/* * Copyright (c) 2015, Sony Mobile Communications AB. * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The Shared Memory Point to Point (SMP2P) protocol facilitates communication * of a single 32-bit value between two processors. Each value has a single * writer (the local side) and a single reader (the remote side). Values are * uniquely identified in the system by the directed edge (local processor ID * to remote processor ID) and a string identifier. * * Each processor is responsible for creating the outgoing SMEM items and each * item is writable by the local processor and readable by the remote * processor. By using two separate SMEM items that are single-reader and * single-writer, SMP2P does not require any remote locking mechanisms. * * The driver uses the Linux GPIO and interrupt framework to expose a virtual * GPIO for each outbound entry and a virtual interrupt controller for each * inbound entry. */ #define SMP2P_MAX_ENTRY 16 #define SMP2P_MAX_ENTRY_NAME 16 #define SMP2P_FEATURE_SSR_ACK 0x1 #define SMP2P_MAGIC 0x504d5324 /** * struct smp2p_smem_item - in memory communication structure * @magic: magic number * @version: version - must be 1 * @features: features flag - currently unused * @local_pid: processor id of sending end * @remote_pid: processor id of receiving end * @total_entries: number of entries - always SMP2P_MAX_ENTRY * @valid_entries: number of allocated entries * @flags: * @entries: individual communication entries * @name: name of the entry * @value: content of the entry */ struct smp2p_smem_item { u32 magic; u8 version; unsigned features:24; u16 local_pid; u16 remote_pid; u16 total_entries; u16 valid_entries; u32 flags; struct { u8 name[SMP2P_MAX_ENTRY_NAME]; u32 value; } entries[SMP2P_MAX_ENTRY]; } __packed; /** * struct smp2p_entry - driver context matching one entry * @node: list entry to keep track of allocated entries * @smp2p: reference to the device driver context * @name: name of the entry, to match against smp2p_smem_item * @value: pointer to smp2p_smem_item entry value * @last_value: last handled value * @domain: irq_domain for inbound entries * @irq_enabled:bitmap to track enabled irq bits * @irq_rising: bitmap to mark irq bits for rising detection * @irq_falling:bitmap to mark irq bits for falling detection * @state: smem state handle * @lock: spinlock to protect read-modify-write of the value */ struct smp2p_entry { struct list_head node; struct qcom_smp2p *smp2p; const char *name; u32 *value; u32 last_value; struct irq_domain *domain; DECLARE_BITMAP(irq_enabled, 32); DECLARE_BITMAP(irq_rising, 32); DECLARE_BITMAP(irq_falling, 32); struct qcom_smem_state *state; spinlock_t lock; }; #define SMP2P_INBOUND 0 #define SMP2P_OUTBOUND 1 /** * struct qcom_smp2p - device driver context * @dev: device driver handle * @in: pointer to the inbound smem item * @smem_items: ids of the two smem items * @valid_entries: already scanned inbound entries * @local_pid: processor id of the inbound edge * @remote_pid: processor id of the outbound edge * @ipc_regmap: regmap for the outbound ipc * @ipc_offset: offset within the regmap * @ipc_bit: bit in regmap@offset to kick to signal remote processor * @mbox_client: mailbox client handle * @mbox_chan: apcs ipc mailbox channel handle * @inbound: list of inbound entries * @outbound: list of outbound entries */ struct qcom_smp2p { struct device *dev; struct smp2p_smem_item *in; struct smp2p_smem_item *out; unsigned smem_items[SMP2P_OUTBOUND + 1]; unsigned valid_entries; unsigned local_pid; unsigned remote_pid; struct regmap *ipc_regmap; int ipc_offset; int ipc_bit; struct mbox_client mbox_client; struct mbox_chan *mbox_chan; struct list_head inbound; struct list_head outbound; }; static void qcom_smp2p_kick(struct qcom_smp2p *smp2p) { /* Make sure any updated data is written before the kick */ wmb(); if (smp2p->mbox_chan) { mbox_send_message(smp2p->mbox_chan, NULL); mbox_client_txdone(smp2p->mbox_chan, 0); } else { regmap_write(smp2p->ipc_regmap, smp2p->ipc_offset, BIT(smp2p->ipc_bit)); } } /** * qcom_smp2p_intr() - interrupt handler for incoming notifications * @irq: unused * @data: smp2p driver context * * Handle notifications from the remote side to handle newly allocated entries * or any changes to the state bits of existing entries. */ static irqreturn_t qcom_smp2p_intr(int irq, void *data) { struct smp2p_smem_item *in; struct smp2p_entry *entry; struct qcom_smp2p *smp2p = data; unsigned smem_id = smp2p->smem_items[SMP2P_INBOUND]; unsigned pid = smp2p->remote_pid; size_t size; int irq_pin; u32 status; char buf[SMP2P_MAX_ENTRY_NAME]; u32 val; int i; in = smp2p->in; /* Acquire smem item, if not already found */ if (!in) { in = qcom_smem_get(pid, smem_id, &size); if (IS_ERR(in)) { dev_err(smp2p->dev, "Unable to acquire remote smp2p item\n"); return IRQ_HANDLED; } smp2p->in = in; } /* Match newly created entries */ for (i = smp2p->valid_entries; i < in->valid_entries; i++) { list_for_each_entry(entry, &smp2p->inbound, node) { memcpy(buf, in->entries[i].name, sizeof(buf)); if (!strcmp(buf, entry->name)) { entry->value = &in->entries[i].value; break; } } } smp2p->valid_entries = i; /* Fire interrupts based on any value changes */ list_for_each_entry(entry, &smp2p->inbound, node) { /* Ignore entries not yet allocated by the remote side */ if (!entry->value) continue; val = readl(entry->value); status = val ^ entry->last_value; entry->last_value = val; /* No changes of this entry? */ if (!status) continue; for_each_set_bit(i, entry->irq_enabled, 32) { if (!(status & BIT(i))) continue; if ((val & BIT(i) && test_bit(i, entry->irq_rising)) || (!(val & BIT(i)) && test_bit(i, entry->irq_falling))) { irq_pin = irq_find_mapping(entry->domain, i); handle_nested_irq(irq_pin); } } } return IRQ_HANDLED; } static void smp2p_mask_irq(struct irq_data *irqd) { struct smp2p_entry *entry = irq_data_get_irq_chip_data(irqd); irq_hw_number_t irq = irqd_to_hwirq(irqd); clear_bit(irq, entry->irq_enabled); } static void smp2p_unmask_irq(struct irq_data *irqd) { struct smp2p_entry *entry = irq_data_get_irq_chip_data(irqd); irq_hw_number_t irq = irqd_to_hwirq(irqd); set_bit(irq, entry->irq_enabled); } static int smp2p_set_irq_type(struct irq_data *irqd, unsigned int type) { struct smp2p_entry *entry = irq_data_get_irq_chip_data(irqd); irq_hw_number_t irq = irqd_to_hwirq(irqd); if (!(type & IRQ_TYPE_EDGE_BOTH)) return -EINVAL; if (type & IRQ_TYPE_EDGE_RISING) set_bit(irq, entry->irq_rising); else clear_bit(irq, entry->irq_rising); if (type & IRQ_TYPE_EDGE_FALLING) set_bit(irq, entry->irq_falling); else clear_bit(irq, entry->irq_falling); return 0; } static struct irq_chip smp2p_irq_chip = { .name = "smp2p", .irq_mask = smp2p_mask_irq, .irq_unmask = smp2p_unmask_irq, .irq_set_type = smp2p_set_irq_type, }; static int smp2p_irq_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { struct smp2p_entry *entry = d->host_data; irq_set_chip_and_handler(irq, &smp2p_irq_chip, handle_level_irq); irq_set_chip_data(irq, entry); irq_set_nested_thread(irq, 1); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops smp2p_irq_ops = { .map = smp2p_irq_map, .xlate = irq_domain_xlate_twocell, }; static int qcom_smp2p_inbound_entry(struct qcom_smp2p *smp2p, struct smp2p_entry *entry, struct device_node *node) { entry->domain = irq_domain_add_linear(node, 32, &smp2p_irq_ops, entry); if (!entry->domain) { dev_err(smp2p->dev, "failed to add irq_domain\n"); return -ENOMEM; } return 0; } static int smp2p_update_bits(void *data, u32 mask, u32 value) { struct smp2p_entry *entry = data; u32 orig; u32 val; spin_lock(&entry->lock); val = orig = readl(entry->value); val &= ~mask; val |= value; writel(val, entry->value); spin_unlock(&entry->lock); if (val != orig) qcom_smp2p_kick(entry->smp2p); return 0; } static const struct qcom_smem_state_ops smp2p_state_ops = { .update_bits = smp2p_update_bits, }; static int qcom_smp2p_outbound_entry(struct qcom_smp2p *smp2p, struct smp2p_entry *entry, struct device_node *node) { struct smp2p_smem_item *out = smp2p->out; char buf[SMP2P_MAX_ENTRY_NAME] = {}; /* Allocate an entry from the smem item */ strlcpy(buf, entry->name, SMP2P_MAX_ENTRY_NAME); memcpy(out->entries[out->valid_entries].name, buf, SMP2P_MAX_ENTRY_NAME); /* Make the logical entry reference the physical value */ entry->value = &out->entries[out->valid_entries].value; out->valid_entries++; entry->state = qcom_smem_state_register(node, &smp2p_state_ops, entry); if (IS_ERR(entry->state)) { dev_err(smp2p->dev, "failed to register qcom_smem_state\n"); return PTR_ERR(entry->state); } return 0; } static int qcom_smp2p_alloc_outbound_item(struct qcom_smp2p *smp2p) { struct smp2p_smem_item *out; unsigned smem_id = smp2p->smem_items[SMP2P_OUTBOUND]; unsigned pid = smp2p->remote_pid; int ret; ret = qcom_smem_alloc(pid, smem_id, sizeof(*out)); if (ret < 0 && ret != -EEXIST) { if (ret != -EPROBE_DEFER) dev_err(smp2p->dev, "unable to allocate local smp2p item\n"); return ret; } out = qcom_smem_get(pid, smem_id, NULL); if (IS_ERR(out)) { dev_err(smp2p->dev, "Unable to acquire local smp2p item\n"); return PTR_ERR(out); } memset(out, 0, sizeof(*out)); out->magic = SMP2P_MAGIC; out->local_pid = smp2p->local_pid; out->remote_pid = smp2p->remote_pid; out->total_entries = SMP2P_MAX_ENTRY; out->valid_entries = 0; /* * Make sure the rest of the header is written before we validate the * item by writing a valid version number. */ wmb(); out->version = 1; qcom_smp2p_kick(smp2p); smp2p->out = out; return 0; } static int smp2p_parse_ipc(struct qcom_smp2p *smp2p) { struct device_node *syscon; struct device *dev = smp2p->dev; const char *key; int ret; syscon = of_parse_phandle(dev->of_node, "qcom,ipc", 0); if (!syscon) { dev_err(dev, "no qcom,ipc node\n"); return -ENODEV; } smp2p->ipc_regmap = syscon_node_to_regmap(syscon); if (IS_ERR(smp2p->ipc_regmap)) return PTR_ERR(smp2p->ipc_regmap); key = "qcom,ipc"; ret = of_property_read_u32_index(dev->of_node, key, 1, &smp2p->ipc_offset); if (ret < 0) { dev_err(dev, "no offset in %s\n", key); return -EINVAL; } ret = of_property_read_u32_index(dev->of_node, key, 2, &smp2p->ipc_bit); if (ret < 0) { dev_err(dev, "no bit in %s\n", key); return -EINVAL; } return 0; } static int qcom_smp2p_probe(struct platform_device *pdev) { struct smp2p_entry *entry; struct device_node *node; struct qcom_smp2p *smp2p; const char *key; int irq; int ret; smp2p = devm_kzalloc(&pdev->dev, sizeof(*smp2p), GFP_KERNEL); if (!smp2p) return -ENOMEM; smp2p->dev = &pdev->dev; INIT_LIST_HEAD(&smp2p->inbound); INIT_LIST_HEAD(&smp2p->outbound); platform_set_drvdata(pdev, smp2p); key = "qcom,smem"; ret = of_property_read_u32_array(pdev->dev.of_node, key, smp2p->smem_items, 2); if (ret) return ret; key = "qcom,local-pid"; ret = of_property_read_u32(pdev->dev.of_node, key, &smp2p->local_pid); if (ret < 0) { dev_err(&pdev->dev, "failed to read %s\n", key); return -EINVAL; } key = "qcom,remote-pid"; ret = of_property_read_u32(pdev->dev.of_node, key, &smp2p->remote_pid); if (ret < 0) { dev_err(&pdev->dev, "failed to read %s\n", key); return -EINVAL; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "unable to acquire smp2p interrupt\n"); return irq; } smp2p->mbox_client.dev = &pdev->dev; smp2p->mbox_client.knows_txdone = true; smp2p->mbox_chan = mbox_request_channel(&smp2p->mbox_client, 0); if (IS_ERR(smp2p->mbox_chan)) { if (PTR_ERR(smp2p->mbox_chan) != -ENODEV) return PTR_ERR(smp2p->mbox_chan); smp2p->mbox_chan = NULL; ret = smp2p_parse_ipc(smp2p); if (ret) return ret; } ret = qcom_smp2p_alloc_outbound_item(smp2p); if (ret < 0) goto release_mbox; for_each_available_child_of_node(pdev->dev.of_node, node) { entry = devm_kzalloc(&pdev->dev, sizeof(*entry), GFP_KERNEL); if (!entry) { ret = -ENOMEM; goto unwind_interfaces; } entry->smp2p = smp2p; spin_lock_init(&entry->lock); ret = of_property_read_string(node, "qcom,entry-name", &entry->name); if (ret < 0) goto unwind_interfaces; if (of_property_read_bool(node, "interrupt-controller")) { ret = qcom_smp2p_inbound_entry(smp2p, entry, node); if (ret < 0) goto unwind_interfaces; list_add(&entry->node, &smp2p->inbound); } else { ret = qcom_smp2p_outbound_entry(smp2p, entry, node); if (ret < 0) goto unwind_interfaces; list_add(&entry->node, &smp2p->outbound); } } /* Kick the outgoing edge after allocating entries */ qcom_smp2p_kick(smp2p); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qcom_smp2p_intr, IRQF_ONESHOT, "smp2p", (void *)smp2p); if (ret) { dev_err(&pdev->dev, "failed to request interrupt\n"); goto unwind_interfaces; } return 0; unwind_interfaces: list_for_each_entry(entry, &smp2p->inbound, node) irq_domain_remove(entry->domain); list_for_each_entry(entry, &smp2p->outbound, node) qcom_smem_state_unregister(entry->state); smp2p->out->valid_entries = 0; release_mbox: mbox_free_channel(smp2p->mbox_chan); return ret; } static int qcom_smp2p_remove(struct platform_device *pdev) { struct qcom_smp2p *smp2p = platform_get_drvdata(pdev); struct smp2p_entry *entry; list_for_each_entry(entry, &smp2p->inbound, node) irq_domain_remove(entry->domain); list_for_each_entry(entry, &smp2p->outbound, node) qcom_smem_state_unregister(entry->state); mbox_free_channel(smp2p->mbox_chan); smp2p->out->valid_entries = 0; return 0; } static const struct of_device_id qcom_smp2p_of_match[] = { { .compatible = "qcom,smp2p" }, {} }; MODULE_DEVICE_TABLE(of, qcom_smp2p_of_match); static struct platform_driver qcom_smp2p_driver = { .probe = qcom_smp2p_probe, .remove = qcom_smp2p_remove, .driver = { .name = "qcom_smp2p", .of_match_table = qcom_smp2p_of_match, }, }; module_platform_driver(qcom_smp2p_driver); MODULE_DESCRIPTION("Qualcomm Shared Memory Point to Point driver"); MODULE_LICENSE("GPL v2");