/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include #include #include #include #include #include struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int __percpu *read_count; struct rw_semaphore rw_sem; /* slowpath */ struct rcuwait writer; /* blocked writer */ int readers_block; }; #define DEFINE_STATIC_PERCPU_RWSEM(name) \ static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \ static struct percpu_rw_semaphore name = { \ .rss = __RCU_SYNC_INITIALIZER(name.rss), \ .read_count = &__percpu_rwsem_rc_##name, \ .rw_sem = __RWSEM_INITIALIZER(name.rw_sem), \ .writer = __RCUWAIT_INITIALIZER(name.writer), \ } extern int __percpu_down_read(struct percpu_rw_semaphore *, int); extern void __percpu_up_read(struct percpu_rw_semaphore *); static inline void percpu_down_read(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 0, _RET_IP_); preempt_disable(); /* * We are in an RCU-sched read-side critical section, so the writer * cannot both change sem->state from readers_fast and start checking * counters while we are here. So if we see !sem->state, we know that * the writer won't be checking until we're past the preempt_enable() * and that once the synchronize_rcu() is done, the writer will see * anything we did within this RCU-sched read-size critical section. */ __this_cpu_inc(*sem->read_count); if (unlikely(!rcu_sync_is_idle(&sem->rss))) __percpu_down_read(sem, false); /* Unconditional memory barrier */ /* * The preempt_enable() prevents the compiler from * bleeding the critical section out. */ preempt_enable(); } static inline int percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { int ret = 1; preempt_disable(); /* * Same as in percpu_down_read(). */ __this_cpu_inc(*sem->read_count); if (unlikely(!rcu_sync_is_idle(&sem->rss))) ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */ preempt_enable(); /* * The barrier() from preempt_enable() prevents the compiler from * bleeding the critical section out. */ if (ret) rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 1, _RET_IP_); return ret; } static inline void percpu_up_read(struct percpu_rw_semaphore *sem) { preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) __this_cpu_dec(*sem->read_count); else __percpu_up_read(sem); /* Unconditional memory barrier */ preempt_enable(); rwsem_release(&sem->rw_sem.dep_map, 1, _RET_IP_); } extern void percpu_down_write(struct percpu_rw_semaphore *); extern void percpu_up_write(struct percpu_rw_semaphore *); extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, const char *, struct lock_class_key *); extern void percpu_free_rwsem(struct percpu_rw_semaphore *); #define percpu_init_rwsem(sem) \ ({ \ static struct lock_class_key rwsem_key; \ __percpu_init_rwsem(sem, #sem, &rwsem_key); \ }) #define percpu_rwsem_is_held(sem) lockdep_is_held(&(sem)->rw_sem) #define percpu_rwsem_assert_held(sem) \ lockdep_assert_held(&(sem)->rw_sem) static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_release(&sem->rw_sem.dep_map, 1, ip); #ifdef CONFIG_RWSEM_SPIN_ON_OWNER if (!read) sem->rw_sem.owner = RWSEM_OWNER_UNKNOWN; #endif } static inline void percpu_rwsem_acquire(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_acquire(&sem->rw_sem.dep_map, 0, 1, read, 1, NULL, ip); #ifdef CONFIG_RWSEM_SPIN_ON_OWNER if (!read) sem->rw_sem.owner = current; #endif } #endif