/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/export.h> #include <net/ipv6.h> #include <net/inet6_hashtables.h> #include <net/addrconf.h> #include "rds.h" #include "loop.h" #define RDS_CONNECTION_HASH_BITS 12 #define RDS_CONNECTION_HASH_ENTRIES (1 << RDS_CONNECTION_HASH_BITS) #define RDS_CONNECTION_HASH_MASK (RDS_CONNECTION_HASH_ENTRIES - 1) /* converting this to RCU is a chore for another day.. */ static DEFINE_SPINLOCK(rds_conn_lock); static unsigned long rds_conn_count; static struct hlist_head rds_conn_hash[RDS_CONNECTION_HASH_ENTRIES]; static struct kmem_cache *rds_conn_slab; static struct hlist_head *rds_conn_bucket(const struct in6_addr *laddr, const struct in6_addr *faddr) { static u32 rds6_hash_secret __read_mostly; static u32 rds_hash_secret __read_mostly; u32 lhash, fhash, hash; net_get_random_once(&rds_hash_secret, sizeof(rds_hash_secret)); net_get_random_once(&rds6_hash_secret, sizeof(rds6_hash_secret)); lhash = (__force u32)laddr->s6_addr32[3]; #if IS_ENABLED(CONFIG_IPV6) fhash = __ipv6_addr_jhash(faddr, rds6_hash_secret); #else fhash = (__force u32)faddr->s6_addr32[3]; #endif hash = __inet_ehashfn(lhash, 0, fhash, 0, rds_hash_secret); return &rds_conn_hash[hash & RDS_CONNECTION_HASH_MASK]; } #define rds_conn_info_set(var, test, suffix) do { \ if (test) \ var |= RDS_INFO_CONNECTION_FLAG_##suffix; \ } while (0) /* rcu read lock must be held or the connection spinlock */ static struct rds_connection *rds_conn_lookup(struct net *net, struct hlist_head *head, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, int dev_if) { struct rds_connection *conn, *ret = NULL; hlist_for_each_entry_rcu(conn, head, c_hash_node) { if (ipv6_addr_equal(&conn->c_faddr, faddr) && ipv6_addr_equal(&conn->c_laddr, laddr) && conn->c_trans == trans && conn->c_tos == tos && net == rds_conn_net(conn) && conn->c_dev_if == dev_if) { ret = conn; break; } } rdsdebug("returning conn %p for %pI6c -> %pI6c\n", ret, laddr, faddr); return ret; } /* * This is called by transports as they're bringing down a connection. * It clears partial message state so that the transport can start sending * and receiving over this connection again in the future. It is up to * the transport to have serialized this call with its send and recv. */ static void rds_conn_path_reset(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; rdsdebug("connection %pI6c to %pI6c reset\n", &conn->c_laddr, &conn->c_faddr); rds_stats_inc(s_conn_reset); rds_send_path_reset(cp); cp->cp_flags = 0; /* Do not clear next_rx_seq here, else we cannot distinguish * retransmitted packets from new packets, and will hand all * of them to the application. That is not consistent with the * reliability guarantees of RDS. */ } static void __rds_conn_path_init(struct rds_connection *conn, struct rds_conn_path *cp, bool is_outgoing) { spin_lock_init(&cp->cp_lock); cp->cp_next_tx_seq = 1; init_waitqueue_head(&cp->cp_waitq); INIT_LIST_HEAD(&cp->cp_send_queue); INIT_LIST_HEAD(&cp->cp_retrans); cp->cp_conn = conn; atomic_set(&cp->cp_state, RDS_CONN_DOWN); cp->cp_send_gen = 0; cp->cp_reconnect_jiffies = 0; cp->cp_conn->c_proposed_version = RDS_PROTOCOL_VERSION; INIT_DELAYED_WORK(&cp->cp_send_w, rds_send_worker); INIT_DELAYED_WORK(&cp->cp_recv_w, rds_recv_worker); INIT_DELAYED_WORK(&cp->cp_conn_w, rds_connect_worker); INIT_WORK(&cp->cp_down_w, rds_shutdown_worker); mutex_init(&cp->cp_cm_lock); cp->cp_flags = 0; } /* * There is only every one 'conn' for a given pair of addresses in the * system at a time. They contain messages to be retransmitted and so * span the lifetime of the actual underlying transport connections. * * For now they are not garbage collected once they're created. They * are torn down as the module is removed, if ever. */ static struct rds_connection *__rds_conn_create(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, gfp_t gfp, u8 tos, int is_outgoing, int dev_if) { struct rds_connection *conn, *parent = NULL; struct hlist_head *head = rds_conn_bucket(laddr, faddr); struct rds_transport *loop_trans; unsigned long flags; int ret, i; int npaths = (trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); rcu_read_lock(); conn = rds_conn_lookup(net, head, laddr, faddr, trans, tos, dev_if); if (conn && conn->c_loopback && conn->c_trans != &rds_loop_transport && ipv6_addr_equal(laddr, faddr) && !is_outgoing) { /* This is a looped back IB connection, and we're * called by the code handling the incoming connect. * We need a second connection object into which we * can stick the other QP. */ parent = conn; conn = parent->c_passive; } rcu_read_unlock(); if (conn) goto out; conn = kmem_cache_zalloc(rds_conn_slab, gfp); if (!conn) { conn = ERR_PTR(-ENOMEM); goto out; } conn->c_path = kcalloc(npaths, sizeof(struct rds_conn_path), gfp); if (!conn->c_path) { kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(-ENOMEM); goto out; } INIT_HLIST_NODE(&conn->c_hash_node); conn->c_laddr = *laddr; conn->c_isv6 = !ipv6_addr_v4mapped(laddr); conn->c_faddr = *faddr; conn->c_dev_if = dev_if; conn->c_tos = tos; #if IS_ENABLED(CONFIG_IPV6) /* If the local address is link local, set c_bound_if to be the * index used for this connection. Otherwise, set it to 0 as * the socket is not bound to an interface. c_bound_if is used * to look up a socket when a packet is received */ if (ipv6_addr_type(laddr) & IPV6_ADDR_LINKLOCAL) conn->c_bound_if = dev_if; else #endif conn->c_bound_if = 0; rds_conn_net_set(conn, net); ret = rds_cong_get_maps(conn); if (ret) { kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(ret); goto out; } /* * This is where a connection becomes loopback. If *any* RDS sockets * can bind to the destination address then we'd rather the messages * flow through loopback rather than either transport. */ loop_trans = rds_trans_get_preferred(net, faddr, conn->c_dev_if); if (loop_trans) { rds_trans_put(loop_trans); conn->c_loopback = 1; if (is_outgoing && trans->t_prefer_loopback) { /* "outgoing" connection - and the transport * says it wants the connection handled by the * loopback transport. This is what TCP does. */ trans = &rds_loop_transport; } } conn->c_trans = trans; init_waitqueue_head(&conn->c_hs_waitq); for (i = 0; i < npaths; i++) { __rds_conn_path_init(conn, &conn->c_path[i], is_outgoing); conn->c_path[i].cp_index = i; } rcu_read_lock(); if (rds_destroy_pending(conn)) ret = -ENETDOWN; else ret = trans->conn_alloc(conn, GFP_ATOMIC); if (ret) { rcu_read_unlock(); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = ERR_PTR(ret); goto out; } rdsdebug("allocated conn %p for %pI6c -> %pI6c over %s %s\n", conn, laddr, faddr, strnlen(trans->t_name, sizeof(trans->t_name)) ? trans->t_name : "[unknown]", is_outgoing ? "(outgoing)" : ""); /* * Since we ran without holding the conn lock, someone could * have created the same conn (either normal or passive) in the * interim. We check while holding the lock. If we won, we complete * init and return our conn. If we lost, we rollback and return the * other one. */ spin_lock_irqsave(&rds_conn_lock, flags); if (parent) { /* Creating passive conn */ if (parent->c_passive) { trans->conn_free(conn->c_path[0].cp_transport_data); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = parent->c_passive; } else { parent->c_passive = conn; rds_cong_add_conn(conn); rds_conn_count++; } } else { /* Creating normal conn */ struct rds_connection *found; found = rds_conn_lookup(net, head, laddr, faddr, trans, tos, dev_if); if (found) { struct rds_conn_path *cp; int i; for (i = 0; i < npaths; i++) { cp = &conn->c_path[i]; /* The ->conn_alloc invocation may have * allocated resource for all paths, so all * of them may have to be freed here. */ if (cp->cp_transport_data) trans->conn_free(cp->cp_transport_data); } kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); conn = found; } else { conn->c_my_gen_num = rds_gen_num; conn->c_peer_gen_num = 0; hlist_add_head_rcu(&conn->c_hash_node, head); rds_cong_add_conn(conn); rds_conn_count++; } } spin_unlock_irqrestore(&rds_conn_lock, flags); rcu_read_unlock(); out: return conn; } struct rds_connection *rds_conn_create(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if) { return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 0, dev_if); } EXPORT_SYMBOL_GPL(rds_conn_create); struct rds_connection *rds_conn_create_outgoing(struct net *net, const struct in6_addr *laddr, const struct in6_addr *faddr, struct rds_transport *trans, u8 tos, gfp_t gfp, int dev_if) { return __rds_conn_create(net, laddr, faddr, trans, gfp, tos, 1, dev_if); } EXPORT_SYMBOL_GPL(rds_conn_create_outgoing); void rds_conn_shutdown(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; /* shut it down unless it's down already */ if (!rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_DOWN)) { /* * Quiesce the connection mgmt handlers before we start tearing * things down. We don't hold the mutex for the entire * duration of the shutdown operation, else we may be * deadlocking with the CM handler. Instead, the CM event * handler is supposed to check for state DISCONNECTING */ mutex_lock(&cp->cp_cm_lock); if (!rds_conn_path_transition(cp, RDS_CONN_UP, RDS_CONN_DISCONNECTING) && !rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_DISCONNECTING)) { rds_conn_path_error(cp, "shutdown called in state %d\n", atomic_read(&cp->cp_state)); mutex_unlock(&cp->cp_cm_lock); return; } mutex_unlock(&cp->cp_cm_lock); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); wait_event(cp->cp_waitq, !test_bit(RDS_RECV_REFILL, &cp->cp_flags)); conn->c_trans->conn_path_shutdown(cp); rds_conn_path_reset(cp); if (!rds_conn_path_transition(cp, RDS_CONN_DISCONNECTING, RDS_CONN_DOWN) && !rds_conn_path_transition(cp, RDS_CONN_ERROR, RDS_CONN_DOWN)) { /* This can happen - eg when we're in the middle of tearing * down the connection, and someone unloads the rds module. * Quite reproducible with loopback connections. * Mostly harmless. * * Note that this also happens with rds-tcp because * we could have triggered rds_conn_path_drop in irq * mode from rds_tcp_state change on the receipt of * a FIN, thus we need to recheck for RDS_CONN_ERROR * here. */ rds_conn_path_error(cp, "%s: failed to transition " "to state DOWN, current state " "is %d\n", __func__, atomic_read(&cp->cp_state)); return; } } /* Then reconnect if it's still live. * The passive side of an IB loopback connection is never added * to the conn hash, so we never trigger a reconnect on this * conn - the reconnect is always triggered by the active peer. */ cancel_delayed_work_sync(&cp->cp_conn_w); rcu_read_lock(); if (!hlist_unhashed(&conn->c_hash_node)) { rcu_read_unlock(); rds_queue_reconnect(cp); } else { rcu_read_unlock(); } } /* destroy a single rds_conn_path. rds_conn_destroy() iterates over * all paths using rds_conn_path_destroy() */ static void rds_conn_path_destroy(struct rds_conn_path *cp) { struct rds_message *rm, *rtmp; if (!cp->cp_transport_data) return; /* make sure lingering queued work won't try to ref the conn */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); rds_conn_path_drop(cp, true); flush_work(&cp->cp_down_w); /* tear down queued messages */ list_for_each_entry_safe(rm, rtmp, &cp->cp_send_queue, m_conn_item) { list_del_init(&rm->m_conn_item); BUG_ON(!list_empty(&rm->m_sock_item)); rds_message_put(rm); } if (cp->cp_xmit_rm) rds_message_put(cp->cp_xmit_rm); WARN_ON(delayed_work_pending(&cp->cp_send_w)); WARN_ON(delayed_work_pending(&cp->cp_recv_w)); WARN_ON(delayed_work_pending(&cp->cp_conn_w)); WARN_ON(work_pending(&cp->cp_down_w)); cp->cp_conn->c_trans->conn_free(cp->cp_transport_data); } /* * Stop and free a connection. * * This can only be used in very limited circumstances. It assumes that once * the conn has been shutdown that no one else is referencing the connection. * We can only ensure this in the rmmod path in the current code. */ void rds_conn_destroy(struct rds_connection *conn) { unsigned long flags; int i; struct rds_conn_path *cp; int npaths = (conn->c_trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); rdsdebug("freeing conn %p for %pI4 -> " "%pI4\n", conn, &conn->c_laddr, &conn->c_faddr); /* Ensure conn will not be scheduled for reconnect */ spin_lock_irq(&rds_conn_lock); hlist_del_init_rcu(&conn->c_hash_node); spin_unlock_irq(&rds_conn_lock); synchronize_rcu(); /* shut the connection down */ for (i = 0; i < npaths; i++) { cp = &conn->c_path[i]; rds_conn_path_destroy(cp); BUG_ON(!list_empty(&cp->cp_retrans)); } /* * The congestion maps aren't freed up here. They're * freed by rds_cong_exit() after all the connections * have been freed. */ rds_cong_remove_conn(conn); kfree(conn->c_path); kmem_cache_free(rds_conn_slab, conn); spin_lock_irqsave(&rds_conn_lock, flags); rds_conn_count--; spin_unlock_irqrestore(&rds_conn_lock, flags); } EXPORT_SYMBOL_GPL(rds_conn_destroy); static void __rds_inc_msg_cp(struct rds_incoming *inc, struct rds_info_iterator *iter, void *saddr, void *daddr, int flip, bool isv6) { #if IS_ENABLED(CONFIG_IPV6) if (isv6) rds6_inc_info_copy(inc, iter, saddr, daddr, flip); else #endif rds_inc_info_copy(inc, iter, *(__be32 *)saddr, *(__be32 *)daddr, flip); } static void rds_conn_message_info_cmn(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send, bool isv6) { struct hlist_head *head; struct list_head *list; struct rds_connection *conn; struct rds_message *rm; unsigned int total = 0; unsigned long flags; size_t i; int j; if (isv6) len /= sizeof(struct rds6_info_message); else len /= sizeof(struct rds_info_message); rcu_read_lock(); for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { struct rds_conn_path *cp; int npaths; if (!isv6 && conn->c_isv6) continue; npaths = (conn->c_trans->t_mp_capable ? RDS_MPATH_WORKERS : 1); for (j = 0; j < npaths; j++) { cp = &conn->c_path[j]; if (want_send) list = &cp->cp_send_queue; else list = &cp->cp_retrans; spin_lock_irqsave(&cp->cp_lock, flags); /* XXX too lazy to maintain counts.. */ list_for_each_entry(rm, list, m_conn_item) { total++; if (total <= len) __rds_inc_msg_cp(&rm->m_inc, iter, &conn->c_laddr, &conn->c_faddr, 0, isv6); } spin_unlock_irqrestore(&cp->cp_lock, flags); } } } rcu_read_unlock(); lens->nr = total; if (isv6) lens->each = sizeof(struct rds6_info_message); else lens->each = sizeof(struct rds_info_message); } static void rds_conn_message_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send) { rds_conn_message_info_cmn(sock, len, iter, lens, want_send, false); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int want_send) { rds_conn_message_info_cmn(sock, len, iter, lens, want_send, true); } #endif static void rds_conn_message_info_send(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds_conn_message_info(sock, len, iter, lens, 1); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info_send(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds6_conn_message_info(sock, len, iter, lens, 1); } #endif static void rds_conn_message_info_retrans(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds_conn_message_info(sock, len, iter, lens, 0); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_message_info_retrans(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { rds6_conn_message_info(sock, len, iter, lens, 0); } #endif void rds_for_each_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_connection *, void *), u64 *buffer, size_t item_len) { struct hlist_head *head; struct rds_connection *conn; size_t i; rcu_read_lock(); lens->nr = 0; lens->each = item_len; for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { /* XXX no c_lock usage.. */ if (!visitor(conn, buffer)) continue; /* We copy as much as we can fit in the buffer, * but we count all items so that the caller * can resize the buffer. */ if (len >= item_len) { rds_info_copy(iter, buffer, item_len); len -= item_len; } lens->nr++; } } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_for_each_conn_info); static void rds_walk_conn_path_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens, int (*visitor)(struct rds_conn_path *, void *), u64 *buffer, size_t item_len) { struct hlist_head *head; struct rds_connection *conn; size_t i; rcu_read_lock(); lens->nr = 0; lens->each = item_len; for (i = 0, head = rds_conn_hash; i < ARRAY_SIZE(rds_conn_hash); i++, head++) { hlist_for_each_entry_rcu(conn, head, c_hash_node) { struct rds_conn_path *cp; /* XXX We only copy the information from the first * path for now. The problem is that if there are * more than one underlying paths, we cannot report * information of all of them using the existing * API. For example, there is only one next_tx_seq, * which path's next_tx_seq should we report? It is * a bug in the design of MPRDS. */ cp = conn->c_path; /* XXX no cp_lock usage.. */ if (!visitor(cp, buffer)) continue; /* We copy as much as we can fit in the buffer, * but we count all items so that the caller * can resize the buffer. */ if (len >= item_len) { rds_info_copy(iter, buffer, item_len); len -= item_len; } lens->nr++; } } rcu_read_unlock(); } static int rds_conn_info_visitor(struct rds_conn_path *cp, void *buffer) { struct rds_info_connection *cinfo = buffer; struct rds_connection *conn = cp->cp_conn; if (conn->c_isv6) return 0; cinfo->next_tx_seq = cp->cp_next_tx_seq; cinfo->next_rx_seq = cp->cp_next_rx_seq; cinfo->laddr = conn->c_laddr.s6_addr32[3]; cinfo->faddr = conn->c_faddr.s6_addr32[3]; cinfo->tos = conn->c_tos; strncpy(cinfo->transport, conn->c_trans->t_name, sizeof(cinfo->transport)); cinfo->flags = 0; rds_conn_info_set(cinfo->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags), SENDING); /* XXX Future: return the state rather than these funky bits */ rds_conn_info_set(cinfo->flags, atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING, CONNECTING); rds_conn_info_set(cinfo->flags, atomic_read(&cp->cp_state) == RDS_CONN_UP, CONNECTED); return 1; } #if IS_ENABLED(CONFIG_IPV6) static int rds6_conn_info_visitor(struct rds_conn_path *cp, void *buffer) { struct rds6_info_connection *cinfo6 = buffer; struct rds_connection *conn = cp->cp_conn; cinfo6->next_tx_seq = cp->cp_next_tx_seq; cinfo6->next_rx_seq = cp->cp_next_rx_seq; cinfo6->laddr = conn->c_laddr; cinfo6->faddr = conn->c_faddr; strncpy(cinfo6->transport, conn->c_trans->t_name, sizeof(cinfo6->transport)); cinfo6->flags = 0; rds_conn_info_set(cinfo6->flags, test_bit(RDS_IN_XMIT, &cp->cp_flags), SENDING); /* XXX Future: return the state rather than these funky bits */ rds_conn_info_set(cinfo6->flags, atomic_read(&cp->cp_state) == RDS_CONN_CONNECTING, CONNECTING); rds_conn_info_set(cinfo6->flags, atomic_read(&cp->cp_state) == RDS_CONN_UP, CONNECTED); /* Just return 1 as there is no error case. This is a helper function * for rds_walk_conn_path_info() and it wants a return value. */ return 1; } #endif static void rds_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds_info_connection) + 7) / 8]; rds_walk_conn_path_info(sock, len, iter, lens, rds_conn_info_visitor, buffer, sizeof(struct rds_info_connection)); } #if IS_ENABLED(CONFIG_IPV6) static void rds6_conn_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { u64 buffer[(sizeof(struct rds6_info_connection) + 7) / 8]; rds_walk_conn_path_info(sock, len, iter, lens, rds6_conn_info_visitor, buffer, sizeof(struct rds6_info_connection)); } #endif int rds_conn_init(void) { int ret; ret = rds_loop_net_init(); /* register pernet callback */ if (ret) return ret; rds_conn_slab = kmem_cache_create("rds_connection", sizeof(struct rds_connection), 0, 0, NULL); if (!rds_conn_slab) { rds_loop_net_exit(); return -ENOMEM; } rds_info_register_func(RDS_INFO_CONNECTIONS, rds_conn_info); rds_info_register_func(RDS_INFO_SEND_MESSAGES, rds_conn_message_info_send); rds_info_register_func(RDS_INFO_RETRANS_MESSAGES, rds_conn_message_info_retrans); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_CONNECTIONS, rds6_conn_info); rds_info_register_func(RDS6_INFO_SEND_MESSAGES, rds6_conn_message_info_send); rds_info_register_func(RDS6_INFO_RETRANS_MESSAGES, rds6_conn_message_info_retrans); #endif return 0; } void rds_conn_exit(void) { rds_loop_net_exit(); /* unregister pernet callback */ rds_loop_exit(); WARN_ON(!hlist_empty(rds_conn_hash)); kmem_cache_destroy(rds_conn_slab); rds_info_deregister_func(RDS_INFO_CONNECTIONS, rds_conn_info); rds_info_deregister_func(RDS_INFO_SEND_MESSAGES, rds_conn_message_info_send); rds_info_deregister_func(RDS_INFO_RETRANS_MESSAGES, rds_conn_message_info_retrans); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_CONNECTIONS, rds6_conn_info); rds_info_deregister_func(RDS6_INFO_SEND_MESSAGES, rds6_conn_message_info_send); rds_info_deregister_func(RDS6_INFO_RETRANS_MESSAGES, rds6_conn_message_info_retrans); #endif } /* * Force a disconnect */ void rds_conn_path_drop(struct rds_conn_path *cp, bool destroy) { atomic_set(&cp->cp_state, RDS_CONN_ERROR); rcu_read_lock(); if (!destroy && rds_destroy_pending(cp->cp_conn)) { rcu_read_unlock(); return; } queue_work(rds_wq, &cp->cp_down_w); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_conn_path_drop); void rds_conn_drop(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); rds_conn_path_drop(&conn->c_path[0], false); } EXPORT_SYMBOL_GPL(rds_conn_drop); /* * If the connection is down, trigger a connect. We may have scheduled a * delayed reconnect however - in this case we should not interfere. */ void rds_conn_path_connect_if_down(struct rds_conn_path *cp) { rcu_read_lock(); if (rds_destroy_pending(cp->cp_conn)) { rcu_read_unlock(); return; } if (rds_conn_path_state(cp) == RDS_CONN_DOWN && !test_and_set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags)) queue_delayed_work(rds_wq, &cp->cp_conn_w, 0); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rds_conn_path_connect_if_down); void rds_conn_connect_if_down(struct rds_connection *conn) { WARN_ON(conn->c_trans->t_mp_capable); rds_conn_path_connect_if_down(&conn->c_path[0]); } EXPORT_SYMBOL_GPL(rds_conn_connect_if_down); void __rds_conn_path_error(struct rds_conn_path *cp, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vprintk(fmt, ap); va_end(ap); rds_conn_path_drop(cp, false); }