/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include "nfit_test.h" /* * Generate an NFIT table to describe the following topology: * * BUS0: Interleaved PMEM regions, and aliasing with BLK regions * * (a) (b) DIMM BLK-REGION * +----------+--------------+----------+---------+ * +------+ | blk2.0 | pm0.0 | blk2.1 | pm1.0 | 0 region2 * | imc0 +--+- - - - - region0 - - - -+----------+ + * +--+---+ | blk3.0 | pm0.0 | blk3.1 | pm1.0 | 1 region3 * | +----------+--------------v----------v v * +--+---+ | | * | cpu0 | region1 * +--+---+ | | * | +-------------------------^----------^ ^ * +--+---+ | blk4.0 | pm1.0 | 2 region4 * | imc1 +--+-------------------------+----------+ + * +------+ | blk5.0 | pm1.0 | 3 region5 * +-------------------------+----------+-+-------+ * * *) In this layout we have four dimms and two memory controllers in one * socket. Each unique interface (BLK or PMEM) to DPA space * is identified by a region device with a dynamically assigned id. * * *) The first portion of dimm0 and dimm1 are interleaved as REGION0. * A single PMEM namespace "pm0.0" is created using half of the * REGION0 SPA-range. REGION0 spans dimm0 and dimm1. PMEM namespace * allocate from from the bottom of a region. The unallocated * portion of REGION0 aliases with REGION2 and REGION3. That * unallacted capacity is reclaimed as BLK namespaces ("blk2.0" and * "blk3.0") starting at the base of each DIMM to offset (a) in those * DIMMs. "pm0.0", "blk2.0" and "blk3.0" are free-form readable * names that can be assigned to a namespace. * * *) In the last portion of dimm0 and dimm1 we have an interleaved * SPA range, REGION1, that spans those two dimms as well as dimm2 * and dimm3. Some of REGION1 allocated to a PMEM namespace named * "pm1.0" the rest is reclaimed in 4 BLK namespaces (for each * dimm in the interleave set), "blk2.1", "blk3.1", "blk4.0", and * "blk5.0". * * *) The portion of dimm2 and dimm3 that do not participate in the * REGION1 interleaved SPA range (i.e. the DPA address below offset * (b) are also included in the "blk4.0" and "blk5.0" namespaces. * Note, that BLK namespaces need not be contiguous in DPA-space, and * can consume aliased capacity from multiple interleave sets. * * BUS1: Legacy NVDIMM (single contiguous range) * * region2 * +---------------------+ * |---------------------| * || pm2.0 || * |---------------------| * +---------------------+ * * *) A NFIT-table may describe a simple system-physical-address range * with no BLK aliasing. This type of region may optionally * reference an NVDIMM. */ enum { NUM_PM = 2, NUM_DCR = 4, NUM_BDW = NUM_DCR, NUM_SPA = NUM_PM + NUM_DCR + NUM_BDW, NUM_MEM = NUM_DCR + NUM_BDW + 2 /* spa0 iset */ + 4 /* spa1 iset */, DIMM_SIZE = SZ_32M, LABEL_SIZE = SZ_128K, SPA0_SIZE = DIMM_SIZE, SPA1_SIZE = DIMM_SIZE*2, SPA2_SIZE = DIMM_SIZE, BDW_SIZE = 64 << 8, DCR_SIZE = 12, NUM_NFITS = 2, /* permit testing multiple NFITs per system */ }; struct nfit_test_dcr { __le64 bdw_addr; __le32 bdw_status; __u8 aperature[BDW_SIZE]; }; #define NFIT_DIMM_HANDLE(node, socket, imc, chan, dimm) \ (((node & 0xfff) << 16) | ((socket & 0xf) << 12) \ | ((imc & 0xf) << 8) | ((chan & 0xf) << 4) | (dimm & 0xf)) static u32 handle[NUM_DCR] = { [0] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 0), [1] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 1), [2] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 0), [3] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 1), }; struct nfit_test { struct acpi_nfit_desc acpi_desc; struct platform_device pdev; struct list_head resources; void *nfit_buf; dma_addr_t nfit_dma; size_t nfit_size; int num_dcr; int num_pm; void **dimm; dma_addr_t *dimm_dma; void **flush; dma_addr_t *flush_dma; void **label; dma_addr_t *label_dma; void **spa_set; dma_addr_t *spa_set_dma; struct nfit_test_dcr **dcr; dma_addr_t *dcr_dma; int (*alloc)(struct nfit_test *t); void (*setup)(struct nfit_test *t); }; static struct nfit_test *to_nfit_test(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); return container_of(pdev, struct nfit_test, pdev); } static int nfit_test_cmd_get_config_size(struct nd_cmd_get_config_size *nd_cmd, unsigned int buf_len) { if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->status = 0; nd_cmd->config_size = LABEL_SIZE; nd_cmd->max_xfer = SZ_4K; return 0; } static int nfit_test_cmd_get_config_data(struct nd_cmd_get_config_data_hdr *nd_cmd, unsigned int buf_len, void *label) { unsigned int len, offset = nd_cmd->in_offset; int rc; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (offset >= LABEL_SIZE) return -EINVAL; if (nd_cmd->in_length + sizeof(*nd_cmd) > buf_len) return -EINVAL; nd_cmd->status = 0; len = min(nd_cmd->in_length, LABEL_SIZE - offset); memcpy(nd_cmd->out_buf, label + offset, len); rc = buf_len - sizeof(*nd_cmd) - len; return rc; } static int nfit_test_cmd_set_config_data(struct nd_cmd_set_config_hdr *nd_cmd, unsigned int buf_len, void *label) { unsigned int len, offset = nd_cmd->in_offset; u32 *status; int rc; if (buf_len < sizeof(*nd_cmd)) return -EINVAL; if (offset >= LABEL_SIZE) return -EINVAL; if (nd_cmd->in_length + sizeof(*nd_cmd) + 4 > buf_len) return -EINVAL; status = (void *)nd_cmd + nd_cmd->in_length + sizeof(*nd_cmd); *status = 0; len = min(nd_cmd->in_length, LABEL_SIZE - offset); memcpy(label + offset, nd_cmd->in_buf, len); rc = buf_len - sizeof(*nd_cmd) - (len + 4); return rc; } static int nfit_test_cmd_ars_cap(struct nd_cmd_ars_cap *nd_cmd, unsigned int buf_len) { if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->max_ars_out = 256; nd_cmd->status = (ND_ARS_PERSISTENT | ND_ARS_VOLATILE) << 16; return 0; } static int nfit_test_cmd_ars_start(struct nd_cmd_ars_start *nd_cmd, unsigned int buf_len) { if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->status = 0; return 0; } static int nfit_test_cmd_ars_status(struct nd_cmd_ars_status *nd_cmd, unsigned int buf_len) { if (buf_len < sizeof(*nd_cmd)) return -EINVAL; nd_cmd->out_length = 256; nd_cmd->num_records = 0; nd_cmd->status = 0; return 0; } static int nfit_test_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf, unsigned int buf_len) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct nfit_test *t = container_of(acpi_desc, typeof(*t), acpi_desc); int i, rc = 0; if (nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !test_bit(cmd, &nfit_mem->dsm_mask)) return -ENOTTY; /* lookup label space for the given dimm */ for (i = 0; i < ARRAY_SIZE(handle); i++) if (__to_nfit_memdev(nfit_mem)->device_handle == handle[i]) break; if (i >= ARRAY_SIZE(handle)) return -ENXIO; switch (cmd) { case ND_CMD_GET_CONFIG_SIZE: rc = nfit_test_cmd_get_config_size(buf, buf_len); break; case ND_CMD_GET_CONFIG_DATA: rc = nfit_test_cmd_get_config_data(buf, buf_len, t->label[i]); break; case ND_CMD_SET_CONFIG_DATA: rc = nfit_test_cmd_set_config_data(buf, buf_len, t->label[i]); break; default: return -ENOTTY; } } else { if (!nd_desc || !test_bit(cmd, &nd_desc->dsm_mask)) return -ENOTTY; switch (cmd) { case ND_CMD_ARS_CAP: rc = nfit_test_cmd_ars_cap(buf, buf_len); break; case ND_CMD_ARS_START: rc = nfit_test_cmd_ars_start(buf, buf_len); break; case ND_CMD_ARS_STATUS: rc = nfit_test_cmd_ars_status(buf, buf_len); break; default: return -ENOTTY; } } return rc; } static DEFINE_SPINLOCK(nfit_test_lock); static struct nfit_test *instances[NUM_NFITS]; static void release_nfit_res(void *data) { struct nfit_test_resource *nfit_res = data; struct resource *res = nfit_res->res; spin_lock(&nfit_test_lock); list_del(&nfit_res->list); spin_unlock(&nfit_test_lock); if (is_vmalloc_addr(nfit_res->buf)) vfree(nfit_res->buf); else dma_free_coherent(nfit_res->dev, resource_size(res), nfit_res->buf, res->start); kfree(res); kfree(nfit_res); } static void *__test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma, void *buf) { struct device *dev = &t->pdev.dev; struct resource *res = kzalloc(sizeof(*res) * 2, GFP_KERNEL); struct nfit_test_resource *nfit_res = kzalloc(sizeof(*nfit_res), GFP_KERNEL); int rc; if (!res || !buf || !nfit_res) goto err; rc = devm_add_action(dev, release_nfit_res, nfit_res); if (rc) goto err; INIT_LIST_HEAD(&nfit_res->list); memset(buf, 0, size); nfit_res->dev = dev; nfit_res->buf = buf; nfit_res->res = res; res->start = *dma; res->end = *dma + size - 1; res->name = "NFIT"; spin_lock(&nfit_test_lock); list_add(&nfit_res->list, &t->resources); spin_unlock(&nfit_test_lock); return nfit_res->buf; err: if (buf && !is_vmalloc_addr(buf)) dma_free_coherent(dev, size, buf, *dma); else if (buf) vfree(buf); kfree(res); kfree(nfit_res); return NULL; } static void *test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma) { void *buf = vmalloc(size); *dma = (unsigned long) buf; return __test_alloc(t, size, dma, buf); } static void *test_alloc_coherent(struct nfit_test *t, size_t size, dma_addr_t *dma) { struct device *dev = &t->pdev.dev; void *buf = dma_alloc_coherent(dev, size, dma, GFP_KERNEL); return __test_alloc(t, size, dma, buf); } static struct nfit_test_resource *nfit_test_lookup(resource_size_t addr) { int i; for (i = 0; i < ARRAY_SIZE(instances); i++) { struct nfit_test_resource *n, *nfit_res = NULL; struct nfit_test *t = instances[i]; if (!t) continue; spin_lock(&nfit_test_lock); list_for_each_entry(n, &t->resources, list) { if (addr >= n->res->start && (addr < n->res->start + resource_size(n->res))) { nfit_res = n; break; } else if (addr >= (unsigned long) n->buf && (addr < (unsigned long) n->buf + resource_size(n->res))) { nfit_res = n; break; } } spin_unlock(&nfit_test_lock); if (nfit_res) return nfit_res; } return NULL; } static int nfit_test0_alloc(struct nfit_test *t) { size_t nfit_size = sizeof(struct acpi_table_nfit) + sizeof(struct acpi_nfit_system_address) * NUM_SPA + sizeof(struct acpi_nfit_memory_map) * NUM_MEM + sizeof(struct acpi_nfit_control_region) * NUM_DCR + sizeof(struct acpi_nfit_data_region) * NUM_BDW + sizeof(struct acpi_nfit_flush_address) * NUM_DCR; int i; t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma); if (!t->nfit_buf) return -ENOMEM; t->nfit_size = nfit_size; t->spa_set[0] = test_alloc_coherent(t, SPA0_SIZE, &t->spa_set_dma[0]); if (!t->spa_set[0]) return -ENOMEM; t->spa_set[1] = test_alloc_coherent(t, SPA1_SIZE, &t->spa_set_dma[1]); if (!t->spa_set[1]) return -ENOMEM; for (i = 0; i < NUM_DCR; i++) { t->dimm[i] = test_alloc(t, DIMM_SIZE, &t->dimm_dma[i]); if (!t->dimm[i]) return -ENOMEM; t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]); if (!t->label[i]) return -ENOMEM; sprintf(t->label[i], "label%d", i); t->flush[i] = test_alloc(t, 8, &t->flush_dma[i]); if (!t->flush[i]) return -ENOMEM; } for (i = 0; i < NUM_DCR; i++) { t->dcr[i] = test_alloc(t, LABEL_SIZE, &t->dcr_dma[i]); if (!t->dcr[i]) return -ENOMEM; } return 0; } static int nfit_test1_alloc(struct nfit_test *t) { size_t nfit_size = sizeof(struct acpi_table_nfit) + sizeof(struct acpi_nfit_system_address) + sizeof(struct acpi_nfit_memory_map) + sizeof(struct acpi_nfit_control_region); t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma); if (!t->nfit_buf) return -ENOMEM; t->nfit_size = nfit_size; t->spa_set[0] = test_alloc_coherent(t, SPA2_SIZE, &t->spa_set_dma[0]); if (!t->spa_set[0]) return -ENOMEM; return 0; } static void nfit_test_init_header(struct acpi_table_nfit *nfit, size_t size) { memcpy(nfit->header.signature, ACPI_SIG_NFIT, 4); nfit->header.length = size; nfit->header.revision = 1; memcpy(nfit->header.oem_id, "LIBND", 6); memcpy(nfit->header.oem_table_id, "TEST", 5); nfit->header.oem_revision = 1; memcpy(nfit->header.asl_compiler_id, "TST", 4); nfit->header.asl_compiler_revision = 1; } static void nfit_test0_setup(struct nfit_test *t) { struct nvdimm_bus_descriptor *nd_desc; struct acpi_nfit_desc *acpi_desc; struct acpi_nfit_memory_map *memdev; void *nfit_buf = t->nfit_buf; size_t size = t->nfit_size; struct acpi_nfit_system_address *spa; struct acpi_nfit_control_region *dcr; struct acpi_nfit_data_region *bdw; struct acpi_nfit_flush_address *flush; unsigned int offset; nfit_test_init_header(nfit_buf, size); /* * spa0 (interleave first half of dimm0 and dimm1, note storage * does not actually alias the related block-data-window * regions) */ spa = nfit_buf + sizeof(struct acpi_table_nfit); spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 0+1; spa->address = t->spa_set_dma[0]; spa->length = SPA0_SIZE; /* * spa1 (interleave last half of the 4 DIMMS, note storage * does not actually alias the related block-data-window * regions) */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa); spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 1+1; spa->address = t->spa_set_dma[1]; spa->length = SPA1_SIZE; /* spa2 (dcr0) dimm0 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 2; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 2+1; spa->address = t->dcr_dma[0]; spa->length = DCR_SIZE; /* spa3 (dcr1) dimm1 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 3; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 3+1; spa->address = t->dcr_dma[1]; spa->length = DCR_SIZE; /* spa4 (dcr2) dimm2 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 4; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 4+1; spa->address = t->dcr_dma[2]; spa->length = DCR_SIZE; /* spa5 (dcr3) dimm3 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 5; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16); spa->range_index = 5+1; spa->address = t->dcr_dma[3]; spa->length = DCR_SIZE; /* spa6 (bdw for dcr0) dimm0 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 6; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 6+1; spa->address = t->dimm_dma[0]; spa->length = DIMM_SIZE; /* spa7 (bdw for dcr1) dimm1 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 7; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 7+1; spa->address = t->dimm_dma[1]; spa->length = DIMM_SIZE; /* spa8 (bdw for dcr2) dimm2 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 8; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 8+1; spa->address = t->dimm_dma[2]; spa->length = DIMM_SIZE; /* spa9 (bdw for dcr3) dimm3 */ spa = nfit_buf + sizeof(struct acpi_table_nfit) + sizeof(*spa) * 9; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16); spa->range_index = 9+1; spa->address = t->dimm_dma[3]; spa->length = DIMM_SIZE; offset = sizeof(struct acpi_table_nfit) + sizeof(*spa) * 10; /* mem-region0 (spa0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 0+1; memdev->region_size = SPA0_SIZE/2; memdev->region_offset = t->spa_set_dma[0]; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 2; /* mem-region1 (spa0, dimm1) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map); memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 1+1; memdev->region_size = SPA0_SIZE/2; memdev->region_offset = t->spa_set_dma[0] + SPA0_SIZE/2; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 2; /* mem-region2 (spa1, dimm0) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 2; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 1; memdev->range_index = 1+1; memdev->region_index = 0+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = t->spa_set_dma[1]; memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; /* mem-region3 (spa1, dimm1) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 3; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 1; memdev->range_index = 1+1; memdev->region_index = 1+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = t->spa_set_dma[1] + SPA1_SIZE/4; memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; /* mem-region4 (spa1, dimm2) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 4; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 1+1; memdev->region_index = 2+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = t->spa_set_dma[1] + 2*SPA1_SIZE/4; memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; /* mem-region5 (spa1, dimm3) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 5; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 1+1; memdev->region_index = 3+1; memdev->region_size = SPA1_SIZE/4; memdev->region_offset = t->spa_set_dma[1] + 3*SPA1_SIZE/4; memdev->address = SPA0_SIZE/2; memdev->interleave_index = 0; memdev->interleave_ways = 4; /* mem-region6 (spa/dcr0, dimm0) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 6; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 2+1; memdev->region_index = 0+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region7 (spa/dcr1, dimm1) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 7; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 3+1; memdev->region_index = 1+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region8 (spa/dcr2, dimm2) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 8; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 4+1; memdev->region_index = 2+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region9 (spa/dcr3, dimm3) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 9; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 5+1; memdev->region_index = 3+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region10 (spa/bdw0, dimm0) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 10; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[0]; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 6+1; memdev->region_index = 0+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region11 (spa/bdw1, dimm1) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 11; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[1]; memdev->physical_id = 1; memdev->region_id = 0; memdev->range_index = 7+1; memdev->region_index = 1+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region12 (spa/bdw2, dimm2) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 12; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[2]; memdev->physical_id = 2; memdev->region_id = 0; memdev->range_index = 8+1; memdev->region_index = 2+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; /* mem-region13 (spa/dcr3, dimm3) */ memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 13; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = handle[3]; memdev->physical_id = 3; memdev->region_id = 0; memdev->range_index = 9+1; memdev->region_index = 3+1; memdev->region_size = 0; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; offset = offset + sizeof(struct acpi_nfit_memory_map) * 14; /* dcr-descriptor0 */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(struct acpi_nfit_control_region); dcr->region_index = 0+1; dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->serial_number = ~handle[0]; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; /* dcr-descriptor1 */ dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region); dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(struct acpi_nfit_control_region); dcr->region_index = 1+1; dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->serial_number = ~handle[1]; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; /* dcr-descriptor2 */ dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region) * 2; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(struct acpi_nfit_control_region); dcr->region_index = 2+1; dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->serial_number = ~handle[2]; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; /* dcr-descriptor3 */ dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region) * 3; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(struct acpi_nfit_control_region); dcr->region_index = 3+1; dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->serial_number = ~handle[3]; dcr->windows = 1; dcr->window_size = DCR_SIZE; dcr->command_offset = 0; dcr->command_size = 8; dcr->status_offset = 8; dcr->status_size = 4; offset = offset + sizeof(struct acpi_nfit_control_region) * 4; /* bdw0 (spa/dcr0, dimm0) */ bdw = nfit_buf + offset; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(struct acpi_nfit_data_region); bdw->region_index = 0+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; /* bdw1 (spa/dcr1, dimm1) */ bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region); bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(struct acpi_nfit_data_region); bdw->region_index = 1+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; /* bdw2 (spa/dcr2, dimm2) */ bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region) * 2; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(struct acpi_nfit_data_region); bdw->region_index = 2+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; /* bdw3 (spa/dcr3, dimm3) */ bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region) * 3; bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION; bdw->header.length = sizeof(struct acpi_nfit_data_region); bdw->region_index = 3+1; bdw->windows = 1; bdw->offset = 0; bdw->size = BDW_SIZE; bdw->capacity = DIMM_SIZE; bdw->start_address = 0; offset = offset + sizeof(struct acpi_nfit_data_region) * 4; /* flush0 (dimm0) */ flush = nfit_buf + offset; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = sizeof(struct acpi_nfit_flush_address); flush->device_handle = handle[0]; flush->hint_count = 1; flush->hint_address[0] = t->flush_dma[0]; /* flush1 (dimm1) */ flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 1; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = sizeof(struct acpi_nfit_flush_address); flush->device_handle = handle[1]; flush->hint_count = 1; flush->hint_address[0] = t->flush_dma[1]; /* flush2 (dimm2) */ flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 2; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = sizeof(struct acpi_nfit_flush_address); flush->device_handle = handle[2]; flush->hint_count = 1; flush->hint_address[0] = t->flush_dma[2]; /* flush3 (dimm3) */ flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 3; flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS; flush->header.length = sizeof(struct acpi_nfit_flush_address); flush->device_handle = handle[3]; flush->hint_count = 1; flush->hint_address[0] = t->flush_dma[3]; acpi_desc = &t->acpi_desc; set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_dsm_force_en); set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_dsm_force_en); set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_dsm_force_en); set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_dsm_force_en); set_bit(ND_CMD_ARS_START, &acpi_desc->bus_dsm_force_en); set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_dsm_force_en); nd_desc = &acpi_desc->nd_desc; nd_desc->ndctl = nfit_test_ctl; } static void nfit_test1_setup(struct nfit_test *t) { size_t size = t->nfit_size, offset; void *nfit_buf = t->nfit_buf; struct acpi_nfit_memory_map *memdev; struct acpi_nfit_control_region *dcr; struct acpi_nfit_system_address *spa; nfit_test_init_header(nfit_buf, size); offset = sizeof(struct acpi_table_nfit); /* spa0 (flat range with no bdw aliasing) */ spa = nfit_buf + offset; spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS; spa->header.length = sizeof(*spa); memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16); spa->range_index = 0+1; spa->address = t->spa_set_dma[0]; spa->length = SPA2_SIZE; offset += sizeof(*spa); /* mem-region0 (spa0, dimm0) */ memdev = nfit_buf + offset; memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP; memdev->header.length = sizeof(*memdev); memdev->device_handle = 0; memdev->physical_id = 0; memdev->region_id = 0; memdev->range_index = 0+1; memdev->region_index = 0+1; memdev->region_size = SPA2_SIZE; memdev->region_offset = 0; memdev->address = 0; memdev->interleave_index = 0; memdev->interleave_ways = 1; memdev->flags = ACPI_NFIT_MEM_SAVE_FAILED | ACPI_NFIT_MEM_RESTORE_FAILED | ACPI_NFIT_MEM_FLUSH_FAILED | ACPI_NFIT_MEM_HEALTH_OBSERVED | ACPI_NFIT_MEM_ARMED; offset += sizeof(*memdev); /* dcr-descriptor0 */ dcr = nfit_buf + offset; dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION; dcr->header.length = sizeof(struct acpi_nfit_control_region); dcr->region_index = 0+1; dcr->vendor_id = 0xabcd; dcr->device_id = 0; dcr->revision_id = 1; dcr->serial_number = ~0; dcr->code = 0x201; dcr->windows = 0; dcr->window_size = 0; dcr->command_offset = 0; dcr->command_size = 0; dcr->status_offset = 0; dcr->status_size = 0; } static int nfit_test_blk_do_io(struct nd_blk_region *ndbr, resource_size_t dpa, void *iobuf, u64 len, int rw) { struct nfit_blk *nfit_blk = ndbr->blk_provider_data; struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; struct nd_region *nd_region = &ndbr->nd_region; unsigned int lane; lane = nd_region_acquire_lane(nd_region); if (rw) memcpy(mmio->base + dpa, iobuf, len); else memcpy(iobuf, mmio->base + dpa, len); nd_region_release_lane(nd_region, lane); return 0; } static int nfit_test_probe(struct platform_device *pdev) { struct nvdimm_bus_descriptor *nd_desc; struct acpi_nfit_desc *acpi_desc; struct device *dev = &pdev->dev; struct nfit_test *nfit_test; int rc; nfit_test = to_nfit_test(&pdev->dev); /* common alloc */ if (nfit_test->num_dcr) { int num = nfit_test->num_dcr; nfit_test->dimm = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->dimm_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->flush = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->flush_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->label = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->label_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); nfit_test->dcr = devm_kcalloc(dev, num, sizeof(struct nfit_test_dcr *), GFP_KERNEL); nfit_test->dcr_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); if (nfit_test->dimm && nfit_test->dimm_dma && nfit_test->label && nfit_test->label_dma && nfit_test->dcr && nfit_test->dcr_dma && nfit_test->flush && nfit_test->flush_dma) /* pass */; else return -ENOMEM; } if (nfit_test->num_pm) { int num = nfit_test->num_pm; nfit_test->spa_set = devm_kcalloc(dev, num, sizeof(void *), GFP_KERNEL); nfit_test->spa_set_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); if (nfit_test->spa_set && nfit_test->spa_set_dma) /* pass */; else return -ENOMEM; } /* per-nfit specific alloc */ if (nfit_test->alloc(nfit_test)) return -ENOMEM; nfit_test->setup(nfit_test); acpi_desc = &nfit_test->acpi_desc; acpi_desc->dev = &pdev->dev; acpi_desc->nfit = nfit_test->nfit_buf; acpi_desc->blk_do_io = nfit_test_blk_do_io; nd_desc = &acpi_desc->nd_desc; nd_desc->attr_groups = acpi_nfit_attribute_groups; acpi_desc->nvdimm_bus = nvdimm_bus_register(&pdev->dev, nd_desc); if (!acpi_desc->nvdimm_bus) return -ENXIO; rc = acpi_nfit_init(acpi_desc, nfit_test->nfit_size); if (rc) { nvdimm_bus_unregister(acpi_desc->nvdimm_bus); return rc; } return 0; } static int nfit_test_remove(struct platform_device *pdev) { struct nfit_test *nfit_test = to_nfit_test(&pdev->dev); struct acpi_nfit_desc *acpi_desc = &nfit_test->acpi_desc; nvdimm_bus_unregister(acpi_desc->nvdimm_bus); return 0; } static void nfit_test_release(struct device *dev) { struct nfit_test *nfit_test = to_nfit_test(dev); kfree(nfit_test); } static const struct platform_device_id nfit_test_id[] = { { KBUILD_MODNAME }, { }, }; static struct platform_driver nfit_test_driver = { .probe = nfit_test_probe, .remove = nfit_test_remove, .driver = { .name = KBUILD_MODNAME, }, .id_table = nfit_test_id, }; #ifdef CONFIG_CMA_SIZE_MBYTES #define CMA_SIZE_MBYTES CONFIG_CMA_SIZE_MBYTES #else #define CMA_SIZE_MBYTES 0 #endif static __init int nfit_test_init(void) { int rc, i; nfit_test_setup(nfit_test_lookup); for (i = 0; i < NUM_NFITS; i++) { struct nfit_test *nfit_test; struct platform_device *pdev; static int once; nfit_test = kzalloc(sizeof(*nfit_test), GFP_KERNEL); if (!nfit_test) { rc = -ENOMEM; goto err_register; } INIT_LIST_HEAD(&nfit_test->resources); switch (i) { case 0: nfit_test->num_pm = NUM_PM; nfit_test->num_dcr = NUM_DCR; nfit_test->alloc = nfit_test0_alloc; nfit_test->setup = nfit_test0_setup; break; case 1: nfit_test->num_pm = 1; nfit_test->alloc = nfit_test1_alloc; nfit_test->setup = nfit_test1_setup; break; default: rc = -EINVAL; goto err_register; } pdev = &nfit_test->pdev; pdev->name = KBUILD_MODNAME; pdev->id = i; pdev->dev.release = nfit_test_release; rc = platform_device_register(pdev); if (rc) { put_device(&pdev->dev); goto err_register; } rc = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rc) goto err_register; instances[i] = nfit_test; if (!once++) { dma_addr_t dma; void *buf; buf = dma_alloc_coherent(&pdev->dev, SZ_128M, &dma, GFP_KERNEL); if (!buf) { rc = -ENOMEM; dev_warn(&pdev->dev, "need 128M of free cma\n"); goto err_register; } dma_free_coherent(&pdev->dev, SZ_128M, buf, dma); } } rc = platform_driver_register(&nfit_test_driver); if (rc) goto err_register; return 0; err_register: for (i = 0; i < NUM_NFITS; i++) if (instances[i]) platform_device_unregister(&instances[i]->pdev); nfit_test_teardown(); return rc; } static __exit void nfit_test_exit(void) { int i; platform_driver_unregister(&nfit_test_driver); for (i = 0; i < NUM_NFITS; i++) platform_device_unregister(&instances[i]->pdev); nfit_test_teardown(); } module_init(nfit_test_init); module_exit(nfit_test_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation");