/* * Cryptographic API. * * Driver for EIP97 AES acceleration. * * Copyright (c) 2016 Ryder Lee * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Some ideas are from atmel-aes.c drivers. */ #include #include "mtk-platform.h" #define AES_QUEUE_SIZE 512 #define AES_BUF_ORDER 2 #define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \ & ~(AES_BLOCK_SIZE - 1)) /* AES command token size */ #define AES_CT_SIZE_ECB 2 #define AES_CT_SIZE_CBC 3 #define AES_CT_CTRL_HDR cpu_to_le32(0x00220000) /* AES-CBC/ECB command token */ #define AES_CMD0 cpu_to_le32(0x05000000) #define AES_CMD1 cpu_to_le32(0x2d060000) #define AES_CMD2 cpu_to_le32(0xe4a63806) /* AES transform information word 0 fields */ #define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0) #define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0) #define AES_TFM_SIZE(x) cpu_to_le32((x) << 8) #define AES_TFM_128BITS cpu_to_le32(0xb << 16) #define AES_TFM_192BITS cpu_to_le32(0xd << 16) #define AES_TFM_256BITS cpu_to_le32(0xf << 16) /* AES transform information word 1 fields */ #define AES_TFM_ECB cpu_to_le32(0x0 << 0) #define AES_TFM_CBC cpu_to_le32(0x1 << 0) #define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* AES flags */ #define AES_FLAGS_MODE_MSK 0x7 #define AES_FLAGS_ECB BIT(0) #define AES_FLAGS_CBC BIT(1) #define AES_FLAGS_ENCRYPT BIT(2) #define AES_FLAGS_BUSY BIT(3) /** * Command token(CT) is a set of hardware instructions that * are used to control engine's processing flow of AES. * * Transform information(TFM) is used to define AES state and * contains all keys and initial vectors. * * The engine requires CT and TFM to do: * - Commands decoding and control of the engine's data path. * - Coordinating hardware data fetch and store operations. * - Result token construction and output. */ struct mtk_aes_ct { __le32 cmd[AES_CT_SIZE_CBC]; }; struct mtk_aes_tfm { __le32 ctrl[2]; __le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE)]; }; struct mtk_aes_reqctx { u64 mode; }; struct mtk_aes_base_ctx { struct mtk_cryp *cryp; u32 keylen; mtk_aes_fn start; struct mtk_aes_ct ct; dma_addr_t ct_dma; struct mtk_aes_tfm tfm; dma_addr_t tfm_dma; __le32 ct_hdr; u32 ct_size; }; struct mtk_aes_ctx { struct mtk_aes_base_ctx base; }; struct mtk_aes_drv { struct list_head dev_list; /* Device list lock */ spinlock_t lock; }; static struct mtk_aes_drv mtk_aes = { .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list), .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock), }; static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset) { return readl_relaxed(cryp->base + offset); } static inline void mtk_aes_write(struct mtk_cryp *cryp, u32 offset, u32 value) { writel_relaxed(value, cryp->base + offset); } static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx) { struct mtk_cryp *cryp = NULL; struct mtk_cryp *tmp; spin_lock_bh(&mtk_aes.lock); if (!ctx->cryp) { list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) { cryp = tmp; break; } ctx->cryp = cryp; } else { cryp = ctx->cryp; } spin_unlock_bh(&mtk_aes.lock); return cryp; } static inline size_t mtk_aes_padlen(size_t len) { len &= AES_BLOCK_SIZE - 1; return len ? AES_BLOCK_SIZE - len : 0; } static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len, struct mtk_aes_dma *dma) { int nents; if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) return false; for (nents = 0; sg; sg = sg_next(sg), ++nents) { if (!IS_ALIGNED(sg->offset, sizeof(u32))) return false; if (len <= sg->length) { if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) return false; dma->nents = nents + 1; dma->remainder = sg->length - len; sg->length = len; return true; } if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) return false; len -= sg->length; } return false; } /* Initialize and map transform information of AES */ static int mtk_aes_info_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, size_t len) { struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); struct mtk_aes_base_ctx *ctx = aes->ctx; ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len); ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len); ctx->ct.cmd[1] = AES_CMD1; if (aes->flags & AES_FLAGS_ENCRYPT) ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT; else ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN; if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128)) ctx->tfm.ctrl[0] |= AES_TFM_128BITS; else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256)) ctx->tfm.ctrl[0] |= AES_TFM_256BITS; else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_192)) ctx->tfm.ctrl[0] |= AES_TFM_192BITS; if (aes->flags & AES_FLAGS_CBC) { const u32 *iv = (const u32 *)req->info; u32 *iv_state = ctx->tfm.state + ctx->keylen; int i; ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE)); ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV; for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++) iv_state[i] = cpu_to_le32(iv[i]); ctx->ct.cmd[2] = AES_CMD2; ctx->ct_size = AES_CT_SIZE_CBC; } else if (aes->flags & AES_FLAGS_ECB) { ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen); ctx->tfm.ctrl[1] = AES_TFM_ECB; ctx->ct_size = AES_CT_SIZE_ECB; } ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) return -EINVAL; ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma))) { dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm), DMA_TO_DEVICE); return -EINVAL; } return 0; } /* * Write descriptors for processing. This will configure the engine, load * the transform information and then start the packet processing. */ static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) { struct mtk_ring *ring = cryp->ring[aes->id]; struct mtk_desc *cmd = NULL, *res = NULL; struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg; u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len; int nents; /* Write command descriptors */ for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) { cmd = ring->cmd_base + ring->cmd_pos; cmd->hdr = MTK_DESC_BUF_LEN(ssg->length); cmd->buf = cpu_to_le32(sg_dma_address(ssg)); if (nents == 0) { cmd->hdr |= MTK_DESC_FIRST | MTK_DESC_CT_LEN(aes->ctx->ct_size); cmd->ct = cpu_to_le32(aes->ctx->ct_dma); cmd->ct_hdr = aes->ctx->ct_hdr; cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma); } if (++ring->cmd_pos == MTK_DESC_NUM) ring->cmd_pos = 0; } cmd->hdr |= MTK_DESC_LAST; /* Prepare result descriptors */ for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) { res = ring->res_base + ring->res_pos; res->hdr = MTK_DESC_BUF_LEN(dsg->length); res->buf = cpu_to_le32(sg_dma_address(dsg)); if (nents == 0) res->hdr |= MTK_DESC_FIRST; if (++ring->res_pos == MTK_DESC_NUM) ring->res_pos = 0; } res->hdr |= MTK_DESC_LAST; /* * Make sure that all changes to the DMA ring are done before we * start engine. */ wmb(); /* Start DMA transfer */ mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen)); mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen)); return -EINPROGRESS; } static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma) { struct scatterlist *sg = dma->sg; int nents = dma->nents; if (!dma->remainder) return; while (--nents > 0 && sg) sg = sg_next(sg); if (!sg) return; sg->length += dma->remainder; } static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, struct scatterlist *src, struct scatterlist *dst, size_t len) { size_t padlen = 0; bool src_aligned, dst_aligned; aes->total = len; aes->src.sg = src; aes->dst.sg = dst; aes->real_dst = dst; src_aligned = mtk_aes_check_aligned(src, len, &aes->src); if (src == dst) dst_aligned = src_aligned; else dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); if (!src_aligned || !dst_aligned) { padlen = mtk_aes_padlen(len); if (len + padlen > AES_BUF_SIZE) return -ENOMEM; if (!src_aligned) { sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); aes->src.sg = &aes->aligned_sg; aes->src.nents = 1; aes->src.remainder = 0; } if (!dst_aligned) { aes->dst.sg = &aes->aligned_sg; aes->dst.nents = 1; aes->dst.remainder = 0; } sg_init_table(&aes->aligned_sg, 1); sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen); } if (aes->src.sg == aes->dst.sg) { aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, aes->src.nents, DMA_BIDIRECTIONAL); aes->dst.sg_len = aes->src.sg_len; if (unlikely(!aes->src.sg_len)) return -EFAULT; } else { aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, aes->src.nents, DMA_TO_DEVICE); if (unlikely(!aes->src.sg_len)) return -EFAULT; aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg, aes->dst.nents, DMA_FROM_DEVICE); if (unlikely(!aes->dst.sg_len)) { dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, DMA_TO_DEVICE); return -EFAULT; } } return mtk_aes_info_map(cryp, aes, len + padlen); } static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id, struct crypto_async_request *new_areq) { struct mtk_aes_rec *aes = cryp->aes[id]; struct crypto_async_request *areq, *backlog; struct mtk_aes_base_ctx *ctx; unsigned long flags; int ret = 0; spin_lock_irqsave(&aes->lock, flags); if (new_areq) ret = crypto_enqueue_request(&aes->queue, new_areq); if (aes->flags & AES_FLAGS_BUSY) { spin_unlock_irqrestore(&aes->lock, flags); return ret; } backlog = crypto_get_backlog(&aes->queue); areq = crypto_dequeue_request(&aes->queue); if (areq) aes->flags |= AES_FLAGS_BUSY; spin_unlock_irqrestore(&aes->lock, flags); if (!areq) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); ctx = crypto_tfm_ctx(areq->tfm); aes->areq = areq; aes->ctx = ctx; return ctx->start(cryp, aes); } static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) { struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); int err; rctx = ablkcipher_request_ctx(req); rctx->mode &= AES_FLAGS_MODE_MSK; aes->flags = (aes->flags & ~AES_FLAGS_MODE_MSK) | rctx->mode; err = mtk_aes_map(cryp, aes, req->src, req->dst, req->nbytes); if (err) return err; return mtk_aes_xmit(cryp, aes); } static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) { struct mtk_aes_base_ctx *ctx = aes->ctx; dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct), DMA_TO_DEVICE); dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm), DMA_TO_DEVICE); if (aes->src.sg == aes->dst.sg) { dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, DMA_BIDIRECTIONAL); if (aes->src.sg != &aes->aligned_sg) mtk_aes_restore_sg(&aes->src); } else { dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents, DMA_FROM_DEVICE); if (aes->dst.sg != &aes->aligned_sg) mtk_aes_restore_sg(&aes->dst); dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, DMA_TO_DEVICE); if (aes->src.sg != &aes->aligned_sg) mtk_aes_restore_sg(&aes->src); } if (aes->dst.sg == &aes->aligned_sg) sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst), aes->buf, aes->total); } static inline void mtk_aes_complete(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) { aes->flags &= ~AES_FLAGS_BUSY; aes->areq->complete(aes->areq, 0); /* Handle new request */ mtk_aes_handle_queue(cryp, aes->id, NULL); } /* Check and set the AES key to transform state buffer */ static int mtk_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, u32 keylen) { struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm); const u32 *key_tmp = (const u32 *)key; u32 *key_state = ctx->tfm.state; int i; if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) { crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->keylen = SIZE_IN_WORDS(keylen); for (i = 0; i < ctx->keylen; i++) key_state[i] = cpu_to_le32(key_tmp[i]); return 0; } static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode) { struct mtk_aes_base_ctx *ctx; struct mtk_aes_reqctx *rctx; ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx = ablkcipher_request_ctx(req); rctx->mode = mode; return mtk_aes_handle_queue(ctx->cryp, !(mode & AES_FLAGS_ENCRYPT), &req->base); } static int mtk_ecb_encrypt(struct ablkcipher_request *req) { return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB); } static int mtk_ecb_decrypt(struct ablkcipher_request *req) { return mtk_aes_crypt(req, AES_FLAGS_ECB); } static int mtk_cbc_encrypt(struct ablkcipher_request *req) { return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); } static int mtk_cbc_decrypt(struct ablkcipher_request *req) { return mtk_aes_crypt(req, AES_FLAGS_CBC); } static int mtk_aes_cra_init(struct crypto_tfm *tfm) { struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); struct mtk_cryp *cryp = NULL; cryp = mtk_aes_find_dev(&ctx->base); if (!cryp) { pr_err("can't find crypto device\n"); return -ENODEV; } tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); ctx->base.start = mtk_aes_start; return 0; } static struct crypto_alg aes_algs[] = { { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-mtk", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_init = mtk_aes_cra_init, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mtk_aes_ctx), .cra_alignmask = 15, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mtk_aes_setkey, .encrypt = mtk_cbc_encrypt, .decrypt = mtk_cbc_decrypt, .ivsize = AES_BLOCK_SIZE, } }, { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-mtk", .cra_priority = 400, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_init = mtk_aes_cra_init, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mtk_aes_ctx), .cra_alignmask = 15, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mtk_aes_setkey, .encrypt = mtk_ecb_encrypt, .decrypt = mtk_ecb_decrypt, } }, }; static void mtk_aes_enc_task(unsigned long data) { struct mtk_cryp *cryp = (struct mtk_cryp *)data; struct mtk_aes_rec *aes = cryp->aes[0]; mtk_aes_unmap(cryp, aes); mtk_aes_complete(cryp, aes); } static void mtk_aes_dec_task(unsigned long data) { struct mtk_cryp *cryp = (struct mtk_cryp *)data; struct mtk_aes_rec *aes = cryp->aes[1]; mtk_aes_unmap(cryp, aes); mtk_aes_complete(cryp, aes); } static irqreturn_t mtk_aes_enc_irq(int irq, void *dev_id) { struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; struct mtk_aes_rec *aes = cryp->aes[0]; u32 val = mtk_aes_read(cryp, RDR_STAT(RING0)); mtk_aes_write(cryp, RDR_STAT(RING0), val); if (likely(AES_FLAGS_BUSY & aes->flags)) { mtk_aes_write(cryp, RDR_PROC_COUNT(RING0), MTK_CNT_RST); mtk_aes_write(cryp, RDR_THRESH(RING0), MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); tasklet_schedule(&aes->task); } else { dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); } return IRQ_HANDLED; } static irqreturn_t mtk_aes_dec_irq(int irq, void *dev_id) { struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; struct mtk_aes_rec *aes = cryp->aes[1]; u32 val = mtk_aes_read(cryp, RDR_STAT(RING1)); mtk_aes_write(cryp, RDR_STAT(RING1), val); if (likely(AES_FLAGS_BUSY & aes->flags)) { mtk_aes_write(cryp, RDR_PROC_COUNT(RING1), MTK_CNT_RST); mtk_aes_write(cryp, RDR_THRESH(RING1), MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); tasklet_schedule(&aes->task); } else { dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); } return IRQ_HANDLED; } /* * The purpose of creating encryption and decryption records is * to process outbound/inbound data in parallel, it can improve * performance in most use cases, such as IPSec VPN, especially * under heavy network traffic. */ static int mtk_aes_record_init(struct mtk_cryp *cryp) { struct mtk_aes_rec **aes = cryp->aes; int i, err = -ENOMEM; for (i = 0; i < MTK_REC_NUM; i++) { aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL); if (!aes[i]) goto err_cleanup; aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL, AES_BUF_ORDER); if (!aes[i]->buf) goto err_cleanup; aes[i]->id = i; spin_lock_init(&aes[i]->lock); crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE); } tasklet_init(&aes[0]->task, mtk_aes_enc_task, (unsigned long)cryp); tasklet_init(&aes[1]->task, mtk_aes_dec_task, (unsigned long)cryp); return 0; err_cleanup: for (; i--; ) { free_page((unsigned long)aes[i]->buf); kfree(aes[i]); } return err; } static void mtk_aes_record_free(struct mtk_cryp *cryp) { int i; for (i = 0; i < MTK_REC_NUM; i++) { tasklet_kill(&cryp->aes[i]->task); free_page((unsigned long)cryp->aes[i]->buf); kfree(cryp->aes[i]); } } static void mtk_aes_unregister_algs(void) { int i; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) crypto_unregister_alg(&aes_algs[i]); } static int mtk_aes_register_algs(void) { int err, i; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { err = crypto_register_alg(&aes_algs[i]); if (err) goto err_aes_algs; } return 0; err_aes_algs: for (; i--; ) crypto_unregister_alg(&aes_algs[i]); return err; } int mtk_cipher_alg_register(struct mtk_cryp *cryp) { int ret; INIT_LIST_HEAD(&cryp->aes_list); /* Initialize two cipher records */ ret = mtk_aes_record_init(cryp); if (ret) goto err_record; /* Ring0 is use by encryption record */ ret = devm_request_irq(cryp->dev, cryp->irq[RING0], mtk_aes_enc_irq, IRQF_TRIGGER_LOW, "mtk-aes", cryp); if (ret) { dev_err(cryp->dev, "unable to request AES encryption irq.\n"); goto err_res; } /* Ring1 is use by decryption record */ ret = devm_request_irq(cryp->dev, cryp->irq[RING1], mtk_aes_dec_irq, IRQF_TRIGGER_LOW, "mtk-aes", cryp); if (ret) { dev_err(cryp->dev, "unable to request AES decryption irq.\n"); goto err_res; } /* Enable ring0 and ring1 interrupt */ mtk_aes_write(cryp, AIC_ENABLE_SET(RING0), MTK_IRQ_RDR0); mtk_aes_write(cryp, AIC_ENABLE_SET(RING1), MTK_IRQ_RDR1); spin_lock(&mtk_aes.lock); list_add_tail(&cryp->aes_list, &mtk_aes.dev_list); spin_unlock(&mtk_aes.lock); ret = mtk_aes_register_algs(); if (ret) goto err_algs; return 0; err_algs: spin_lock(&mtk_aes.lock); list_del(&cryp->aes_list); spin_unlock(&mtk_aes.lock); err_res: mtk_aes_record_free(cryp); err_record: dev_err(cryp->dev, "mtk-aes initialization failed.\n"); return ret; } void mtk_cipher_alg_release(struct mtk_cryp *cryp) { spin_lock(&mtk_aes.lock); list_del(&cryp->aes_list); spin_unlock(&mtk_aes.lock); mtk_aes_unregister_algs(); mtk_aes_record_free(cryp); }