#ifndef MY_ABC_HERE #define MY_ABC_HERE #endif // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. * Copyright (C) 2014 Fujitsu. All rights reserved. */ #include #include #include #include #include #include "async-thread.h" #include "ctree.h" enum { WORK_DONE_BIT, WORK_ORDER_DONE_BIT, WORK_HIGH_PRIO_BIT, }; #define NO_THRESHOLD (-1) #define DFT_THRESHOLD (32) struct __btrfs_workqueue { struct workqueue_struct *normal_wq; /* File system this workqueue services */ struct btrfs_fs_info *fs_info; /* List head pointing to ordered work list */ struct list_head ordered_list; /* Spinlock for ordered_list */ spinlock_t list_lock; /* Thresholding related variants */ atomic_t pending; /* Up limit of concurrency workers */ int limit_active; /* Current number of concurrency workers */ int current_active; /* Threshold to change current_active */ int thresh; unsigned int count; spinlock_t thres_lock; }; struct btrfs_workqueue { struct __btrfs_workqueue *normal; struct __btrfs_workqueue *high; }; struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct __btrfs_workqueue *wq) { return wq->fs_info; } struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work) { return work->wq->fs_info; } bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq) { /* * We could compare wq->normal->pending with num_online_cpus() * to support "thresh == NO_THRESHOLD" case, but it requires * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's * postpone it until someone needs the support of that case. */ if (wq->normal->thresh == NO_THRESHOLD) return false; return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2; } static struct __btrfs_workqueue * __btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name, unsigned int flags, int limit_active, int thresh) { struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL); if (!ret) return NULL; ret->fs_info = fs_info; ret->limit_active = limit_active; atomic_set(&ret->pending, 0); if (thresh == 0) thresh = DFT_THRESHOLD; /* For low threshold, disabling threshold is a better choice */ if (thresh < DFT_THRESHOLD) { ret->current_active = limit_active; ret->thresh = NO_THRESHOLD; } else { /* * For threshold-able wq, let its concurrency grow on demand. * Use minimal max_active at alloc time to reduce resource * usage. */ ret->current_active = 1; ret->thresh = thresh; } if (flags & WQ_HIGHPRI) ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags, ret->current_active, name); else ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active, name); if (!ret->normal_wq) { kfree(ret); return NULL; } INIT_LIST_HEAD(&ret->ordered_list); spin_lock_init(&ret->list_lock); spin_lock_init(&ret->thres_lock); trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI); return ret; } static inline void __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq); struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name, unsigned int flags, int limit_active, int thresh) { struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL); if (!ret) return NULL; ret->normal = __btrfs_alloc_workqueue(fs_info, name, flags & ~WQ_HIGHPRI, limit_active, thresh); if (!ret->normal) { kfree(ret); return NULL; } if (flags & WQ_HIGHPRI) { ret->high = __btrfs_alloc_workqueue(fs_info, name, flags, limit_active, thresh); if (!ret->high) { __btrfs_destroy_workqueue(ret->normal); kfree(ret); return NULL; } } return ret; } #ifdef MY_ABC_HERE struct btrfs_workqueue *btrfs_alloc_workqueue_with_sysfs( struct btrfs_fs_info *fs_info, const char *name, unsigned int flags, int limit_active, int thresh) { /* 32 for sid, 12 for prefix and postfix in __btrfs_alloc_workqueue */ char trimmed_name[21] = {0}; char name_sid[WQ_NAME_LEN] = {0}; BUILD_BUG_ON((WQ_NAME_LEN - 44) < 20); snprintf(trimmed_name, sizeof(trimmed_name), "%s", name); snprintf(name_sid, sizeof(name_sid), "%s-%s", trimmed_name, fs_info->sb->s_id); return btrfs_alloc_workqueue(fs_info, name_sid, flags | WQ_SYSFS, limit_active, thresh); } #endif /* MY_ABC_HERE */ /* * Hook for threshold which will be called in btrfs_queue_work. * This hook WILL be called in IRQ handler context, * so workqueue_set_max_active MUST NOT be called in this hook */ static inline void thresh_queue_hook(struct __btrfs_workqueue *wq) { if (wq->thresh == NO_THRESHOLD) return; atomic_inc(&wq->pending); } /* * Hook for threshold which will be called before executing the work, * This hook is called in kthread content. * So workqueue_set_max_active is called here. */ static inline void thresh_exec_hook(struct __btrfs_workqueue *wq) { int new_current_active; long pending; int need_change = 0; if (wq->thresh == NO_THRESHOLD) return; atomic_dec(&wq->pending); spin_lock(&wq->thres_lock); /* * Use wq->count to limit the calling frequency of * workqueue_set_max_active. */ wq->count++; wq->count %= (wq->thresh / 4); if (!wq->count) goto out; new_current_active = wq->current_active; /* * pending may be changed later, but it's OK since we really * don't need it so accurate to calculate new_max_active. */ pending = atomic_read(&wq->pending); if (pending > wq->thresh) new_current_active++; if (pending < wq->thresh / 2) new_current_active--; new_current_active = clamp_val(new_current_active, 1, wq->limit_active); if (new_current_active != wq->current_active) { need_change = 1; wq->current_active = new_current_active; } out: spin_unlock(&wq->thres_lock); if (need_change) { workqueue_set_max_active(wq->normal_wq, wq->current_active); } } static void run_ordered_work(struct __btrfs_workqueue *wq, struct btrfs_work *self) { struct list_head *list = &wq->ordered_list; struct btrfs_work *work; spinlock_t *lock = &wq->list_lock; unsigned long flags; bool free_self = false; while (1) { spin_lock_irqsave(lock, flags); if (list_empty(list)) break; work = list_entry(list->next, struct btrfs_work, ordered_list); if (!test_bit(WORK_DONE_BIT, &work->flags)) break; /* * we are going to call the ordered done function, but * we leave the work item on the list as a barrier so * that later work items that are done don't have their * functions called before this one returns */ if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) break; trace_btrfs_ordered_sched(work); spin_unlock_irqrestore(lock, flags); work->ordered_func(work); /* now take the lock again and drop our item from the list */ spin_lock_irqsave(lock, flags); list_del(&work->ordered_list); spin_unlock_irqrestore(lock, flags); if (work == self) { /* * This is the work item that the worker is currently * executing. * * The kernel workqueue code guarantees non-reentrancy * of work items. I.e., if a work item with the same * address and work function is queued twice, the second * execution is blocked until the first one finishes. A * work item may be freed and recycled with the same * work function; the workqueue code assumes that the * original work item cannot depend on the recycled work * item in that case (see find_worker_executing_work()). * * Note that different types of Btrfs work can depend on * each other, and one type of work on one Btrfs * filesystem may even depend on the same type of work * on another Btrfs filesystem via, e.g., a loop device. * Therefore, we must not allow the current work item to * be recycled until we are really done, otherwise we * break the above assumption and can deadlock. */ free_self = true; } else { /* * We don't want to call the ordered free functions with * the lock held. */ work->ordered_free(work); /* NB: work must not be dereferenced past this point. */ trace_btrfs_all_work_done(wq->fs_info, work); } } spin_unlock_irqrestore(lock, flags); if (free_self) { self->ordered_free(self); /* NB: self must not be dereferenced past this point. */ trace_btrfs_all_work_done(wq->fs_info, self); } } static void btrfs_work_helper(struct work_struct *normal_work) { struct btrfs_work *work = container_of(normal_work, struct btrfs_work, normal_work); struct __btrfs_workqueue *wq; int need_order = 0; /* * We should not touch things inside work in the following cases: * 1) after work->func() if it has no ordered_free * Since the struct is freed in work->func(). * 2) after setting WORK_DONE_BIT * The work may be freed in other threads almost instantly. * So we save the needed things here. */ if (work->ordered_func) need_order = 1; wq = work->wq; trace_btrfs_work_sched(work); thresh_exec_hook(wq); work->func(work); if (need_order) { set_bit(WORK_DONE_BIT, &work->flags); run_ordered_work(wq, work); } else { /* NB: work must not be dereferenced past this point. */ trace_btrfs_all_work_done(wq->fs_info, work); } } void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func, btrfs_func_t ordered_func, btrfs_func_t ordered_free) { work->func = func; work->ordered_func = ordered_func; work->ordered_free = ordered_free; INIT_WORK(&work->normal_work, btrfs_work_helper); INIT_LIST_HEAD(&work->ordered_list); work->flags = 0; } static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq, struct btrfs_work *work) { unsigned long flags; work->wq = wq; thresh_queue_hook(wq); if (work->ordered_func) { spin_lock_irqsave(&wq->list_lock, flags); list_add_tail(&work->ordered_list, &wq->ordered_list); spin_unlock_irqrestore(&wq->list_lock, flags); } trace_btrfs_work_queued(work); queue_work(wq->normal_wq, &work->normal_work); } void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work) { struct __btrfs_workqueue *dest_wq; if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high) dest_wq = wq->high; else dest_wq = wq->normal; __btrfs_queue_work(dest_wq, work); } static inline void __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq) { destroy_workqueue(wq->normal_wq); trace_btrfs_workqueue_destroy(wq); kfree(wq); } void btrfs_destroy_workqueue(struct btrfs_workqueue *wq) { if (!wq) return; if (wq->high) __btrfs_destroy_workqueue(wq->high); __btrfs_destroy_workqueue(wq->normal); kfree(wq); } void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active) { if (!wq) return; wq->normal->limit_active = limit_active; if (wq->high) wq->high->limit_active = limit_active; } void btrfs_set_work_high_priority(struct btrfs_work *work) { set_bit(WORK_HIGH_PRIO_BIT, &work->flags); } void btrfs_flush_workqueue(struct btrfs_workqueue *wq) { if (wq->high) flush_workqueue(wq->high->normal_wq); flush_workqueue(wq->normal->normal_wq); }