= PCI_ASSIGN_ALL_BUSSES; return NULL; } else if (!strcmp(str, "use_crs")) { pci_probe |= PCI_USE__CRS; return NULL; } else if (!strcmp(str, "nocrs")) { pci_probe |= PCI_ROOT_NO_CRS; return NULL; } else if (!strcmp(str, "earlydump")) { pci_early_dump_regs = 1; return NULL; } else if (!strcmp(str, "routeirq")) { pci_routeirq = 1; return NULL; } else if (!strcmp(str, "skip_isa_align")) { pci_probe |= PCI_CAN_SKIP_ISA_ALIGN; return NULL; } else if (!strcmp(str, "noioapicquirk")) { noioapicquirk = 1; return NULL; } else if (!strcmp(str, "ioapicreroute")) { if (noioapicreroute != -1) noioapicreroute = 0; return NULL; } else if (!strcmp(str, "noioapicreroute")) { if (noioapicreroute != -1) noioapicreroute = 1; return NULL; } return str; } unsigned int pcibios_assign_all_busses(void) { return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0; } int pcibios_add_device(struct pci_dev *dev) { struct setup_data *data; struct pci_setup_rom *rom; u64 pa_data; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = ioremap(pa_data, sizeof(*rom)); if (!data) return -ENOMEM; if (data->type == SETUP_PCI) { rom = (struct pci_setup_rom *)data; if ((pci_domain_nr(dev->bus) == rom->segment) && (dev->bus->number == rom->bus) && (PCI_SLOT(dev->devfn) == rom->device) && (PCI_FUNC(dev->devfn) == rom->function) && (dev->vendor == rom->vendor) && (dev->device == rom->devid)) { dev->rom = pa_data + offsetof(struct pci_setup_rom, romdata); dev->romlen = rom->pcilen; } } pa_data = data->next; iounmap(data); } return 0; } int pcibios_enable_device(struct pci_dev *dev, int mask) { int err; if ((err = pci_enable_resources(dev, mask)) < 0) return err; if (!pci_dev_msi_enabled(dev)) return pcibios_enable_irq(dev); return 0; } void pcibios_disable_device (struct pci_dev *dev) { if (!pci_dev_msi_enabled(dev) && pcibios_disable_irq) pcibios_disable_irq(dev); } int pci_ext_cfg_avail(void) { if (raw_pci_ext_ops) return 1; else return 0; } struct pci_bus *pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node) { LIST_HEAD(resources); struct pci_bus *bus = NULL; struct pci_sysdata *sd; /* * Allocate per-root-bus (not per bus) arch-specific data. * TODO: leak; this memory is never freed. * It's arguable whether it's worth the trouble to care. */ sd = kzalloc(sizeof(*sd), GFP_KERNEL); if (!sd) { printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno); return NULL; } sd->node = node; x86_pci_root_bus_resources(busno, &resources); printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busno); bus = pci_scan_root_bus(NULL, busno, ops, sd, &resources); if (!bus) { pci_free_resource_list(&resources); kfree(sd); } return bus; } /* * NUMA info for PCI busses * * Early arch code is responsible for filling in reasonable values here. * A node id of "-1" means "use current node". In other words, if a bus * has a -1 node id, it's not tightly coupled to any particular chunk * of memory (as is the case on some Nehalem systems). */ #ifdef CONFIG_NUMA #define BUS_NR 256 #ifdef CONFIG_X86_64 static int mp_bus_to_node[BUS_NR] = { [0 ... BUS_NR - 1] = -1 }; void set_mp_bus_to_node(int busnum, int node) { if (busnum >= 0 && busnum < BUS_NR) mp_bus_to_node[busnum] = node; } int get_mp_bus_to_node(int busnum) { int node = -1; if (busnum < 0 || busnum > (BUS_NR - 1)) return node; node = mp_bus_to_node[busnum]; /* * let numa_node_id to decide it later in dma_alloc_pages * if there is no ram on that node */ if (node != -1 && !node_online(node)) node = -1; return node; } #else /* CONFIG_X86_32 */ static int mp_bus_to_node[BUS_NR] = { [0 ... BUS_NR - 1] = -1 }; void set_mp_bus_to_node(int busnum, int node) { if (busnum >= 0 && busnum < BUS_NR) mp_bus_to_node[busnum] = (unsigned char) node; } int get_mp_bus_to_node(int busnum) { int node; if (busnum < 0 || busnum > (BUS_NR - 1)) return 0; node = mp_bus_to_node[busnum]; return node; } #endif /* CONFIG_X86_32 */ #endif /* CONFIG_NUMA */